
Abstract

Platinum-based chemotherapy agents initially transformed cancer
treatment. However their effectiveness peaked as combined regimes
showed little additional benefit in trials. New research frontiers devel-
oped with the discovery that conventional chemotherapy can induce
immunological cell death by recruiting high mobility group box 1 pro-
tein through T-cell immunity. Simultaneously monoclonal antibody
agents (not effective as monotherapies) showed good results in com-
bination with conventional chemotherapy. Some of these combina-
tions are currently in use and researchers hope to develop regimes
which can offer substantial benefits. Several resistance mechanisms
against platinum compounds are known, but more knowledge is still
needed to gain a full understanding. It seems reasonable therefore to
revisit the pharmacology of these agents, which may also lead to iden-
tify rational combinations with monoclonal agents providing regimes
with less toxicity and better efficacy. This article reviews the pharma-
cology of cisplatin and oxaliplatin and explores their possible associa-
tion with monoclonal antibody treatments.

Introduction

Cisplatin is a common and effective cancer drug. It has revolution-
ized the treatment of advanced germ cell tumors which were previous-
ly considered highly fatal.1-3 Side effects (including peripheral neu-
ropathy) and acquired resistance unfortunately have limited its use4

and paved the way for the development of new compounds. One of
these is oxaliplatin with its 1,2 diaminocyclohexane (DACH) carrier
ligand, which does not present the nephrotoxicity of cisplatin and is

active in some cisplatin-resistant tumors.5,6 Combinations of oxali-
platin with other chemotherapeutic agents are currently used in col-
orectal cancer. However no ideal combination of agents with fewer
side effects and broader cytotoxicity has been identified yet and efforts
to reduce platinum drug resistance and discover new agents are con-
sidered potential areas of future development. The advent of mono-
clonal antibody drugs (MAD) and their combination with conventional
agents have opened new research frontiers.

MADs, such as cetuximab, trastuzumab and bevacizumab, are used
to treat several cancers including colorectal, breast and lung cancers7,8

by inhibiting key proteins associated with tumor development.
Bevacizumab targets and blocks the vascular endothelial growth factor
(VEGF) involved in angiogenesis. Blocking VEGF stops vascular
endothelial cell proliferation resulting in depleted oxygen and nutrient
supplies, therefore inhibiting tumor growth.7,9 However these agents
still cause toxicity and resistance.10,11

Conventional chemotherapy can cause immunological cell death by
triggering T-cell induced immunity via the recruitment of high mobil-
ity group box 1 (HMGB1) protein, which may lead to more effective
cancer treatments. Combining chemotherapy with antibodies may
help improve the cytotoxicity profile and reduce resistance and toxici-
ty. In this article the pharmacology of cisplatin and oxaliplatin is revis-
ited in order to gain a better understanding of their mechanisms of
immunogenic induced cell death and their potential synergy with mon-
oclonal antibodies.

Cisplatin

Cisplatin is a heavy metal complex containing a central atom of plat-
inum surrounded by two chloride molecules and two ammonia mole-
cules in the cis position (Figure 1). It is soluble in water or saline.12

Chloride atoms of cisplatin are displaced in a chemical reaction by
nucleophiles, such as water or sulfhydryl groups, rather than enzyme
catalyzed metabolism. Cisplatin reversibly binds to plasma proteins, as
typically happens in normal drug protein interactions. The platinum
component of cisplatin irreversibly binds to plasma proteins, including
albumin, transferrin and gamma globulin.12 Three hours after a bolus
injection, 90% of plasma platinum is still protein-bound. The complex-
es formed by albumin and platinum molecules do not dissociate to a
significant extent and are eliminated slowly with a minimum half-life
of five days.12

Cisplatin effect on DNA 
Cisplatin exerts its cytotoxic effect by binding genomic DNA (gDNA)

in the cell nucleus. As a result, DNA replication and transcription
become irrelevant, thus leading to cell death.13,14

Cisplatin undergoes hydrolysis within the cell producing a highly
reactive charged platinum complex [Pt(NH3)2ClH2O]+. After further
hydrolysis, this complex binds to DNA bases through the N7 atom
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(preferably guanine). This DNA cross-linkage mechanism interferes
with cell division and replication. The damaged DNA initiates repair
mechanisms, which, if unsuccessful, trigger apoptosis.14,15

Cisplatin forms structurally different adducts with DNA. Initially
mono-functional adducts are formed, then a further reaction leads to
produce DNA intra-strand or inter-strand links.16 1,2-d(GpG) intra-
strands make around 60-65% of cisplatin DNA adducts, while the
remaining 20-25% consists of 1,2-d(ApG) intra-strands. 1,3 intra-
strands account for a small percentage.17 Cisplatin forming adducts
with mitochondrial DNA and inducing DNA protein cross-links have
also been reported.18

Each cisplatin adduct unwinds the DNA helix to different degrees.
For example 1,2-d(GpG) and 1,2-d(ApG) intra-strands unwind DNA by
13°, while the 1,3-d(GpXpG) intra-strand unwinds DNA by 23°. Despite
these differences, their ability to bend the DNA helix remains
unchanged (32-35°).19 These combined processes cause irreparable
damage resulting in cell death. Debate surrounding which of these
mechanisms is the predominant factor in cancer cell death continues,
however 1,2-intra-strand DNA adducts are thought to play the major
role in cytotoxicity. Explanations include the inability of transplatin to
form these kinds of adducts19 and the difficulty in removing them by
nucleotide excision repair (NER).20,21

1,2-d(GpG) or 1,2-d(ApG) adducts demonstrate the highest affinity
for the HMGB1 protein. It is postulated that certain HMGB1 proteins
may participate in the cellular processing of 1,2 intra-strands formed by
cisplatin leading to increased cytotoxicity.22 However, the importance
of other minor adducts should not be overlooked, when describing the
overall cytotoxicity profile of cisplatin.22 Comparatively oxaliplatin
adducts binds HMGB1 less avidly than cisplatin adducts.23. 

Cisplatin forms adducts in histone deplete mitochondrial DNA
(mtDNA).14,24,25 Mitochondria are unable to perform NER, a major path-
way for removing cisplatin adducts26 and therefore may be important
contributors to cisplatins toxicity. 

Before cisplatin binds to genomic or mitochondrial DNA, the loss of
a chloride group is needed. The higher chloride concentration in extra-
cellular fluids impedes the formation of mono and diaquo cis-Pt(II)
species in which one or both chloride groups are replaced by water mol-
ecules.14 In contrast the low intracellular chloride concentration results
in effective hydrolysis of cisplatin adducts and both chloride leaving
groups are replaced by water molecules resulting in the formation of
the diaquo compound Pt(H2O)2(NH3)2]2+. The two water molecules
it contains increase its reactivity with nucleophilic centers of biomole-
cules.14,27

Oxaliplatin effect on DNA 
New platinum drugs were developed to provide better cytotoxicity

and fewer side effects than cisplatin. Carboplatin subsequently
replaced it in many regimens followed by the introduction of nedaplatin
and oxaliplatin. Oxaliplatin showed no cross-resistance with cisplatin
and did not exhibit significant nephrotoxicity. Ototoxicity is an
unwanted effect of oxaliplatin in addition to sensory and motor neu-
ropathy.28

Oxaliplatin is an organoplatinum structure in which the platinum
atom is complexed with DACH and with an oxalate ligand as leaving
group (Figure 2). A leaving group (or labile atom) is an atom or group
of atoms displaced from the stable component taking with itself the
bonding electrons. Oxaliplatin undergoes non enzymatic conversion in
physiological solutions into active derivatives via displacement of the
labile oxalate ligand. Several transient reactive species are formed
including monoaquo and diaquo DACH platinum, which covalently bind
with macromolecules. Only monoadducts are formed initially, but even-
tually oxaliplatin attaches simultaneously to two nucleotide bases
resulting in DNA cross-links.28,29 These cross-links are formed between
the N7 positions of two adjacent guanines (GG), adjacent adenine gua-

nines (AG) and guanines separated by an intervening nucleotide
(GNG). They inhibit DNA replication and transcription. Oxaliplatin
cytotoxicity is cell cycle non-specific.30

The precise mechanism of action of oxaliplatin is unclear and largely
extrapolated from the understanding of cisplatin and other DACH com-
pounds.5 Both cisplatin and oxaliplatin are DNA alkylating agents form-
ing platinated intra-strand and inter-strand cross-links.31 Intra strand
links contribute significantly to cisplatin cytotoxicity, but they seem
less important in relation to oxaliplatin.32 The DACH side chain of
oxaliplatin is thought to enhance cytotoxicity and abolish cross-resis-
tance between oxaliplatin and other platinum compounds.

The cytotoxicity of platinum drugs is the result of adducts stopping
DNA synthesis and repair. Lower numbers of oxaliplatin adducts are
required to be more effective than cisplatin, suggesting that other
mechanisms are involved in cell death.28

Synergism has been demonstrated between oxaliplatin and 5-fluo-
rouracil. Anti-proliferative properties of oxaliplatin combined with 5-
fluorouracil increased in vitro and in vivo more than either compound
alone in several cancer models, including colon cancer, breast cancer
and leukemia.30 

Evidence suggests that DNA adducts are not the sole mechanism of
platinum drug cytotoxicity. Oxaliplatin acts in leukemia cell cultures by
interfering with RNA and bonds with sulfhydryl groups of cellular pro-
teins inactivating them and impairing the cell function.33

The DACH ligand of Oxaliplatin is bulkier and more water soluble

                                           [Oncology Reviews 2014; 8:256]                                                             [page 37]

                                                                                                                                Review

Figure 1. Chemical structure of cisplatin.

Figure 2. Chemical structure of oxaliplatin.
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than the amino group of cisplatin or carboplatin. This results in greater
DNA deformation by adducts which may explain the greater cytotoxicity
of oxaliplatin.34 The DACH ligand also prevents the mismatch repair
complex (MMR) from binding oxaliplatin.3 The covalent binding of
DNA repair enzymes with oxaliplatin impairs their function33 and, if
the DNA damage is substantial and irreparable, it may lead to apoptotic
pathways and cell death.32

Cisplatin and oxaliplatin general mechanisms of
action

Nucleotide excision repair 
The sophisticated NER system repairs DNA lesions inflicted by

endogenous or exogenous sources to restore its normal structure.35 NER
can be of two types, i.e. global genomic NER (GG-NER) and transcription
coupled NER (TC-NER), depending on their mode of identifying DNA
damage. Cisplatin-induced DNA lesions are mainly repaired by the TC-
NER pathway. There seems to be no significant difference in the repair
of 1,2-d(G*pG*)-Pt adducts of cisplatin and oxaliplatin origin.36

Transcription coupled repair
Transcription coupled repair (TCR) is a subdivision of NER. DNA

damage is identified during transcription when RNA polymerases are
paused and the repair proteins of TCR are recruited resulting in strand-
specific lesion repair.37 TCR-deficient cells are more sensitive to cis-
platin.38 TCR repair mechanisms are not fully understood and their role
in processing Pt-DNA damage remains an important research area.

Effects on transcription
Pt-DNA adducts stop in vitro transcription as confirmed by recent

experiments in live cells using luciferase assays.36,39 One hypothesis
suggested that this may be ascribed to the blockage of RNA elongation
by DNA adducts.40

Repair of Pt-DNA adducts by other mechanisms
Studies have identified that cells can bypass the transcription

processes in the presence of a functioning NER system in order to
repair the platinum DNA adducts. This is also possible in the NER defi-
cient XPF cells. Once the transcription process has recovered, it can
also remove platinum adducts. Mismatch repair removes platinum
adducts as shown in luciferase assays.36,41 However these observations
need further investigation.41

Protein binding with DNA adducts
Cisplatin DNA adducts bind tightly and selectively with HMGB1,

which influences its mechanism of action.42

Cisplatin and oxaliplatin cytotoxic mechanisms 
of action

DNA damage can result in cell death or repair and survival. One pos-
sible apoptotic pathway is the blockage of RNA polymerases by plat-
inum DNA adducts causing transcription cessation and cell death
through p53 dependent and independent pathways.43

Envisaging tailored platinum chemotherapy based on
Pt-DNA adduct processing 

The extent of transcription blockage by DNA platinum adducts
depends on their effect on polymerase II, however it is possible for this

to be reversed by NER, which restores transcription. Other mecha-
nisms of DNA repair have been mentioned earlier. The understanding
of platinum DNA adduct processing in actual cells may help select a tai-
lored drug for an individual treatment from a global or site-specific
modified probe in live cells derived from the cancer tissue.36

Excision repair cross complementing 1 and xeroderma
pigmentosum A

NER activity is increased in cisplatin-resistant cells which appear to
be dependent on excision repair cross complementing 1 (ERCC1) and
xeroderma pigmentosum A (XPA) expression. An XPA mutation can
prevent NER interaction, thus abolishing the DNA repair response.44.

Testicular germ cell tumors with low XPA can restore the cisplatin
adduct removing ability after increasing its expression. These cells
have demonstrated increased residual oxaliplatin DNA adducts with
greater cytotoxic effects.45

ERCC1 is overexpressed in cisplatin resistant cells in vitro. Arnould
et al showed that increased ERCC1 expression correlated with fewer
cisplatin DNA adducts and reduced cytotoxicity.46 Although ERCC1 lev-
els are predictive of oxaliplatin cytotoxicity in many cell lines, they do
not correlated with oxaliplatin DNA adducts.47,48

Post replication repair
As the presence of gaps or discontinuities in DNA can be lethal,

repair after replication is a major mechanism of DNA damage toler-
ance.14,49 Enzymes involved in post replication repair (PRR) are able to
work during DNA synthesis on the leading strand in the presence of
platinum adducts. This therefore demonstrates that they do not
absolutely hinder DNA replication. They may however affect replicative
enzyme performance and accuracy.

Although PRR takes place primarily during cell replication, cisplatin
resistant cell lines show an activity during non-replication, therefore
indicating that it may be involved in cisplatin resistance. Enzymes
involved in PRR include BRCA2, BRCA1 and polymerases (although it
is not yet clear which ones actually play a role). High levels of poly-
merase � have been found in a human colon tumor cell line associated
with cellular resistance to oxaliplatin.28,50

Mismatch repair
DNA polymerase accuracy is high, but a small percentage of mis-

matched bases appear in newly synthesized DNA, thus leading to a
mutation, if not corrected. The MMR consists of six different proteins,
including hMLH1, hMLH2, hPMS2, hMSH2, hMSH3 and hMSH6.
Resistance to cisplatin has been reported with defects in these proteins
(most likely hMLH1).28,51 MLH1 works as a damage recognition unit,
like HMGB consistent with its role in cell cycle regulation and apopto-
sis.28,52 In vitro studies demonstrate that MMR appears insignificant in
the oxaliplatin-induced DNA damage repair process, but it works as an
essential mechanism in cisplatin and carboplatin adduct repair. This
results from differing configurational distortion of oxaliplatin DNA
adducts due to its DACH ligand.28

Damage recognition proteins 
The replicative bypass repairs damaged DNA. Its specificity is deter-

mined by DNA polymerases, MMR and damage recognition proteins
(DRP).53 Only 5-15% of sporadic tumors are MMR defective,54 suggest-
ing that other mechanisms influence the specificity of replicative
bypass. DRPs bind to platinum DNA adducts decreasing the replicative
bypass either by removing new DNA opposite to these adducts with
MMR or by blocking the trans-lesion synthesis beyond the adducts.55

More than twenty DRPs bind with varying affinities to cisplatin and
oxaliplatin adducts.45,56,57

DRPs influence the sensitivity to DNA adducts by blocking NER,56
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sequestering transcription factors or activating signal transduction
pathways which lead to cell cycle arrest or apoptosis.58 The characteri-
zation of DNA repair specificity is important in providing models for
understanding how repair pathways influence resistance to platinum
drugs.45

Apoptosis
The Bcl-2 family of proteins is key in balancing pro-apoptotic and

anti-apoptotic stimuli. Anti-apoptotic proteins include Bcl-2, Bcl-XL and
Bcl-w, while pro-apoptotic ones are Bax, Bak and Bok.58

DNA damage elicits intracellular and extracellular apoptotic respons-
es mediated by p53, abl, c-myc, Rb and E2F. If anti apoptotic factors do
not stop them, the mitochondrial membrane potential is decreased,
thus leading to cytochrome C release, oxidative stress, DNA fragmenta-
tion and the activation of caspases resulting in cell death.59 Cancer
cells with high Bcl-2 expression may be less susceptible to apoptosis by
cisplatin.60

Protein damage
Apoptotic stimuli are not limited to DNA damage. Protein interac-

tions with oxaliplatin have not been directly investigated, but platinum
drugs have a high affinity to cellular proteins. Due to the resemblance
of oxaliplatin and cisplatin, they may have similar mechanisms of
inducing apoptosis. The hydrophobic DACH moiety in oxaliplatin may
facilitate drug interactions inside hydrophobic pockets of cellular pro-
teins.60,61 Cisplatin DNA and protein adducts amount to approximately
10% and 75–85% respectively. Reactivity of platinum drugs with protein
sulfhydryls is likely to distort sufficiently the redox homeostasis of the
cell to trigger apoptosis. Thioredoxin has been implicated in cancer cell
resistance to cisplatin. Cisplatin can inactivate thioredoxin and its
regenerating enzyme thioredoxin reductase.61 Faivre et al. found that
this enzyme can also be inhibited by oxaliplatin.31

DNA and protein damage together may accelerate apoptosis.31 The
contribution of protein damage to apoptosis changed the belief that the
binding of a DNA reactive drug to proteins is merely a detoxification
event.62,63

Role of p53
Tumor suppressor gene p53 is essential for cell growth, but it is pres-

ent at almost undetectable levels in most cells.64,65 It regulates DNA
replication, repair and recombination in order to eliminate damage. It
responds by up regulating Bax synthesis and down regulating Bcl-2 to
control mitochondrial permeability and the progression of apoptosis. It
translocates to the mitochondria and is sensitive to the levels of Bcl-2
and Bax that they contain.66. Mutation of p53 results in a malignant
phenotype which occurs in almost all cancers.67 Dominant p53 muta-
tions in ovarian cancer cells are a major contributor to cisplatin resist-
ance.66 Faivre et al. demonstrated that p53 defective cells are not nec-
essarily less sensitive to growth inhibition and apoptosis induction by
oxaliplatin.31

Immunological mechanisms

The cause of death in cancer cells may be dependent on immuno-
genic or non-immunogenic mechanisms. Immunogenic cell death ini-
tiates changes on the cell surface and release of mediators eventually
resulting in cell death. Dendritic cells are antigen-presenting cells
which interact with T-cells. Defects in immunogenic signals or in the
immune effectors can result in treatment failure with platinum com-
pounds.34,66

Immunogenicity of cisplatin and oxaliplatin are different, despite

their similarities in the induction of immunogenic cell death (ICD).
Oxaliplatin-treated cells interact with T-cells and prime them for the
production of interferon � anti-cancer vaccination.34 Conversely cis-
platin-treated cells do not exhibit this mechanism.

Calreticulin (CRT) is a multifunctional protein located in storage
compartments associated with the endoplasmic reticulum. Cancer cells
cause production of CRT which prompts macrophages to engulf them,
however this is counteracted by the blockade of CRT by CD47.
Antibodies blocking CD47 may lead to the development of new treat-
ments in the future. Anti CD47 antibodies in mice models of myeloid
leukemia and non-Hodgkins lymphoma were successful in eliminating
cancer cells without damage to normal cells.68.With the release of CRT,
also HMGB1 needs to be also produced to achieve ICD. Cisplatin and
oxaliplatin are both equally effective in producing both proteins.69 In
case they fail to induce signals for CRT or HMGB1 release, cell death
will be stopped.70 CRT induction may be a vital immunogenic mecha-
nism causing reduced efficacy of cisplatin in colorectal cancer
patients.69

Evidence indicates a strong immunogenic basis of colorectal cancer.
Immunological effector cells, such as CD3+ T-cells, CD45RO+ T-cells
and macrophages, reduce tumor progression when infiltrated into col-
orectal cancer tissue.71

Toll-like receptor 4 (TLR4) is a protein encoded by the TLR4 gene.72

It detects bacteria and cancer cells and lead to the activation of the
innate immune system. Oxaliplatin causes expression of immunogenic
signals on colorectal cancer cells prior to apoptosis. This activates the
innate immune system and results in T-cell interferon � production and
interaction with TLR4 of dendritic cells creating a tumor vaccine.
Patients with mutant TLR4 genes have demonstrated a decreased
response to oxaliplatin in metastatic cancer treatment with poorer dis-
ease free survival.34 Even loss of a functional TLR4 allele was linked
with decreased survival in colorectal cancer patients treated with oxali-
platin. Conversely this study demonstrated that TLR4 alleles should not
affect the therapeutic response to cisplatin treatment, but more
research is required to validate this finding.34,66

Resistance

Resistance to platinum drugs develops in several ways including the
low intracellular availability of the drug, increased detoxification inside
the cell or strong repair responses due to induced damage.73,74

Although not fully understood, platinum drug cellular uptake is a
energy-dependent process combined with an efflux pump. This com-
plex mechanism prevents it from being saturable.74 This system of
uptake and efflux is thought to be the most common mechanism of
resistance to cisplatin and is extrapolated to oxaliplatin.75

Another resistance mechanism to cisplatin and oxaliplatin is
increased glutathione concentration, which inactivates platinum com-
pounds before DNA damage occurs. Metallothioneins are small cys-
teine-rich proteins involved in metal detoxification and may play a role
as stress proteins in response to platinum complexes.76 Once inside the
cell, platinum drugs are conjugated to glutathione. Enzymes involved in
glutathione activity include glutathione S transferase (GST) and glu-
tathione synthase. Once conjugated, these platinum drugs are released
and increase drug resistance. GST is a marker of resistance to cisplatin
and plays also a vital role in oxaliplatin resistance.77

DNA repair is also related to other mechanisms involving systems
such as NER, MMR and PRR. Upregulated enzymes in these systems
make repair processes more effective and increase drug resistance.
Cells that overexpress ERCC1 are resistant to oxaliplatin.78 The combi-
nation of oxaliplatin with monoclonal antibodies could prevent or even
reverse resistance. In vitro assays demonstrated that cetuximab
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reduces the expression of NER components used to remove platinum
DNA adducts.79

Evidence is increasing that common gene variants (polymorphisms)
may have a substantial role in DNA repair and platinum conjugation.
Gene coding is involved in the enzymes responsible for oxaliplatin
accumulation, detoxicification and DNA adducts repair which may
influence the cell response to oxaliplatin.80

Deficiencies in apoptotic machinery are associated with cisplatin
resistance. Cancer cells with high Bcl-2 expression are less susceptible
to apoptosis by cisplatin.66 Gourdier et al. conversely found that the
modulation of Bax, Bak and Bcl-XL expression is not involved in oxali-
platin resistance.81 It is reasonable to suggest that resistance is a com-
bination of processes, therefore efforts should be made to identify them
as well as methods to improve the cytotoxicity profile of these drugs. 

Toxicity

Cisplatin

Nephrotoxicity
Cisplatin-induced nephrotoxicity is mainly caused by injury to the

renal epithelium resulting in an inflammatory response inducing
nuclear and mitochondrial DNA injury and activation of cell death. In
animal model, drug induced nephrotoxicity is associated with oxygen-
free species which can be avoided by using free radical scavenging
agents, such as amifostine.82

Neurotoxicity 
Neurotoxicity affecting visual perception and hearing abilities starts

soon after treatment commences with cisplatin and can be assessed by
using pre-treatment and post-treatment nerve conduction studies.83

Cisplatin inhibits non competitively NHE-1, a membrane sodium
hydrogen ion transporter83 found on peripheral nerve cells of the nerve
centers receiving ocular and aural stimuli. This interaction with cis-
platin is dose-dependent and reversible and results in hydroelectric
imbalances and cytoskeleton alterations.83

Myelotoxicity 
Cisplatin may be responsible for profound bone marrow suppression

and hemolytic anemia.83

Oxaliplatin 

The hematopoietic system
Oxaliplatin is more myelotoxic than cisplatin and severity is dose-

dependent. Hemolytic anemia and thrombocytopenia are usually not
severe, but neutropenia occurs in around 4% of patients.84

Oxaliplatin may affect bone marrow progenitor cells, as its DNA
adducts are found in leukocytes after treatment.85 The real impact of
this hematological toxicity is undefined, but the amount of oxaliplatin
DNA adducts in patient blood cells may be related with the severity of
their leucopoenia and thrombocytopenia.86

Repeated oxaliplatin infusions may result in hypersensitivity reac-
tions which can lead to hemolytic anemia and secondary immune
thrombocytopenia.87 Some rare cases of secondary acute leukemia
have also been reported.88

Neurotoxicity 
Acute or chronic peripheral neuropathy is a common side effect of

oxaliplatin. Acute peripheral neuropathy can manifest itself as pares-
thesia, dysthesia, or allodynia of the extremities, lips and orolaryno-

gopharynx during or immediately after treatment.89 Oxalate, a metabo-
lite of oxaliplatin, interacts with voltage-gated sodium channels in
complex pathways involving calcium chelation,90 which may block the
conduction pathways resulting in peripheral neuropathy. It mainly
involves sensory rather than motor fibers.

Repeated oxaliplatin infusions may culminate in chronic peripheral
neuropathy which manifests with decreased distal sensations and pro-
prioception. Grade 3 and 4 neuropathy occurs in 15% of the patients
receiving a cumulative oxaliplatin dose of approximately 800 mg/m2.91

Initially this was thought to be the result of a degenerative process of
the axons, however it has been postulated that the accumulation of
oxaliplatin in the dorsal root ganglia cells results in their atrophy and
mitochondrial dysfunction.92 Fortunately it is reversible in the majority
of the cases. Around 5% of patients have ongoing symptoms and, like
its acute counterpart, sensory fibers are mainly involved.34

Discussion

As insights into molecular cancer biology are increasing, new treat-
ment possibilities and pharmacological combinations providing an
effective and less toxic treatment will be developed.

Chemotherapy drugs work by stopping cancer cell division with
limited selectivity which results in the disruption of normal cells.93

This poor selectivity damages rapidly growing non cancer cells, there-
fore limiting the efficacy of many chemotherapy regimens that cause
poor quality of life and drug tolerance.94 It may also have a role in
drug resistance.69

MADs address this problem of selectivity by specifically acting on
cancer cells. Cetuximab binds with the extracellular domain of the
epidermal growth factor receptor.95,96 Similarly trastuzumab binds
with the extracellular domain of human epidermal growth factor
receptor 297,98 and bevacizumab binds with VEGF.99 All these interac-
tions are specific to cancer cells and block the specific actions of the
relevant receptor or protein.

Cisplatin and oxaliplatin have proven beneficial in treating testicular
and colorectal cancers respectively, but their lack of selectivity results
in a poor toxicity profile. Their combination with MADs to increase
cancer-specific cytotoxicity and decrease side effects is a way forward
for future chemotherapeutic regimens. Combining bevacizumab with
FOLFOX (folinic acid, 5 flurourocil and oxaliplatin) or XELOX
(capecitabine and oxaliplatin) for metastatic colorectal cancer (CRC)
demonstrated good response rates and increased disease-free overall
survival.100 These effects are however restricted to CRC patients diag-
nosed with an unmutated KRAS gene in their cancers.34,101 It is imper-
ative that the use of MADs with conventional agents is based on ration-
al and scientific combinations. This will result from the understanding
of their mechanisms of action to design rational trials. It is therefore
valuable to revisit the molecular mechanisms of conventional
chemotherapeutic agents which will assist in designing new comple-
mentary and synergistic combination regimens for future trials.78

Molecular predictive markers are also under investigation and
require prospective, hypothesis-driven and randomized clinical trials.
Only a few molecular predictors have already entered clinical use. This
may change in the near future and the majority of therapeutic deci-
sions will account for genetics.102

Conclusions

Understanding the mechanisms of action and resistance of cisplatin
and oxaliplatin will facilitate the design of future clinical trials with
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MAD. These combinations will aim to improve their cytotoxicity profile,
reduce toxicities, improve treatment outcomes and result in better tol-
erability and patient satisfaction.
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