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Deep learning-assisted co-registration of
full-spectral autofluorescence lifetime microscopic
images with H&E-stained histology images
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Autofluorescence lifetime images reveal unique characteristics of endogenous fluorescence

in biological samples. Comprehensive understanding and clinical diagnosis rely on co-

registration with the gold standard, histology images, which is extremely challenging due to

the difference of both images. Here, we show an unsupervised image-to-image translation

network that significantly improves the success of the co-registration using a conventional

optimisation-based regression network, applicable to autofluorescence lifetime images at

different emission wavelengths. A preliminary blind comparison by experienced researchers

shows the superiority of our method on co-registration. The results also indicate that the

approach is applicable to various image formats, like fluorescence in-tensity images. With the

registration, stitching outcomes illustrate the distinct differences of the spectral lifetime

across an unstained tissue, enabling macro-level rapid visual identification of lung cancer and

cellular-level characterisation of cell variants and common types. The approach could be

effortlessly extended to lifetime images beyond this range and other staining technologies.

https://doi.org/10.1038/s42003-022-04090-5 OPEN

1 Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK. 2 Institute for Integrated Micro and Nano
Systems, School of Engineering, University of Edinburgh, Edinburgh, UK. 3 Institute for Digital Communications, School of Engineering, University of
Edinburgh, Edinburgh, UK. 4 School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK. ✉email: Q.Wang@ed.ac.uk

COMMUNICATIONS BIOLOGY |          (2022) 5:1119 | https://doi.org/10.1038/s42003-022-04090-5 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04090-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04090-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04090-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04090-5&domain=pdf
http://orcid.org/0000-0002-1665-7408
http://orcid.org/0000-0002-1665-7408
http://orcid.org/0000-0002-1665-7408
http://orcid.org/0000-0002-1665-7408
http://orcid.org/0000-0002-1665-7408
http://orcid.org/0000-0003-4605-1682
http://orcid.org/0000-0003-4605-1682
http://orcid.org/0000-0003-4605-1682
http://orcid.org/0000-0003-4605-1682
http://orcid.org/0000-0003-4605-1682
http://orcid.org/0000-0002-3029-2425
http://orcid.org/0000-0002-3029-2425
http://orcid.org/0000-0002-3029-2425
http://orcid.org/0000-0002-3029-2425
http://orcid.org/0000-0002-3029-2425
http://orcid.org/0000-0001-9957-954X
http://orcid.org/0000-0001-9957-954X
http://orcid.org/0000-0001-9957-954X
http://orcid.org/0000-0001-9957-954X
http://orcid.org/0000-0001-9957-954X
mailto:Q.Wang@ed.ac.uk
www.nature.com/commsbio
www.nature.com/commsbio


F luorescence lifetime imaging microscopy (FLIM) which can
utilise lifetime contrast between healthy and pathological
tissue has broad applications in biomedical diagnosis1,2.

Without requiring the administration of exogenous biomarkers,
autofluorescence lifetime imaging is of particular interest in
clinical studies. Spectral histopathology for accurate diagnosis of
lung cancer3 and distinguishing of T-cell activation4 are examples
where FLIM images reveal the underlying metabolic state,
pathological conditions, and the constitution of the samples
associated with endogenous fluorescence. In general, FLIM ima-
ges offer multi-dimensional information, including spatial, tem-
poral, and spectral properties, where each dimension presents a
unique perspective of the tissue under investigation. Con-
ventionally, quantitative lifetime contrast of different tissues is
usually identified by histogramming lifetime images to derive
averaged lifetime, and qualitative comparison to the gold stan-
dard such as histology images is primarily based on visual
inspection by human experts. However, accurate quantification
and qualification depend on the reliable annotation of relevant
histology images. In addition, the majority of existing technolo-
gies are effective at the macro level, where statistical information
is the primary concern. This is often insufficient for cellular-level
interpretation, such as cell types and sub-cellular components,
which severely impedes the provision of transformative insight
into fluorescence phenomena under investigation. To fill this gap,
co-registration of FLIM and histology images can be used to gain
an insightful understanding of the investigated tissue at both
macro and micro levels and for revealing non-fluorescent features
of the tissue and, therefore, limitations in the autofluorescence
only approach.

However, co-registration remains difficult, especially for FLIM
images at arbitrary emission wavelengths where particular
structural features may not emit. This remains a challenge given
the different nature of FLIM and histology images. First of all,
there is a lack of statistical consistency in spatial sampling
between image types for optimal transformations, as shown in
Fig. 1 and Supplementary Fig. 1. Since fluorescence lifetime is
independent of its intensity, lifetime images are visually much less
structural but more homogeneous than histology images. A
common practice to alleviate the homogeneousness is to adjust
the saturation of each pixel in a lifetime image using the corre-
sponding intensity for that pixel, as shown in the third row in
Fig. 1. In addition, the emission spectrum of individual fluor-
ophore is influenced by various environmental mechanisms and,
hence, the images can be significantly different across wave-
lengths. The wavelength dependence of fluorescence decays
represents an additional source of information about the under-
lying molecular environment. The dissimilarity of the image
appearance and few explicit common features between lifetime

and histology images dramatically deteriorate the performance of
conventional intensity- and feature-based co-registration. Sec-
ondly, the lack of availability of the ground truth for the co-
registration impedes the application of many registration tech-
nologies. In this case, other more complex transformations, for
example, homography would be required. Consequently, direct
correlation of histology images with intensity/lifetime images, e.g.,
least-square5, is not applicable, even when human intervention is
introduced. Last, but not least, the preparation of tissue samples
may introduce uncertainties. One common phenomenon is the
colour variations, for example, due to the differences in staining
and manufacturing of the scanners6. Meanwhile, artefacts may
also be introduced during the preparation where structural
changes5 or contamination7 of tissue may occur. Although var-
ious machine learning and deep learning (ML/DL) based
approaches have been proposed to tackle the challenges in multi-
modality image co-registration8,9, straightforward applications of
those methods may be infeasible, for example, because of the
unavailability of ground truth and the visual contrast of the
images. To the best of our knowledge, we did not find any prior
work tackling this particular challenge to co-register FLIM images
at arbitrary emission wavelengths with histology images.

Another potential solution is the direct translation from FLIM
images to histology images to entirely bypass the co-registration.
For example, Giacomelli et al.10 proposed a virtual transillumi-
nation of epi-fluorescence multiphoton microscopic images to
H&E-stained images of human breast tissue. Recently, con-
temporary DL technologies, particularly convolutional neural
networks (CNNs), have achieved massive success in image-to-
image translations where images in one domain are translated to
another domain. Typical examples include, supervised methods,
for instance, hyperspectral images to H&E-stained histology
images11, MedGAN12 for multi-purpose medical image transla-
tion, translation from autofluorescence intensity images to his-
tology images5, semi/weakly/unsupervised methods, e.g., Cycle-
MedGAN13 for PET to CT image translation and MRI motion
correction, and PC-StainGAN14 to translate from H&E-stained to
Ki-67-stained histology images. In general, the most frequently
used architectures are UNet15, generative adversarial networks
(GANs)16 and its variants, e.g., Cycle-GAN17. To ensure the
quality of the translation, all methods require source and target
images with competitive spatial resolutions, no matter whether
they are tomographic or microscopic images. This, unfortunately,
is often unavailable for FS-FLIM and histology images where
often, for the reasons of image acquisition time and sample
bleaching, the FLIM image is of greatly reduced spatial resolution.
Therefore, direct applications may not be feasible. To allow the
co-registration to be successfully achieved using FLIM images at
arbitrary emission wavelengths within a specific range, we

Fig. 1 False-colour FS-FLIM images of 256 × 256 pixels, with a field of view (FOV) of 600 × 600 µm, at five different wavelengths. a FLIM images at
various emission wavelengths. The first row presents intensity images, the second row is the corresponding lifetime images, and the third row is the
intensity-weighted lifetime images. b A manually cropped histology patch with a larger FOV than the FS-FLIM images.
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propose a DL-assisted approach to overcome the aforementioned
challenges. Full-spectral autofluorescence lifetime images at
emission wavelengths across [500 nm, 780 nm] are collected via
a custom-built ultra-sensitive FS-FLIM system18. Afterwards,
they are translated into images similar in appearance to his-
tology images, namely false histology images, using an unpaired
image-to-image translation CNN model, where the translated
images have a similar appearance to the original ones. Later, the
corresponding histology patches are interactively cropped
with human intervention from the whole slide images (WSIs),
which are larger than those false histology images. Eventually,
both images are input into a regression network, adapted from
an intensity-based optimisation model, constrained by a partial
photometric (PPM) condition. To evaluate the feasibility of the
approach, FLIM images at different wavelengths and FOVs are
input into the pipeline. In addition, various image modalities
are tested, including intensity, lifetime, and their combination,
to demonstrate the flexibility of the approach. The superiority
of the translation is appraised by an ablation study, where
results with/without the translation are blindly perceived by
three experienced researchers with the fundamental knowledge
of registration, FLIM and histology images. Finally, a direct
application of the registration, i.e., stitching, is presented to
illustrate the capability of stitched FLIM images at various
wavelengths for rapid visual recognition of a human lung cancer
tissue at a macro level.

Results
Registration. The overall results are depicted in Fig. 2. All images
were collected with a fixed spatial resolution of 256 × 256. The
FOV of the images in the first row is 260 × 260 µm, the second
row is FOV 515 × 515 µm, and the rest of the rows are
600 × 600 µm. The first column represents the input images,
where the first two images are set with a black background. The
second column shows generated false histology images filtered by
their corresponding intensity image as a mask. The third column
corresponds to the real histology patches interactively cropped.
The fourth column is the blending of the registration results per
greyscale image, and the fifth column illustrates the blending of
the false and real histology images of the registration results per
the original colours of the false and original histology images. In
addition to the lifetime images in the first three rows, intensity
(fourth row) and intensity-weighted lifetime image (fifth row) are
also evaluated. It is worth mentioning that the greyscale blending
is visualised in green and magenta for FLIM images and histology
images, respectively, to improve the visual presentation. This
visualisation style is applied throughout the paper. It is also worth
noting that due to the considerable discrepancies between the
images, quantitative evaluation using conventional metrics may
not correctly reflect the results. Therefore, whether or not the
results are successful is primarily a subjective qualitative evalua-
tion performed by human interpretation. Nonetheless, a quanti-
tative comparison is still presented in Supplementary Table 1,
where three similarity metrics, namely, mean squared error,
normalised mutual information19, and normalised cross-
correlation20 were calculated based on the registration out-
comes on intensity, lifetime, and false histology images.

First of all, we appraise the impact of hardware configurations
on the registration. In particular, we tried three lifetime images
with different FOVs of 260 µm, 515 µm, and 600 µm, respectively
and randomly selected wavelengths, as illustrated in Fig. 2.
Because of the interactive cropping, the approach is able to
generate effective registration regardless of the FOV. In addition,
although the wavelengths of the first three rows are different, all
are capable of producing reasonable results.

Secondly, RGB-colour images were also evaluated. In parti-
cular, three different visualisation results using the standard Jet
colourmap were assessed. We first checked lifetime images with a
dark background (the first and second columns in Fig. 2).
Furthermore, we evaluated the images without the dark back-
ground on intensity (the fourth column in Fig. 2) and lifetime
(the third column in Fig. 2). During the generation, we observed
that the visualisation without the dark background might cause a
blurred background in the generated false histology images. To
ensure a successful co-registration, their corresponding intensity
images need to be applied as a mask to the generated images. The
last visualisation presentation is the aforementioned intensity-
weighted lifetime images (the fifth column in Fig. 2). Similar to
those images with the dark background, the masking is not
required for the weighted lifetime images to achieve a qualitative
co-registration.

We also evaluate the impact of image visualisation on the final
results. Greyscale lifetime images were tested and the results are
depicted in Fig. 3, which shows the feasibility of using greyscale
lifetime as input. However, it is worth noting that to fulfil
acceptable registration, the contrast of the original lifetime images
needs to be enhanced. In this study, histogram equalisation
technology21 was applied to individual images. Meanwhile, the
parameters of the regression need to be carefully tuned to achieve
the target.

In addition, we also tried different modalities of images,
including intensity and intensity-weighted lifetime. The fourth
and fifth rows in Fig. 2 depict the corresponding intensity and
intensity-weighted lifetime images. In order for the translation to
be optimal, we trained the CycleGAN on the intensity and
weighted images, respectively. The second column in Fig. 2
illustrates the translation results. Although the generated false
histology images are visually different, all registrations using the
false images present consistent results.

To further demonstrate the advantages of the proposed
method, the regression was carried out in both greyscale and
colour formats. The greyscale blending in the fourth column and
the colour blending in the fifth column show that both formats
can achieve the desired registration. Apparently, this is not
feasible for lifetime images to utilise the original colours for the
registration. The primary reason for the superiority of the colour
image-based registration is the translation of lifetime images to
false histology images. Visually, the overall appearance of the
generated images is similar to real histology images, which
implies that the values of the RGB channels are close enough for
the regression to sort out an optimal homography estimation.

Finally, we compared the results of seven different wavelengths,
including 500 nm, 526 nm, 552 nm, 578 nm, 605 nm, 631 nm, and
657 nm. In Fig. 4, all lifetime images are visualised with a dark
background. The first row is the spectral lifetime images, the
second row illustrates the generated false histology images, the
third row shows the corresponding real histology patch with
black background, and the fourth row depicts the greyscale
registration results of blending the warped false histology images
with the histology patch. At the shortest wavelength, e.g., 500 nm
(first column in Fig. 4), the original lifetime image is relatively
noisy due to a moderately low signal-to-noise ratio (SNR) and,
hence, the corresponding generated image contains less structural
information than others. Consequently, the registration needs to
be carefully tuned, taking a relatively long time to obtain an
optimal result. From the second to the fourth columns, the
lifetime images are well reconstructed with visible structural
content. As a result, the regression can be achieved robustly with
a relatively short time for the optimisation, compared with other
wavelengths. For the last three columns, the lifetime images
become noisier and noisier with the increase of the wavelength, as
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the decrease of the SNR. However, the predominant structural
features suitable for qualitative co-registration are retained, and
thus, an optimal registration can still be achieved.

Comparison with/without translation. To thoroughly evaluate
the impact and necessity of the translated false histology images,
we compared the registration with and without the CycleGAN,
followed by a blind inspection performed by three independent
researchers with some fundamental knowledge of FS-FLIM
images and image registration. In particular, 40 lifetime images

with random wavelengths within the range of [500 nm, 710 nm]
were selected from 40 hypercubes, which were sequentially
acquired from a lung tissue sample. All lifetime images were
visualised in greyscale with a fixed range, so that lifetime differ-
ences per wavelength were correctly reflected. All false histology
images were converted into greyscale, without any contrast
enhancement. During the regression, all parameters were fixed for
both lifetime and false histology images, where the number of
epochs was set to 200, the learning rate was initialised at 0.01 and
decayed by 10 at epoch 100, and the window for PPM loss
was 200.

Fig. 2 Registration results with the proposed approach. All images are 256 × 256 in spatial resolution. The first row is a lifetime image at wavelength
616 nm with a FOV 260 × 260 µm. The second row is a lifetime image at wavelength 595 nm with a FOV 515 × 515 µm. The rest of the three rows are a
lifetime, intensity, and intensity-weighted lifetime image, respectively, at 690 nm with a FOV600 × 600 µm. The generated false histology images are
presented (second column), along with the interactively cropped histology patch (third column). Registration results are illustrated by combining the false
and real histology images together, using greyscale (fourth column) and the original colour(fifth column). To improve the visual interpretation, FLIM and
histology images are visualised in green and magenta, respectively, in the greyscale blending (fourth column).
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Inspectors could choose one out of four options for each pair of
registration results. That is, both images present good registration
results, either false histology images or lifetime image performs
well, and neither of them provides satisfactory outcomes. The
inspection results are listed in Table 1, which suggests the
superiority of the false images over the lifetime for the
registration. On average, the proposed method achieves 67.5%
satisfactory registrations, whereas the ablation without the
translation reaches only 29.1% successful registrations.

To better understand the results listed in Table 1, we present
four representative cases in Fig. 5, where all inspectors agreed on
the choice for each case. The first row in Fig. 5 illustrates that

both input images are able to contribute to plausible registration.
The underlying reason for the success may owe to the structural
resemblance between the input and the histology images. In the
second case (second row in Fig. 5), the false image manages to
recover some information that is hardly visible in the lifetime
image, thus, resulting in a better registration performance. When
taking a closer look at the lifetime and the result images, it seems
that the upper half of the image could be registered with
reasonable confidence. However, it is difficult to assess the lower
part of the image as the presented information is insufficient. An
interesting phenomenon occurs when the lifetime is better than
the false histology image, as shown in the third row in Fig. 5.

Fig. 3 Example of the registration with lifetime images in greyscale. The images in the first row correspond to the ones in Fig. 2. The original greyscale
lifetime images (first column) need to be contrast-enhanced (second column) so that the generated false histology images (third column) and the
corresponding histology patch (fourth column) can be reasonably registered (fifth column).

Fig. 4 Registration results based on seven different emission wavelengths. From rows 1–4, there are seven spectral lifetime images, the corresponding
false histology images, the histology image patch, and the registered images in greyscale generated by blending translated false and real histology images,
respectively.
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Visually, the images present some structural information that is
similar to the first case (the first row in Fig. 5), but the false image
is unable to reach a satisfactory registration, whereas the lifetime
is. We have checked the cases in this category, where all
inspectors agreed, and we found that all those happened when
background areas dominated the images, in particular at the edge
of tissue samples. Given the FOV of the images and the FS-FLIM
images presented, there are two (out of 40) such images
presenting worse co-registration results and all these two images
are at the right edge of the tissue samples. There are in total four

images at the right edge, where neither fake nor FS-FLIM images
of the remaining two are unable to present satisfactory
registration results. As a result, similar loss presented in Eq. (4)
in the Discussion section might be derived from different
homography transformations. As for the case when neither of
the images successfully registers with the histology image (fourth
row in Fig. 5), the lifetime image presents little meaningful
information due to very low SNR, and the false image was unable
to recover sufficient information. Consequently, the results were
not meaningful, although the losses of the regression still
converge.

In some extreme cases, particularly when the wavelengths were
very long (over 740 nm), lifetime images (first column) struggled
to present meaningful information, due to the high SNR.
Supplementary Fig. 2 depicts four examples of these cases. In
the first and second rows, the translated images (second column)
appear to be structurally close to the lifetime images at shorter
wavelengths, which is able to guarantee good registration results
(fourth column). In other cases (third and fourth rows), although
the translated images convey some structural information, it is
insufficient to perform acceptable registration. The loss of
information at a longer wavelength is expected, as the tissue
sample is known to fluoresce mainly within the 500–650 nm
range, with little to no emission expected beyond this.

Fig. 5 Comparison of the registration by the lifetime and false histology images. Each row illustrates one specific case where both images present good
registration results (first row), the false histology image outperforms the lifetime image (second row), the lifetime image is better than the false one (third
row), and neither of them produces an acceptable result (fourth row), respectively.

Table 1 Blind inspection of the registration results.

Inspector 1 Inspector 1 Inspector 1 Average

Both
satisfactory

13 (32.5%) 2 (5.0%) 7 (17.5%) 18.30%

false
histology

15 (37.5%) 27 (67.5%) 17 (42.5%) 49.20%

Lifetime 5 (12.5%) 2 (5.0%) 6 (15.0%) 10.80%
Neither
satisfactory

7 (17.5%) 9 (22.5%) 10 (25.0%) 21.70%

Both results using the lifetime and generated false histology images at random wavelengths are
presented to the inspectors to evaluate whether the registration is satisfactory or not.
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Empirically, when the emission wavelength is less than 600 nm,
FLIM images in greyscale may perform reasonably well for the
co-registration without the translation, although sometimes a
contrast enhancement algorithm may be needed. At wavelengths
[600 nm, 650 nm], the enhancement is frequently required for a
satisfactory co-registration. In addition, fine-tuning of the
regression parameters is often needed, such as in Fig. 3. When
the wavelength is beyond 650 nm, simply enhancing the contrast
of the images may not be feasible for reaching a plausible co-
registration, such as the one in the second row of Fig. 5. This may
be due to the relatively low SNR, where “invisible” pixels
contributing to the overall structure are filtered out during the
contrast enhancement. It is worth mentioning that we have tried
other multi-modality registration approaches on direct co-
registration of the images, such as multi-scale intensity-based
registration and elastic approaches21. Supplementary Fig. 3
demonstrates the results by a multi-scale intensity-based
registration approach22. Despite exhaustive combinations of the
parameters tried, a successful registration is unable to be
achieved. This becomes better when using the generated false
histology images for the registration, although the results are still
not optimal, compared with the ones by the proposed method.
Similar outcomes also happen to other advanced registration
methods, such as elastic approaches. We believe that the primary
reasons include the homogeneity of the FLIM images and the
relatively low spatial resolution due to the tradeoff between the
resolution and the data acquisition time for full-spectral FLIM
images, where statistical consistency in spatial distribution of the
images is challenging to be identified.

Stitching. A direct application of registration is stitching, where
all individual images can be tiled up, forming a much larger
image and, consequently, both local and global information can
be revealed. In this study, we perform a simple strategy for the
stitching of FS-FLIM images at various wavelengths. With the
help of the developed software, the positions of the entire set of
cropped histology patches were simply averaged. Figure 6 depicts
an example of the stitching by reusing the data in18, which
contains 60 hypercubes collected across a human lung tissue
sample. In order to maximise the visual contrast across the whole
scanned area, the standard Jet colourmap was applied to allow
more colours to be displayed. In addition, we enlarged the visible
range of lifetime from [1.5 ns, 2.8 ns] to [1.0 ns, 3.0 ns] to further
enrich the visual effect.

The histology slide has been interpreted by a lung pathologist,
which demonstrates lung cancer (adenocarcinoma), tumour
margin and adjacent healthy lung tissue. To improve the visual
contrast and reflect sufficient structural information, intensity-
weighted lifetime images are displayed, and the range of the
lifetime is fixed for all visualised wavelengths at [1 ns, 3 ns]. The
results are depicted in Fig. 6 and Supplementary Fig. 4, where six
stitched lifetime images are presented at the wavelength of
500 nm, 555 nm, 582 nm, 609 nm, and 637 nm.

Compared with the histology images, the heterogeneous
distribution of autofluorescence lifetime in the FS-FLIM images
across the sample reveals distinct characteristics of the lung tissue
under investigation. Lung cancer demonstrates a lower fluores-
cence intensity signal compared with healthy lung tissue,
particularly at a shorter wavelength. Given a particular 527 nm
wavelength (Fig. 6b), healthy pulmonary alveoli are clearly
visualised and display a longer fluorescence lifetime (3 ns)
compared with lung adenocarcinoma (1.5 ns). Interestingly, the
walls of blood vessels and respiratory bronchioles display long
fluorescence lifetimes, in keeping with healthy pulmonary alveoli,
which may be related to the presence of elastin fibres. The

spectral lifetime across emission wavelengths also demonstrates
the consistent decrease of the lifetime along with the increase of
the emission wavelengths, which implies the potential for the
lifetime-based differentiability of cancerous and non-cancerous
tissue at wavelengths within the range [500 nm, 710 nm].

To reveal the fingerprint of individual cells from a lifetime
viewpoint, six different types of cells were annotated at various
locations in the histology image, including tumour, collagen,
inflammation, stroma, red blood cell and alveolar septa, as shown
in Fig. 7 (Source data is included in Supplementary Data 1). Due
to the size difference between the cells and image pixels, lifetime
values within 5 × 5 pixels were averaged as the absolute value of
the cells. The lifetime of the cells is plotted at wavelength range
[500 nm, 680 nm] in Fig. 7b. As mentioned previously, the
histology image (Fig. 7a) demonstrates a transition from clinically
confirmed lung cancer to healthy lung tissue from left to right.
Tumour cells within the same area have similar lifetime, but they
show a noticeable lifetime difference in different areas. For
example, those in the transitional area (locations 4 and 5) have a
longer lifetime than those in the cancerous area (locations 1, 2,
and 3), which indicates they may be internally different. Alveolar
septa also show a similar pattern, that is, normal cells
(annotations 3 and 4) have a longer lifetime than those
(annotations 1 and 2) in the transitional zone. This is also
consistent with a visual inspection that the cells at positions 1 and
2 are thicker walled than the rest, suggesting a transitional
change. In contrast, red blood cells (RBC) tend to have a
consistent lifetime across the tissue. This is primarily because they
are often in the vasculature and dominate the area. As for
collagen, inflammation, and stroma, those types of cells in
distinctive areas also have a different lifetime. However, due to

Fig. 6 Stitching of sequentially acquired FS-FLIM images. a is the
corresponding H&E-stained histology image, where the enlarged area
matches the ones by the FS-FLIM system. b is the stitching results per
intensity-weighted lifetime images at wavelengths 527 nm. c is a blending
of the weighted lifetime image and the corresponding histology image.
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the existence of other cells, their absolute lifetime is affected by
the surrounding cells, and hence, shows less distinguishable
features than other examined cell types.

In short, with the capability of the proposed registration, a
pixel-level correlation between FS-FLIM and histology image can
be built, and hence, comprehensive interrogation of FS-FLIM
images at micro- and macro-level can be performed accurately
and reproducibly. With the assistance of detailed annotation of
the corresponding histology images, individual cells can be
characterised using spectral lifetime. This enables quantitative
differentiation of cell types and similar cells at different stages.
With extra dimensions associated with FS-FLIM images, namely
lifetime and spectrum, rapid and reliable recognition could be
achieved over the histology images, requiring minimal expertise.

Discussion
FS-FLIM images. Histology images are the “gold standard” for
the interpretation of FLIM images, and therefore, pixel-level
interpretation of FLIM images requires successful registration
with histology images. Since FS-FLIM images consist of intensity
and lifetime information at various wavelengths, both intensity
and lifetime images at an arbitrary wavelength could be used for
the registration. Ideally, intensity images seem more appropriate
for that purpose, because both intensity and histology images are
optically scanned to reflect concentration distribution. As the
intensity images are a summation of the lifetime data, the use of
the intensity image for registration implicitly provides for regis-
tration of the lifetime data to the histology image. Typical
examples are those efforts on the virtual staining using auto-
fluorescence intensity images for the registration with histology
images5,11. However, the methods used may not be applicable to
FS-FLIM with respect to wavelength images, where the quality of
spectral intensity images is not comparable to histology images.
Due to the flat nature of lifetime images, intensity-based images
are anticipated to have better registration performance due to

increased structural information. However, as the intensity image
and lifetime images are collected from the same acquisition, the
successful registration of one image type provides registration of
the other. We observed that intensity images might perform
worse than lifetime images when used for co-registration, espe-
cially at long wavelengths, which may be due to the decrease in
emission intensity in these regions. The evaluation metrics,
shown in Supplementary Table 1, also demonstrate the same
phenomenon. This is primarily because lifetime is independent of
intensity. Low intensity may affect the quality of the images, but
the corresponding lifetime in the images can still be reconstructed
reliably. Consequently, the low-intensity areas are hardly visible
in intensity images, whereas those areas are still present in the
corresponding lifetime images, provided there is still a high
enough signal to perform a lifetime calculation.

During the experiments, we observed that lifetime images are
able to achieve reasonable registration results, using the proposed
regression. For example, within the range of [520 nm, 600 nm],
the quality of the images is sufficient to reflect some structural
information, where similar features can be found in the histology
images. However, post-processing on FLIM images for a direct
registration may be required, such as contrast enhancement, so
that the quality can be improved to match histology images.
When the wavelength is outside of the range [520 nm, 600 nm],
the image quality deteriorates, particularly when the wavelength
is over 600 nm (Supplementary Fig. 1). In this case, lifetime
images may not convey adequate features to fulfil the objective.
Similar observations were also found on intensity image-based
registration, but with a slightly narrower range of [530 nm,
600 nm].

Generation of false histology images. The Results section illu-
strated the success and necessity of the translation from lifetime
to false histology images for the purpose of image registration.
Due to the lack of availability of ground truth, the generation of
false histology images needs to be based on unpaired image-to-
image translation. This, however, helps the training of the model,
where FS-FLIM and histology images do not need to be aligned.
In practice, we trained the CycleGAN using histology images at
various FOVs, including these relevant and irrelevant to the FLIM
images. The generated results are still satisfactory for the regis-
tration purpose. Consequently, the translation enables the regis-
tration to be performed on images with similar appearance,
allowing the regression on RGB colour images. In addition, the
translation helps to recover “hidden” information in the original
images, where the hardly visible part could be important but
insufficient for the registration, such as in the second row of
Fig. 5. With the assistance of the translation, both intensity and
lifetime, even its combination can be utilised for the registration
with plausible results. In some extreme cases, the translation is
even able to recover structural content when the wavelength is
over 740 nm, which is comparable to the high-quality FLIM
images at short wavelengths (Supplementary Fig. 2).

In general, the inherent differences between histology images
and FS-FLIM images results in imperfect translation. Conse-
quently, the primary purpose of the translation is not to generate
perfectly matched images. Instead, it enables the generated images
to convey more features than FLIM images, which are more
suitable for the registration. Apparently, better translation will
result in more reliable and accurate registration. CycleGAN has
achieved great success in style transfer between two separate
domains, but the disadvantages are also significant when dealing
with more complicated situations. For example, Liu et al.14

proved that CycleGAN is not sufficient for the translation among
different histology staining technologies due to the texture

Fig. 7 Absolute spectral lifetime of six different types of cells, including
tumour, collagen, inflammation, stroma, red blood cell (RBC) and
alveolar septa. a Annotated locations of the cells are illustrated in the
histology image. b The corresponding lifetime values for each cell type are
presented across wavelengths in [500 nm, 680 nm].
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complexity. In this regard, extra improvements could be applied
to our case to enhance the translation, such as texture loss5 and
the structural similarity constraint14.

Homography regression. Due to the scale of microscopic images,
slight differences among the orientation and position of the two
modalities usually result in significant geometric changes. With
the assumption that the underlying tissue samples are structurally
consistent before and after the staining, homography transfor-
mation is, therefore, required to properly align the images. When
input images or their features can be correlated flawlessly, various
technologies could be applied for satisfactory co-registration, for
example, directly linear transformation23 and supervised24 or
unsupervised25 homography estimation. Figure 2 and Supple-
mentary Fig. 1 suggest that the FLIM and histology images used
in this study are very different from each other in terms of FOV,
structure, and colours, to name a few. Therefore, direct estimation
of the homography matrix is one of the most effective and effi-
cient ways for our case.

In addition, since the cropped histology patches are usually
larger than lifetime images in regard to the FOV, the inclusion of
large padding areas at the edge will also affect the regression. The
ideal comparison would be only on the registered areas after
transformation which, in practice, is not straightforward to
achieve. Empirically, this can be approximated by a hollow
rectangle mask, i.e., the PPM. During the experiments, we noticed
that conventional metrics, namely, mean squared error and
normalised mutual information, did not always reflect the
registration performance correctly. That is, we observed that the
proposed method presented a better result but worse metrics than
with FLIM images only. Supplementary Table 1 shows that the
registration with lifetime is better than the false histology image
on normalised cross-correlation, but both our observation and
the presented results demonstrate it is not the case. Again, the
reason is probably because of the distinctions between the images.
Alternatively, the PPM loss could be facilitated for an objective
comparison. Unfortunately, we found that synthetic histology
images always perform better than the lifetime images, in terms of

the PPM loss, even lifetime images achieved better co-registration
than false histology images (Supplementary Fig. 6).

Since the regression model is a standalone module, it can be
easily substituted by more advanced technologies for better
estimation of the homography matrix. For example, a potential
solution is the multi-scale image registration, where metrics at
different scales are calculated and fused to obtain an optimal
estimation26. It has also been reported that distortion between
unstained and stained samples may be related to artefacts
associated with sectioning and/or staining7. We also found a
distortion effect in our study, which may be caused by the
staining procedure and the confocal nature of the system
employed as any structures at a depth not related to the focal
plane will be lost. Nevertheless, non-rigid registration might be
required, which could be supplemental to the regression or a
method to replace it entirely.

Another potential artefact is the randomness of histology
patches cropped manually by human. To evaluate the impact of
the randomness on the results, we selected three different sizes of
histology patches, which are smaller, similar, and larger than a
given FLIM image, respectively. Since the window sizes for PPM
loss also influence the regression, we repeated the co-registration
of three histology patches with three window sizes. The results are
depicted in Fig. 8. As far as histology patches are concerned, small
ones (first row) require large window sizes, e.g., 246 and 236, to
reach a satisfactory result. In contrast, large patches (third row)
need a small window size for a reasonable registration, such as
216 and 196, where smaller window sizes do not satisfy it. For a
suitable cropping with a slightly larger FOV (second row),
different window sizes are able to generate sound outcomes. To
achieve the optimal results, therefore, a slightly larger cropping
with a moderate window size is recommended.

Execution time. An important aspect of our approach is the
execution time. We evaluated this by repeating each step 10 times
with different inputs, except the cropping of histology patches as
it requires human intervention. Our testing platform is a desktop
computer with eight-core CPU (3.0 GHz), 32GB memory, and

Fig. 8 Impact of the cropping size of the histological patches and the window size for PPM on the results. Three different sizes of the cropped
histological patch are presented in each row, where “small” (first row), “mid” (second row), and “large” patch (third row) have a slightly smaller, similar,
and larger FOV than the FLIM image, respectively. Three values of PPM are also evaluated and results are presented in columns three to five.
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NVidia Titan RTX GPU (24GB memory). Note that the gen-
eration of false histology images and homography regression was
performed on the GPU. Overall, the generation ran for 0.19 s,
except for the first run which needed 20.52 s for initialising
parameters and loading data to the memory. The regression
configured with 200 epochs executed for 1.71 s in average, except
for the first execution which needed 7.45 s.

Methodology
The overall procedure of the proposed approach is depicted in
Fig. 9, and it can be generally separated into three steps: data
collection, false histology generation, and regression. FS-FLIM
images were collected by a custom FS-FLIM system18 on unstained
tissue sections, and histology images were gathered by a bright-field
microscope after the staining of the unstained tissue. After a simple
data post-processing, both images were fed into the CycleGAN to
generate false histology images. Later, the generated false histology
images were input to a regression network, along with the corre-
sponding histology patches cropped from the whole histology
images to estimate the homography matrix. The detailed infor-
mation about each step is discussed in the following sections.

Data collection. Ex-vivo human lung tissue samples were
obtained from 11 patients with non-small cell lung cancer
undergoing thoracic resection surgery, with paired non-cancer
and lung cancer tissue sections obtained from each patient. Lung
tissue specimens were fixed in 4% neutral buffered formaldehyde,
and embedded in paraffin. Fixed unstained 5 µm slices were
deparaffinised in xylene, rehydrated and subsequently dehydrated
through gradient-ethanol, and mounted beneath coverslip.

Sequential 5 m sections were H&E-stained. All histology slides
were digitally archived using AxioScan.Z1 slide scanner (Zeiss,
Germany).

FS-FLIM images were acquired by a customised FS-FLIM
system18, which is capable of capturing time-resolved images over
512 spectral bands from 500 nm to 780 nm, and 32 time channels.
The spatial resolution of the resultant images can be configured at
different sizes. Due to the amount of data, we chose a size of
256 × 256 to find a trade-off between acquisition time and image
quality. Consequently, a single measurement results in a
4-dimensional hypercube of 256 × 256 × 512 × 32, acquired with
a 0.5 NA 20× objective (Olympus) and pixel dwelling time of
1 ms or 2 ms. Each hypercube contains multi-dimensional
information in spatial, temporal, and spectral terms. The
scanning was performed sequentially across the microarrays for
all samples, resulting in a number of adjacent hypercubes, where
the actual number depends on the size of each microarray, the
configured FOV, and the overlapping between images. In total,
we collected over 2,000 hypercubes on about 20 unstained tissue
sections from several patients, using four different FOVs. It is
worth mentioning that all of these FOVs lead to a significant
undersampling of the samples.

Generation of false histology images. As far as the hypercubes
are concerned, noise becomes noticeable at the edges of emission
spectra due to the relatively low counts. To minimise the noise, a
moving spectral mean of 8 channels (~4.5 nm) over this spectral
region was deployed for lifetime estimation. Considering the
amount of raw data, the computational resources available, and
the reasonable quality of the images, a GPU-accelerated least-

Fig. 9 Schematic diagram of the proposed method. a is the overall procedure of the method. After collecting the FS-FLIM images, they are input into the
CycleGAN (b) to generate false histology images, in assistance with histology images. The output of the CycleGAN and the corresponding cropped
histology patches are fed into a regression network (c) for the registration.
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square fitting27 was utilised for the reconstruction of lifetime
images. To reduce the photon quantum noise for optimal SNR,

we used a threshold value of
ffiffiffiffi

N̂
p

to further filter the images28,
where N̂ is the mean of the measured fluorescence concentration.
Similar to29, the filter can be defined as:

î
I
x;y;s ¼

0

iIx;y;s

iIx;y;s ≤
ffiffiffiffi

N̂
p

otherwise

(

ð1Þ

î
L
x;y;s ¼

0

iLx;y;s

iIx;y;s ≤
ffiffiffiffi

N̂
p

otherwise

(

ð2Þ

where II ¼ fiIx;y;sj iIx;y;s ≥ 0; x; y 2 ½0;M� and s 2 ½0; S�g is a full-

spectral intensity image, and IL ¼ fiLx;y;sj iLx;y;s ≥ 0; x; y 2
½0;M� and s 2 ½0; S�g is the corresponding lifetime image, with
spatial size M ×M and spectral size of S. Afterwards, a global
normalisation is performed on the filtered data acquired on the
same microarray to reflect the changes and consistency across
each microarray and wavelength.

The FS-FLIM images use a dark background to indicate zero-
value areas, whereas the histology images use a bright version.
Accordingly, we need to mask the background of the histology
images so that the values would not be misinterpreted during the
generation. A simple approach, depicted in Supplement Fig. 5, is
applied. The histology image is first converted to a greyscale
image, which is further processed by inverting colour. Afterwards,
histogram equalisation21 is employed to enhance the contrast of
the image, followed by the OTSU threshold selection method30 to
binarise the image. Eventually, the histology image with the black
background can be derived by pixel-wise multiplication of the
binary mask and the original histology image.

Due to the lack of availability of the ground truth for the
translation from FLIM images to histology images, supervised
methods are not applicable, and thus, unsupervised image-to-
image translation technologies are considered. In this study,
CycleGAN17 is utilised for the generation of false histology
images. Figure 9b shows the illustrative architecture of the
CycleGAN, which contains two GANs: the transformation from
FLIM images to false histology images GFH : IF ! IH (left half of
the CycleGAN in Fig. 9) and the reverse transformation from
histology images to false FLIM images GFH : IH ! IF (right half
of the CycleGAN in Fig. 9), where IH and IF are FLIM and
histology images, respectively. Furthermore, DFH and DHF are the
discriminators associated with GFH andGHF , respectively. The
overall objective of the CycleGAN in this study can be defined as:

LðGFH ;GHF ;DFH ;DHFÞ ¼ LFHðGFH ;DFH ; I
F ; IHÞ

þLHFðGHF ;DHF ; I
H ; IFÞ þ λLcycðGFH ;GHFÞ

ð3Þ

where LFHðGFH ;DFH ; I
F ; IHÞ is the adversarial loss of the mapping

GFH , LHFðGHF ;DHF ; I
H ; IFÞ is the adversarial loss of the

mappingGHF , LcycðGFH ;GHFÞ is the cycle consistency loss, and λ
controls the weight of Lcyc.

For the training of the network, all FS-FLIM images are
shuffled, regardless of the wavelength, and input into the network,
which enables the translation at arbitrary wavelengths. Since it
does not require paired images and the primary objective of this
step is not to precisely transform FS-FLIM images into histology
images, the transformation can be performed using the histology
images irrelevant to the FLIM images. That is, arbitrary histology
images of different sizes can be used for the generation of false
histology images. In this study, about 40 WSIs were utilised for
the generation. More specifically, 20 of the WSIs were scanned
from the samples correlated with the FS-FLIM images, and the

rest were from the samples not related to the FS-FLIM images.
The WSIs were cropped at random positions with different sizes
from 256 × 256 up to 2048 × 2048, without considering the actual
FOV of the patches. Those patches are later resized to 256 × 256
to be used as the input to the network.

During the training, the original CycleGAN was used and all
hyperparameters were retained, except the batch size set to 16 and
the epochs set to 50, since we observed that those values produced
satisfactory results. The images in the second row in Fig. 4
illustrate the generated results for seven different wavelengths.
Compared with the lifetime images (first row), the generated false
histology images (second row) can recover some hidden
information invisible in the lifetime images, particularly when
the excitation wavelength is long. In addition, the appearance of
the images shows similarities to real histology images.

Regression network. As mentioned in Section “Introduction”,
the primary challenges for the registration are the lack of ground
truth and the nature of FS-FLIM and histology images. The
widely-applied 8-point homography estimation24,25 is not parti-
cularly applicable to our problem due to the unavailability of the
targeting four points on histology images. In addition, features in
FS-FLIM may be very different from those in histology images
because of the differences among FLIM images at different
wavelengths. Therefore, a direct way to tackle the challenges is to
use conventional iterative regression. This study applies a simple
yet effective iterative algorithm, where the homography matrix is
directly estimated via a regression model. It is worth noting that
while the homography matrix can be estimated by various
methods, such as a 9-parameter direct vector, in this work the
homography matrix is in the format of a 3 × 3 matrix to make the
processing pipeline consistent as it is inherently facilitated in the
libraries applied, such as OpenCV and Kornia.

Let IF
0 ðx; yÞ ¼ GFHðIFÞ ¼ fðxF0

i ; y
F0
i Þj i 2 ð0;N � 1Þg denote a

false histology image, and IHðx; yÞ ¼ fðxHi ; yHi Þj i 2 ð0;N � 1Þg
the corresponding histology patch, where N is the dimension of
the images after rescaling. The objective of the regression is to
minimise the pixel-wise photometric using the L1 loss:

LðIF’ ; IHÞ ¼ 1
N
∑N

i¼1ðjHðIF’ ðxi; yiÞÞ � IHðxi; yiÞjÞ ð4Þ

where H is the homography transformation, defined as:

HðIF0 ðxi; yiÞÞ ¼
�

H xF
0

i yF
0

i 1
� �T jxF0

i ; y
F0
i 2 IF

0 ðxi; yiÞ
� ð5Þ

where H is the 3 × 3 homography matrix.
The procedure of the regression network is depicted in Fig. 9c.

The regression starts with a 3 × 3 identity matrix H0 to project the
input fake histology image. Afterwards, photometric loss is
calculated using Eq. (4) with L1 loss. Since the cropped histology
patch has a different FOV from the false image, there will be some
redundant information at the edge after the warping. During the
experiments, we found that excluding the redundant edge area
produces more robust results. Therefore, a PPM loss was applied,
where the loss is derived, excluding the blue area of the blended
intermediate result as it is seen in Fig. 9c, and optimised through
gradient descent. To streamline the whole procedure and ensure
optimal results, the regression network is adopted to allow all
relevant operations to be directly performed on the Tensors of the
image output from the CycleGAN.

The software. User-friendly open-source interactive software was
developed to fulfil the aforementioned tasks, based on PyQt31,
OpenCV21 for the image processing, Kornia32 for the differenti-
able Tensor-based homography transformation, and PyTorch33

for the CycleGAN and generation of the false histology images.
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The source code is available on https://github.com/qiangwang57/
coreg_flim_histology.

Supplementary Fig. 7 shows the software, which has four
independent Graphic User Interfaces (GUIs). Supplementary
Fig. 7a generates false histology images, where users can specify a
FLIM image at a particular wavelength and the pre-trained
parameters from the CycleGAN. To improve the quality of the
generated images, the corresponding intensity can be utilised as a
binary mask. Supplementary Fig. 7b allows users to load and crop a
whole-side histology image to find the patch related to the
particular FLIM image. The generated false histology image and the
cropped histology patch are later fed into the regression GUI
(Supplementary Fig. 7c), where a number of regression parameters,
as well as different formats of the input images, can be adjusted to
produce a reasonable regression result. Since a number of adjacent
FS-FLIM images were collected per each microarray with a certain
amount of overlapping at the edge areas, stitching is needed for
both pixel- and global-level understanding of the given tissue
samples in lifetime terms. Supplementary Fig. 7d enables users to
perform the stitching based on the results from previous steps. The
stitching results can be visualised in intensity, lifetime, or intensity-
weighted lifetime at a specified wavelength, with/without the
corresponding whole-slide histology image as the background.
Supplementary Fig. 7d illustrates a stitching result using intensity-
weighted lifetime without the background histology image.

Statistics and reproducibility. The CycleGAN was trained with
unpaired FS-FLIM images with a fixed spatial resolution of
256 × 256 but various FOVs and histology images which were
randomly cropped at various spatial resolutions from 40WSIs. Since
the patching of histology images for the regression needs human
intervention, the cropped size impacts the regression results, where
the patch with a similar FOV to the FLIM image is recommended
for optimal registration outcomes. In addition, regression para-
meters should be also tuned to achieve satisfactory results.

Ethics. The samples used in this study were approved by regional
Research Ethics Committee (NHS Lothian, Reference 15/ES/
0094). All study participants gave written informed consent, and
the study was conducted in accordance with the provisions of the
Declaration of Helsinki.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data associated with the results in this study are available on the University of
Edinburgh DataShare facility (https://doi.org/10.7488/ds/3099 and https://doi.org/10.
7488/ds/3421) and in Supplementary Data 1.

Code availability
The lifetime reconstruction code is available on the University of Edinburgh DataShare
facility (https://doi.org/10.7488/ds/3099). The source code of CycleGAN is available on
https://junyanz.github.io/CycleGAN/. The software mentioned in the“The Software”
section is available on https://github.com/qiangwang57/coreg_flim_histology.
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