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Abstract

Transposable elements (TE) usually take up a substantial portion of eukaryotic genome. Activities of TEs can cause genome
instability or gene mutations that are harmful or even disastrous to the host. TEs also contribute to gene and genome
evolution at many aspects. Part of miRNA genes in mammals have been found to derive from transposons while convincing
evidences are absent for plants. We found that a considerable number of previously annotated plant miRNAs are identical or
homologous to transposons (TE-MIR), which include a small number of bona fide miRNA genes that conform to generally
accepted plant miRNA annotation rules, and hairpin derived siRNAs likely to be pre-evolved miRNAs. Analysis of these TE-
MIRs indicate that transitions from the medium to high copy TEs into miRNA genes may undergo steps such as inverted
repeat formation, sequence speciation and adaptation to miRNA biogenesis. We also identified initial target genes of the TE-
MIRs, which contain homologous sequences in their CDS as consequence of cognate TE insertions. About one-third of the
initial target mRNAs are supported by publicly available degradome sequencing data for TE-MIR sRNA induced cleavages.
Targets of the TE-MIRs are biased to non-TE related genes indicating their penchant to acquire cellular functions during
evolution. Interestingly, most of these TE insertions span boundaries between coding and non-coding sequences indicating
their incorporation into CDS through alteration of splicing or translation start or stop signals. Taken together, our findings
suggest that TEs in gene rich regions can form foldbacks in non-coding part of transcripts that may eventually evolve into
miRNA genes or be integrated into protein coding sequences to form potential targets in a ‘‘temperate’’ manner. Thus,
transposons may supply as resources for the evolution of miRNA-target interactions in plants.

Citation: Li Y, Li C, Xia J, Jin Y (2011) Domestication of Transposable Elements into MicroRNA Genes in Plants. PLoS ONE 6(5): e19212. doi:10.1371/
journal.pone.0019212
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Introduction

Transposable elements (TEs) are able to mobilize and propagate

in the host genomes. Their mobilization can cause catastrophic

damage to the host, such as disruption of protein-coding genes,

perturbation of gene expression patterns or even large scale

genome rearrangement and chromosomal breakage [1]. Accord-

ing to intermediates in the propagation cycle, TEs are classified

into retrotransposons (Class I) and DNA transposons (Class II) [2].

Regarding to the ability to mobilize, TEs can be categorized into

autonomous TEs, which encode enzymes needed for their own

transposition, and non-autonomous TEs whose transposition rely

on cognate autonomous TEs [2]. The composition and amount of

TEs in the genome is highly specific in different species [1].

Small RNA dependent silencing mechanisms have evolved to

harness the activity of the TEs in eukaryotes [3,4,5]. In plants and

fungi, TEs are silenced by repeat associated siRNAs (rasiRNA).

The ,24-nt rasiRNAs are processed from TE-derived transcripts

by dicer-like enzymes and then loaded into RISC (RNA Induced

Silencing Complex), in which Argonaute proteins play key roles, to

guide DNA methylation and/or repressive histone modification.

As a result, the homologous TEs are heterochromatized and

therefore transcriptionally inactivated [3,5]. In metazoan, Piwi

Interacting RNAs (piRNA) play a role in TE silencing in the

germline. Piwi proteins, another clade of Argonaute proteins, bind

piRNAs to induce silencing of TEs via cleavage of transcripts,

DNA methylation or histone modification [3,5]. Various mech-

anisms have evolved to silence TEs in other species, for example,

programmed DNA elimination in Tetrahymena, quelling, repeat-

induced point mutation (RIP) and meiotic silencing of unpaired

DNA (MSUD) in Neurospora crassa [3,5]. In common, the TE

silencing relies on the major RNAi components, such as

Argonaute proteins, Dicer or Dicer-like enzymes and RNA

dependent RNA polymerase (RDRP).

Opposite to the destructive roles, TEs drive the evolution of

genes and genomes at many aspects [1]. TEs are known to be able

to mediate translocations, gene and segmental duplications leading

to gene family expansions that may further undergo selection and

diversification. Jumping of the TEs can also cause alteration in

gene expression patterns since many of them contain elements for

transcriptional regulation and splicing signals [1]. Some of the TEs

capture host sequences of cellular genes and form new open

reading frames. There are many examples of domestication of TE

proteins into functional host proteins, especially the transposases
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[6,7]. A considerable amount of DNA binding proteins are derived

from transposases encoded by DNA transposons [6]. For example,

evidences support that the RAG1 and RAG2 proteins that carry

out V(D)J recombination of immunoglobulin genes arise from

domestication of DNA transposons protein [8]. Telemerase is

evidenced to be tightly linked to the reverse transcriptase of non-

LTR retrotransposons [9,10].

Recent studies have shown that transposons also contribute to

the evolution of miRNA genes, products of which are approxi-

mately 21-nt small RNAs that can mediate sequence-specific

regulation of endogenous gene expressions by binding to

complementary sites on target mRNAs [11,12]. The key

components of miRNA pathway are identical or closely related

to those in siRNA pathways. Both miRNA and siRNA pathways

require dicer or dicer-like enzymes in their biogenesis and

Agonaute proteins as major component in effector complex

[11,13]. Homology in key components of siRNA and miRNA

pathway suggests that they may have common origin. However,

miRNAs have distinct set of features. First, the miRNA precursors

are single stranded transcripts that can fold into characteristic

hairpin structures, which is transcribed from loci distinct from

their target genes. Second, usually each miRNA gene give rise to

only one functional RNA duplex formed by miRNA and miRNA*

in specific location. Third, miRNAs act in trans to repress cellular

gene expression through translational inhibition, slicing or

destabilizing target mRNAs when hybridized to their target sites

[13]. Instead of acting as defenders like siRNAs (except tasiRNA)

or piRNAs, miRNAs participate in the regulation of a wide range

of endogenous processes including development, metabolism,

stress response etc., and often form regulatory circuits with

transcription factors [11,12,13]. Due to confusability in distin-

guishing miRNA from siRNA in plants, a uniformed rule has been

made to guide the annotation of plant miRNAs [14].

Several hypotheses have been proposed to explain the origin of

miRNA genes. First, evidences from some recently spawned

miRNA genes support their genesis by inverted duplication of

target genes [15]. Second, the abundant fortuitous foldbacks in the

genomes can also supply as a source of miRNA genes [16]. Third,

in mammals, some miRNAs were found to be exactly TEs or their

derivatives and presence of cognate elements in the 39 UTR of

protein-coding genes may confer susceptibility to miRNA

regulation [17,18,19,20,21]. Similarly, in plants many miRNA-

like hairpins, which give rise to small RNAs chemically

undistinguishable from miRNAs, are exactly TEs or homologous

to TEs, including some annotated miRNAs deposited in miRbase

[22]. However, since miRNA and siRNA can not be distinguished

by biochemical nature, whether these TEs give rise to bona fide

miRNAs is not convincingly evidenced [12]. We searched and

characterized the TE-related plant miRNAs deposited in miRbase

and analyzed their sRNA producing profile to assess their

conformability to updated plant miRNA annotation rules [14].

Furthermore, we analyzed the original target genes of TE-related

‘‘miRNAs’’, which contain homologous TE sequences in their

CDS. Our results support that some plant miRNAs have evolved

from TEs and incorporation of cognate TEs into CDS of protein-

coding genes may lead to their integration into miRNA regulation

network.

Results

The previously annotated miRNAs homologous to TEs
miRNA precursors can fold into hairpin structures, which can

be processed by dicer or dicer-like enzymes. Numerous such

hairpins pervade plant genomes, which give rise to siRNAs. This

brings difficulty to distinguish miRNAs from the endogenous

hairpin derived siRNAs (hsiRNA) [23]. Some annotated plant

miRNAs in the miRbase were found to be TE or TE derivatives

[22,23]. It was believed that this kind of gene is likely to be

evolutionary intermediates from TE to miRNA genes [22]. In

order to find out whether there are bona fide TE-derived miRNAs

in plants, miRNA stem-loop sequences (referred to as MIR

thereafter) of seven species (Arabidopsis thaliana, Brassica napus,

Glycine max, Medicago truncatula, Oryza sativa, Solanum lycopersicum,

Triticum aestivum) were BLAST searched against the TIGR Plant

Repeat database. We got 106 TE-MIRs (2 in A.thaliana, 92 in

O.sativa and 12 in T.aestivum), of which at least one HSP (High-

scoring Sequence Pair) suffice E # 0.005 (Table S1). Among them,

30 (2 in A.thaliana and 28 in O.sativa) were also indentified as TE or

TE homologues using a different method in a recent study [22]

(Table S1). It was only in rice that we obtained a considerable

amount of TE related MIRs (TE-MIR). So following analysis was

focused on the rice TE-MIRs. Examination through the genome

browser showed that all the 92 rice TE-MIRs overlap fully or

partially with TE or other repeats. This further confirmed their

TE origins. Among the rice TE-MIRs, 80% are MITE, 10% are

retrotransposons and 9% are other DNA transposons (Figure 1A).

This is consistent with the previous findings that many MITEs are

small RNA generating loci with hairpin structure [22,24,25].

Characterization of the TE-MIRs
The major rule to annotate miRNA in plants is whether precise

excision of approximately 21-nt miRNA/miRNA* duplex from

qualifying stem-loop can be well documented [14]. We exploited

the publicly available small RNA sequencing data to characterize

the configuration of the mature products from the TE-MIRs.

Small RNA sequences from CSRDB (rice part), MyRNA (rice

part), NCBI GEO (GSE11014 and GSE13152) were mapped on

the stem-loop sequences of the rice TE-MIRs identified above

[26,27,28,29]. Only perfect matches were considered and both

strands were considered. Totally, 3143 unique small RNAs were

located on the 91 TE-MIRs. We took NCBI GEO (GSE11014

and GSE13152) as main reference for small RNA expression

because their sequencing scales are the largest. Regarding to

strand orientation, we classified the small RNA expression pattern

into five categories: 1) plus only, only the plus strand have matched

small RNAs; 2) minus only, only the minus strand have matched

small RNAs; 3) plus major, only low frequency sRNAs matched

minus strand and negligible compared to plus strand; 4) minus

major, same to ‘‘plus major’’ except strand; 5) expressions of small

RNAs on both strands are comparable in abundance or dominant

sRNA generating strand differ in different databases. It was

reported that some annotated miRNA genes generate small RNAs

from both strands [29]. Similarly, we found that the majority (68

in 92) of the TE-MIRs showed similar level of small RNA reads

matched on both strands (Figure 1B and Table S2). However, a

substantial portion (17 in 92) of TE-MIRs generates small RNAs

predominantly from the plus strand (Figure 1B and Table S2).

Since TEs often have high copy numbers in the genome, we

next examined the exact copy number of the TE-MIR derived

small RNAs in the sequenced rice genome. For each TE-MIR, we

calculated the average number of genome hit for all the related

small RNAs. Most of the TE-MIRs matched small RNAs with

medium to high copy numbers significantly exceeding that of the

canonical miRNAs (compared to canonical rice miRNAs from

miR156 to miR408 in Table S3, p,0.00001) (Figure 1C and

Table S2). However a subgroup of the TE-MIRs have improved

genome specificity and generate dominantly low copy small RNAs

(Table 1 and Figure 1C). The production of small RNAs from

TE Derived miRNAs in Plants
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both strands is an excluding principle in miRNA annotation

because it indicate the biogenesis from double stranded RNAs

[14]. As for the high-copy small RNAs, the situation is more

complicated because the exact genomic locus that gives rise to the

small RNA can not be determined. First, sRNAs from both strands

may be processed from dsRNAs either generated by RDR (RNA

dependent RNA polymerase) dependent pathways or formed by

antisense transcripts of the TE-MIRs. Second, hairpins of

antisense copies of the TE-MIRs located elsewhere in the genome

may give rise to sRNAs that match minus strand of the

corresponding TE-MIRs. Third, sRNAs arising from the perfectly

complementary segment of the stem-loop also match the minus

strand. Therefore, the biogenesis of the small RNAs can only be

inferred for the low copy TE-MIRs. The high copy sRNAs from

the TE-MIRs might represent the products of homologous TE

groups, possibly with similar stem-loop structures, rather than

single genomic locus. In the analysis, we did find a few examples of

low copy TE-MIRs from the highly repeated jumping elements.

Size can be used as a reference for small RNA classification.

The most abundant sRNA populations are 24-nt and 21-nt in

angiosperms [30]. Most of miRNAs are 21-nt in length while 24-nt

sRNAs are mainly taken up by RDR2 dependent heterochromatic

siRNAs that target TEs for silencing [31]. A recent study found

that siRNAs from MITEs in Solanaceae were primarily 24-nt in

length [24]. The biogenesis for some of them requires RDR2,

DCL3 and DCL4 [24]. We analyzed the sRNA length distribution

of the TE-MIRs both collectively and as individual. In all of the six

independent databases, 24-nt sRNAs were the most abundant.

Interestingly, in 4 of 6 databases 21-nt sRNAs were the second

most abundant (Figure 1D). The percent of 21-nt fraction,

approximately 10,35%, is significantly higher than that of the

siRNAs bound by AGO4, which is about 5%, in A.thaliana [32].

This suggests that at least part of the TE-MIRs may experience a

transition from producing 24-nt to 21-nt sRNAs. To describe the

length distribution pattern of the individual TE-MIRs, we

categorized the patterns into five types. First, if sequencing reads

are less than 10 for all the length classes, the length distribution is

difficult to be determined and this type was referred to as ‘‘low’’.

Second, if the sequencing abundance was mainly contributed by

21-nt sRNAs unanimously in all the databases with at least one

usable value ($10), this type was referred to as ‘‘21 major’’. Third,

the ‘‘24 major’’ was used to refer to the same situation as ‘‘21

major’’ except the major population of the sRNAs is 24-nt. Forth,

If a clear predominant size population could not be determined

due to disagreement among different databases or similar

expression level of different sizes, this type was dubbed ‘‘mixed’’.

Finally, if the predominant size population was outside of the

range from 20 to 24-nt, this type was called ‘‘other’’. The

classification is based on the finding that the most abundant size

populations of angiosperm small RNAs are 21 and-24 nt [30]. ‘‘21

Figure 1. Characterization of annotated rice miRNAs related to repeats. (A) Percent of TE-MIRs with regard to the types of repeats. (B)
Strand bias of the sRNAs produced from the hairpins of the TE-MIRs. (C) Average copy number of the sRNAs produced from the TE-MIRs in rice
genome. (D) Length distribution of the sRNAs produced from the TE-MIRs in different sequencing databases. I, CSRDB run 1; II, CSRDB run 2; III,
GSE11014 solexa part; IV, GSE11014 454 part; V, GSE13152; VI, MyRNA. (E) Percent of TE-MIRs with regard to product length (five types see the text).
doi:10.1371/journal.pone.0019212.g001
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major’’ also include few cases in which the 20 or 22-nt are the

predominant population. Similarly, ‘‘24 major’’ also include rare

cases that 23-nt predominate. Based on such classification, 36 in

91 of the TE-MIRs produce predominantly 24-nt small RNAs

(Table S2). 33 TE-MIRs produce comparable amount of 21-nt

and 24-nt small RNAs (Table S2). Of 5 TE-MIRs, the major

products are 21-nt sRNAs (Table 1, Figure 1E, Table S2 and

Figure 2A). This suggests that some TE-MIRs produce predom-

inantly 21-nt sRNAs like the canonical miRNAs. The heteroge-

neity in product sizes of the TE-MIRs may reflect the spectrum of

evolutionary intermediates from TEs to MIR with respect to

different mechanisms in biogenesis.

The Evolution of TE derived hairpins into miRNA genes
Many previously annotated plant miRNAs were found to be TE

related and their annotation as miRNAs were questioned [12,23].

Therefore, even if some annotated plant miRNAs deposited in the

miRbase were proved to have TE origins, evidences are still

lacking for the existence of bona fide TE derived miRNAs that

match the updated plant miRNA annotation rules. We searched

for such candidates among the TE-MIRs that suffice: 1) average

genome hit of sRNAs was no more than 20; 2) sRNAs matching

the TE-MIRs were purely or predominantly from plus strand.

Nine such TE-MIRs were found: osa-MIR1848, osa-MIR1850,

osa-MIR1868, osa-MIR1877, osa-MIR1879, osa-MIR812f, osa-

MIR812h, osa-MIR812i and osa-MIR812j (Table 1). Examina-

tion of the genomic context of these TE-MIRs showed that all of

them overlapped fully or partially with TEs. 3 located within

introns of coding genes and 6 situated in intergenic regions (Figure

S1). Two of them, osa-MIR1848 and osa-MIR1850, produced

primarily 21-nt sRNAs while the remaining generated 24-nt

sRNAs as major products (Figure 2 and Figure S2). All of the 9

TE-MIRs showed the pattern that the sRNA reads concentrated

in specific regions, usually two that could form a duplex within the

stem (Figure 2B and Figure S2). At least one major sRNA species

could be recognized whose abundance was much higher than

other weakly expressed variants (Figure 2B and Figure S2).

Variants with significant values were also present in a few cases,

for example of osa-MIR1850 (Figure 2B). This type is similar to

the MIR159/319 family, of which precursor stem-loop give rise to

multiple mature miRNAs [33,34,35]. The miR* supported by

significant sequencing values were observed for osa-MIR1848,

osa-MIR1850, osa-MIR1868 and osa-MIR1877 (Figure 2 and

Figure S2). For all the nine TE-MIRs, except osa-MIR812h and

osa-MIR812i, a series of weakly expressed sRNAs are processed

from the region corresponding to the putative miR* (Figure 2B

and Figure S2). Rigorously, at least the osa-MIR812f, osa-

MIR1848, osa-MIR1868 and osa-MIR1877 suffice the require-

ments for miRNA annotation. For the other 5 TE-MIRs, precise

excision of the putative miR\miR* were supported by the

sequencing data in spite of scarce sRNA reads from minus strand.

These 5 are also likely to be bona fide miRNA genes. We referred

to these 9 TE-MIRs as typical TE-MIRs and other 83 as atypical

TE-MIRs. All these 9 typical TE-MIRs evolved from various types

of TEs, seven from MITE, one from retrotransposon and one from

a kind of unclassified transposon (Figure S1). Notably, in the osa-

MIR812 family, four of them have evolved into typical TE-MIRs

while the other 6 keep the atypical features such as high copy,

smeared excision etc. (Table 1 and Table S2).

Formation of foldback structures by juxtaposition of two
inverted TE copies

The first step for the genesis of novel miRNA genes might be the

formation of inverted repeats that can fold into stem-loop

structures. Inverted duplication from target genes was proposed

to be a possible mechanism [15]. It was also hypothesized that

numerous non-autonomous derivatives of autonomous TEs,

typically MITEs, can supply as source for new miRNA genes

because of their palindromic nature [16]. Interestingly, several

human miRNA hairpins were found to be formed by two adjacent

inverted LINE2 elements [17,20]. Such ‘‘Complementary Inser-

tions’’ were also observed for a Solanaceae MITE [24]. We also

found some similar cases for rice TE-MIRs. The osa-MIR815b

and osa-MIR815c hairpins spanned two juxtaposed transposons

(Figure S3A and B). Neither of the two adjacent transposons

formed qualifying stem-loop structure. However, each contributed

one arm to a typical stem-loop structure (Figure S3A and B).

However, sequencing data do not support precise excision of

miRNA/miRNA* from their stem-loops. Therefore osa-MIR815b

and osa-MIR815c are not bona fide miRNAs but possibly

Table 1. Nine TE derived miRNA genes.

MIR Na Strandb Hitc Len disd HCDSe TFf

osa-MIR812f 12 plus only 3.5 24 major no null

osa-MIR812h 40 plus major 9 24 major yes yes

osa-MIR812i 29 plus major 7 24 major yes no

osa-MIR812j 77 plus major 9 24 major yes yes

osa-MIR1848 17 plus only 16 21 major yes yes

osa-MIR1850 29 plus major 2 21 major no null

osa-MIR1868 58 plus only 1 24 major yes yes

osa-MIR1877 25 plus only 1 24 major no null

osa-MIR1879 29 plus major 2 24 major yes yes

a. Number of small RNAs perfectly aligned to miRNA foldback at both strand.
b. Strand bias of the expression of the sRNAs on each strand.
c. Average number of hit in the Osa1 v6 rice genome of all the small RNAs.
d. Length distribution pattern of the small RNA products.
e. Whether the miRNA foldback is homologous to CDS sequence.
f. Whether any small RNA on the plus strand of the foldback was predicted to target the homologous CDS by TargetFinder at the threshold of score # 4 and MFE ratio $

73.
doi:10.1371/journal.pone.0019212.t001
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pre-evolved miRNAs. The osa-MIR1879 locus, which is a TE

derived bona fide miRNA, has similar structure (Figure 3). The

two TEs, which are pieced together into osa-MIR1879, are short

non-autonomous retrotransposons (Figure 3). These observations

indicate that juxtaposition of two inverted TE copies could be an

alternative for TE derived hairpin formation. Preferential insertion

of multiple copies of cognate TEs with different orientation into

one ‘‘hot spot’’ may result in the formation of such locus. Similarly,

the osa-MIR1442 locus assembled in the same way. However, the

osa-MIR1442 does not have qualifying stem-loop structure.

Instead, the two MITEs sharing the osa-MIR1442 have hairpin

structures (Figure S3C). Thus the real precursor of sRNAs from

this locus may not be the annotated osa-MIR1442 but the two

MITE hairpins. This suggests that considering more flanking

sequences may improve the accuracy of precursor structure

evaluation for the annotation of hairpin derived siRNAs and

miRNAs.

Initial targets of the TE related miRNAs
Plant miRNAs achieve their functionality primarily via inducing

site specific cleavage of target mRNAs [13]. Translational

repression has also been documented to be an important

mechanism [36,37]. Both depend on the recognition of target

gene by perfect or near-perfect base pairings [12]. There are

extensive complementarity between young miRNA genes and

related target genes detectable by pairwise sequence similarity

search tools such as BLAST [11,15,29]. This type of target genes

may be the initial targets of new born miRNA gene. In order to

test whether the TE-MIRs were integrated into endogenous gene

regulation networks, we searched the initial targets of the TE-

MIRs. Since most target sites of plant miRNAs locate within CDS

of protein coding genes [38,39], we used the TE-MIR sequences

to BLAST against the CDS sequences of annotated rice genes. At

the threshold of E # 0.05, 509 HSPs (High-scoring Sequence Pair)

were retrieved for 77 TE-MIRs and 106 non-hypothetical protein

coding genes (including alternative splicing isoforms) (Figure 4A,

B). Among those protein coding sequences, 89 were present in at

least one HSP with an E # 0.01 (Figure 4C and Table S4). This

group might be the initial targets of the TE-MIRs. In the 89 genes,

35 (39.5%) encode TE related proteins, 35 (39.5%) encode

annotated cellular proteins and 19 (20%) encode unknown

expressed proteins (Figure 4C).

In order to test whether the homologous CDS detected by

BLAST search can be potentially targeted by sRNAs generated

from the TE-MIRs, we predicted the sRNA-target pairs by

TargetFinder at standard thresholds: Score # 4, MFE ratio $

73% [40]. Totally 347 HSPs (68%) were also predicted to be MIR-

target pairs that the CDS can be targeted by the sRNAs arising

from the homologous TE-MIRs (Figure 4A). We refer to those

HSPs as MTPH (MIR-Target Pair HSPs). As for the three

functional classes of original targets, 30 in 35 (86%) of non-TE

CDS were present in MTPH, 18 in 35 (51%) for TE related CDS

and all the 19 (100%) CDS of expressed unknown protein

(Figure 4D and Table S4). The MTPH ratio for the TE related

Figure 3. Formation of miRNA hairpin by juxtaposition of two cognate TEs in inverted orientations. Genomic context with annotation
information was shown for the TE-MIR locus. Predicted secondary structures corresponding to the segments are indicated by arrows.
doi:10.1371/journal.pone.0019212.g003

Figure 2. Bona fide TE-derived plant miRNAs. (A) Length distribution of the sRNAs produced from each of the TE derived miRNA hairpins. The
small RNA sequencing databases are indexed the same as in Figure 1. (B) Examples of sRNA production of TE derived miRNA hairpins shown as
alignments of sRNA products with the miRNA hairpin sequences and predicted secondary structures. Sequencing abundance values are shown at
right side of each sequence using six numbers separated by ‘‘:’’, which are values in different databases: from left to right, CSRDB run 1; CSRDB run 2;
GSE11014 solexa part; GSE11014 454 part; GSE13152; MyRNA. sRNAs with significantly higher expressions are highlighted in blue background. The
annotated mature miRNA or miRNA* were highlighted in yellow background.
doi:10.1371/journal.pone.0019212.g002
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genes was obviously lower than the other two indicative of

reduced proclivities for TE targeting of the TE-MIRs. When

sRNAs from both strands were considered, the MTPH number

increased only slightly, 2 more targeted for non-TE and 6 for TE

CDS (Figure 4D). This suggests that the sRNAs from plus strand

contributed most of the targeting. With respect to the TE-MIRs,

15 did not share significant similarity with rice CDS of non-

hypothetical proteins (Figure 4B). Three typical MIRs, osa-

MIR812f, osa-MIR1850 and osa-MIR1877, were in this group

(Figure 4B). In the 77 TE-MIRs with identifiable putative original

targets, 6 were typical MIRs (Figure 4A and B). However, one of

them, osa-MIR812i, has lost pairing potential with its initial

targets by our prediction (Figure 4A and B). In a dynamic view,

homology and sRNA regulation between the TE-MIRs and

related CDS can be reflected in a matrix (Figure 4A). In

summary, 72 TE-MIRs (94%) formed HSPs with multiple CDS

and 67 CDS (75%) with multiple TE-MIRs. The interactions,

which include sequence similarity and sRNA targeting between

the TE-MIRs and associated CDS, make up complex relation-

ships that may serve as resources for selection. Variations of

homology and regulation profile within TE-MIR families can be

seen. In many cases, members of the same TE-MIR families

diverged to have distinct gene-interacting profiles thus improving

complexity of the network further (Figure 4A). These observa-

tions suggest that the original interactions of TE-MIR and targets

established by cognate TE insertions may have experienced

active evolution.

Question arises that how the CDS acquired the TE sequences.

A recent study showed that the N gene of N.glutinosa integrated the

sequence of a MITE into the CDS of an alternative splicing

isoform, which is resulted from insertion of the MITE into the

third intron of the N gene [24]. Examination of the original targets

in rice genome browser showed that 86 in 89 (96.6%) had cognate

TE insertions overlapping with its CDS as exemplified by

Os02g23823.2, which could form MTPH with osa-MIR1868

derived small RNAs (Figure 4E). The two sRNA complementary

regions locate within the MITE insertion. The major one, which is

longer and contain a binding site of the most abundant sRNA

from osa-MIR1868, situated within the region shared by the CDS

and the MITE (Figure 4E). For the other two isoforms, the target-

site-containing MITE insertion lay in their introns. This suggests

that TE insertion into the protein coding genes may lead to

generation of new isoforms possibly via alteration of splicing signal,

thus as a result conferring sRNA regulation to the host gene.

Interestingly, all the observed insertions were not fully embedded

in the CDS but partially overlapped with the CDS. This indicates

that the incorporations of TE sequences into the CDS are likely

formed through alteration of mRNA splicing or start/stop signal of

translation.

The TE related miRNAs can induce site-specific cleavages
of the initial targets

The major mechanism for miRNA induced gene silencing in

plants is site-specific cleavage of the target mRNA at the position

complementary to the tenth nucleotide from the 59 end of the

miRNA [12,13]. Recently, large scale degradome sequencing has

been developed to globally identify plant miRNA targets

[41,42,43,44,45]. In order to test whether the TE-MIR derived

sRNAs can induce site-specific mRNA cleavages of their initial

targets like the canonical miRNAs, we used publicly available rice

degradome sequencing data and CleaveLand to detect the

specificity of the TE-MIR sRNA-target pairings to the 59 end of

the cleaved remnants [43,44,45,46]. We considered only sRNA-

target pairs with a score smaller or equal to 4. Three categories of

cleavage profiles are defined by Addo-quaye et, al. [41]. For a

target, multiple cleavages of different categories can be detected

because many sRNAs can bind to the same target mRNA. We

assign a score to summarize the detected cleavages. If at least one

cleavage in each of the three categories is detected, the score is 7. If

only cleavages of category 1 and 2 are detected, the score is 6. By

analogy, category 1 and 3 scored 5; score 4 for only category 1;

score 3 for category 2 and 3; score 2 for only category 2; score 1

for only category 3. Based on such scoring, the degradome data of

different tissues and from independent studies support very similar

profiles of TE-MIR induced cleavages for the initial targets

(Figure 5) [43,44,45]. 31 of 89 initial targets have at least one

category 1 cleavage (Figure 5). In detail, 13 of 35 for non-TE

related genes; 13 of 19 for expressed genes; 5 of 35 for TE-related

genes (Figure 5). In consensus, transposon-related initial targets

have considerably less amount of supported cleavage cases

compared to non-transposon or expressed proteins (Figure 5).

This is consistent with the results predicted by targetfinder

(Figure 4D). Examples of the degradome sequencing data

supported cleavages are shown in Figure S4.

Discussion

Accumulating evidences from studies in animals support the

genesis of a substantial portion of miRNA genes from TEs and

other genomic repeats [17,19,20,21]. From a considerable amount

of TE-MIRs, we identified a small number of bona fide miRNAs

that suffice the current plant miRNA annotation rules [14]. Our

findings suggest that some plant miRNAs evolve from TEs.

However, question arises how the TEs are domesticated from the

epigenetically silenced parasites into regulatory genes useful to the

host. Previously, a model was proposed to explain the hypothetical

transitions from autonomous DNA TEs to miRNA genes via

MITEs [22]. Characterizations of the TE-MIRs, which are likely

to be evolutionary intermediates from TEs to miRNA genes,

enabled us to obtain more information about such transitions.

Figure 4. Formation of initial targets of the TE-MIRs by incorporation of cognate TEs into CDS. (A) Bubble plot showing interactions of
TE-MIRs with their initial targets, which are protein-coding genes containing segments homologous to TE-MIRs in the CDS. Vertical axis is the TE-MIRs
while horizontal axis indicates their initial targets. Bubbles indicate HSPs of TE-MIRs and CDS of protein-coding genes detected by BLAST. Bubble size
is proportional with the –logE of the HSP. TF+: at least one TE-MIR small RNA can target related CDS by the prediction of TargetFinder. TF-: CDS was
not predicted as target of any small RNA derived from related TE-MIR. Three classes of genes are indicated by different colored backgrounds: Pink,
non-TE related proteins; Green, TE-related proteins; Purple, expressed proteins without clear annotation. (B) Summary of initial target search for the
TE-MIRs. HSP+, significant similarity with CDS was detected; HSP-, no homologous CDS was detected. TF+ and TF-, the same as in (A). MIR, bona fide
miRNA genes listed in Table 1.; at-MIR, TE-MIRs not identified as bona fide miRNA genes. (C) Number of initial target genes of the three classes, non-
TE related, TE-related and expressed proteins without clear annotation. (D) Percent of TargetFinder predicted initial targets. TF+ and TF-, the same as
in A. +, only small RNAs from plus strand of TE-MIRs were considered; +/-, small RNAs from both strands were considered. (E) A typical example of
initial target genes. Genome annotation information is shown in upper part. The second exon’s CDS of the splicing isoform 2 is highlighted in blue
while the MITE in orange. The region shared by the CDS and MITE is highlighted in grey. Sequence of the MITE is shown in lower part, within which
sequence of potential complementarity with small RNAs derived from TE-MIRs are highlighted in orange. Base-pairings with miRNA is shown along
with predicted pairing score and MFE ratio.
doi:10.1371/journal.pone.0019212.g004
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A critical step for the birth of miRNA genes might be the

formation of inverted repeats that can be transcribed into hairpin

structured RNAs processable by Dicer-like enzymes. Actively

transcribed MITEs with extensive self-complementarities are likely

to become pre-evolved miRNA genes [22] (Figure 6) . Indeed,

most of the TE-MIRs identified in our analysis are MITEs

(Figure 1A). Similarly, we also found TE-MIRs of other types,

most of which are short non-autonomous TEs. Alternatively, the

original hairpins could also be formed by juxtaposition of two

inverted copies of cognate TEs as exemplified by both typical and

atypical TE-MIRs and examples from other studies [17,20,24]

(Figure 3, Figure 6 and Figure S3). Notably, the non-autonomous

TEs can not mobilize by themselves. No more trouble for the host

will be caused as long as their activators are silenced. Without

factors required for mobilization the non-autonomous TEs could

be harmless to the host. Consistent with this notion, it was

observed that MITE insertions preferentially occurred in genic

regions [47,48]. If such inverted repeats are formed within non-

coding transcripts or introns of protein coding genes transcribed

by RNA Pol II, they can be transformed into RNA hairpins that

may enter hairpin small RNA pathways, which is unlikely to be

heterochromatic siRNA pathway because heterochromatic siR-

NAs depend on Pol IV and Pol V in their biogenesis [3,4,5]

(Figure 6). As expected, most of the TE-MIRs in our study located

in gene rich regions. These TE insertions could be target of

epigenetic silencing induced by siRNAs derived from homologous

TEs [49]. However, accumulation of point mutations, thus loosing

homology with similar repeats, may relieve the TE-MIRs from

heterochromatic silencing and improve the genome specificity of

the sRNAs liberated from the TE-MIRs. This is supported by the

observed gradient of average genome hits of TE-MIR derived

sRNAs ranging from 1 to nearly 1000 (Figure 1C and Table S2).

Among the TE-MIRs, a few low copy TE-MIRs were identified

(Figure 1C, Table 1).

In our analysis, for either individual TE-MIR or as a whole, the

21-nt sRNA took up a substantial portion more than that of the

21-nt fraction in AGO4 bound siRNAs [32] (Figure 1D, E and

Table S2). A considerable amount of TE-MIRs give rise to sRNA

Figure 6. Model for the integration of TEs into miRNA regulation network in plants. Numerous short non-autonomous TEs could be
derived from long autonomous TEs. Mobilization of the non-autonomous TEs into actively transcribed units may have two kinds of impact on miRNA
evolution. First, inverted repeats of TE or TE derivatives in non-coding transcripts may evolve into miRNA genes. Second, if cognate TE sequences are
incorporated into protein coding genes, the miRNA regulated gene expression may begin to evolve. Long perfect hairpins of the proto-MIRs could
derive from non-autonomous TEs with inverted repeats or two adjacent short cognate TEs in inverted orientations. Cognate TE insertions adjacent to
coding sequences might be incorporated into the CDS through alteration in splicing or sart/stop signal of translation. The proto-MIR and their
interactions with corresponding initial targets will be subjected to natural selection. In this way, TEs may supply as resource for the network of miRNA
mediated gene regulation in plants.
doi:10.1371/journal.pone.0019212.g006

Figure 5. Site-specific cleavages of the initial targets induced by the TE-MIR sRNAs. Cleavages of the initial targets (vertical axis) detected
by CleaveLand are described by a score (1 to 7, see text) indicated by horizontal bars. Database of degradome sequencing tags and sampled tissues
are indicated at top. Three classes of the initial targets are shown on the left with the same abbreviations as in Figure 4D. Correspondingly, the score
bars are shown in black (non-TE), grey (expressed) and light grey (TE) for the three annotation classes.
doi:10.1371/journal.pone.0019212.g005
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populations with different sizes (Figure 1E and Table S2). The

length distribution of sRNA products may reflect heterogeneity in

the processing of the TE-MIRs. This might be attributed to the

transition of some TEs from heterochromatic siRNAs pathway,

which acts mainly via 24-nt siRNAs, to hairpin siRNA or miRNA

pathway, which acts mainly via 21-nt sRNAs [11]. There are

three possible explanations. First, a single hairpin-encoding TE

locus may follow multiple pathways in a competitive manner. It

has been shown that the 21,22-nt and over 30-nt sRNAs

appeared in DCL3 RNAi lines of N.tabacum concomitant with the

decrease of 24-nt sRNAs when a MITE sRNA was probed by

northern blot [24]. Hypothesis of such ‘‘dual coding’’ hairpins

was also proposed [22]. Second, young miRNA genes generate

heterogeneous populations of small RNAs processed by siRNA

biogenesis factors [50,51]. Observations from sRNA production

of TE-MIRs suggest that hairpins derived from TEs possess

features of sRNA biogenesis resembling young miRNAs. Third,

during evolution, homologous TEs at different loci might enter

different pathways. The TE-MIRs located in RNA Pol II

transcription unit may enter hairpin siRNA pathway while their

homologues may still undergo the heterochromatic siRNA

pathway. Taken together, the heterogeneous product size might

reflect the transitive state from siRNA to miRNA pathway. The

variation in sRNA production with respect to size populations

may correspond to various extents of adaptation to miRNA

biogenesis of the TE-MIRs.

Once a TE-derived inverted repeat entered the siRNA

pathway, a multitude of siRNAs can be processed from the

hairpin. The precise excision of the miRNA/miRNA* duplex

might be the result of adaptation to miRNA processing and

interactions with target genes are similar to the young miRNA

genes found in Arabidopsis [15] (Figure 6). For the pre-evolved

miRNAs, the processing could be imprecise, which produce

smeared sRNA products across hairpin arms like siRNAs [15]

(Figure 6). From sRNA sequencing databases, we identified only

9 TE-MIRs with precise excision of mature miRNA from the

stem-loops (Table 1, Figure 2 and Figure S2). However, the

medium to high copy sRNAs from the TE-MIRs may obscure

their exact source and make it difficult to determine whether

these stem-loops are precisely excised at specific location like

canonical miRNAs. Therefore, the number of bona fide TE

derived miRNAs might be more than we have identified. A

feature of young miRNA genes in Arabidopsis is that their foldback

arms have extensive complementarity with their initial targets

[11,15,50]. Indeed, we found that most of the TE-MIRs have

significantly identifiable complementarity with protein-coding

sequences, including 6 typical TE-MIRs (Figure 4). Our

observations suggest that the evolution of TE-MIRs in rice is

quite similar to the young miRNA genes in Arabidopsis.

Insertion into protein coding genes by cognate TEs may lead

to the formation of target genes if the inserted elements are

incorporated into exons. This scenario is similar to that

observed in mammals. Alu or LINE2 derived miRNA genes

might target protein coding genes that carry cognate elements in

their 39 UTRs [17,20,21,52]. In contrast, most of plant miRNA

target sites locate within CDS of protein coding genes

[12,13,23]. The mutagenic effect caused by TE insertion into

CDS may ruin functional genes. It has been shown that

insertions of TEs into exons are generally deleterious and can be

rapidly eliminated in natural selection [53,54,55]. Compared to

introns, MITEs are significantly underrepresented in exons in

rice [56]. However, protein coding genes may capture TE

sequences in a more temperate manner. We found that almost

all the initial target genes of TE-MIRs contain TE insertions

overlapping with CDS. In addition, those TE insertions span the

boundaries of CDS and non-coding sequences, which is unlikely

to be the result of direct insertion into CDS. These observations

suggest that protein coding genes may acquire TE sequences

through alteration in splicing and/or initiation or termination

signal of translation introduced by non-CDS insertions

(Figure 6). This could occur because TEs often contain

regulatory elements and in many cases are exonized when

inserted into genes [6,57,58,59].

Since the young miRNA genes are usually weakly expressed

compared to highly evolved miRNAs, they may not effectively

repress target genes. As it was shown that many predicted target

genes of young miRNAs were difficult to validate experimentally

[14,23]. However, they might serve as sources of selection for

robust, steady, fundamental miRNA regulations. We tested

whether these TE-MIRs could induce site-specific cleavages of

the initial targets. A substantial number of the initial targets are

most frequently cleaved at the central part of the site

complementary to TE-MIR sRNAs (Figure 5 and Figure S4).

This suggests that the TE-MIR could affect the expressions of the

initial targets similar to the miRNAs. As TEs often have

numerous copies in the genome, TE-MIRs in one family may

target similar group of genes with cognate insertions. Likewise,

incorporation of one type of TE into different genes will expand

the target spectrum. During evolution the interactions of TE-

MIRs and initial targets may rearrange via changes in sRNA

expression and their complementarity with targets. Advantageous

interactions might be selected from a myriad of initial

interactions. The dynamic interactions of rice TE-MIRs and

their initial targets during the evolution could be viewed in a

matrix (Figure 4A). The TargetFinder supported targeting rate of

TE related proteins was lower than non-TE related proteins

indicative of functional shift from TE silencing to cellular gene

regulation for the TE-MIRs (Figure 4C). This is further

supported by degradome sequencing data that cleavages induced

by TE-MIR sRNAs are strongly biased to non-TE related genes

(Figure 5). Notably, the ‘‘cognate TE insertion’’ model resembles

the ‘‘inverted duplication of target gene’’ model in the expected

complementarity between young miRNAs and their targets [15].

However, ‘‘cognate TE insertion’’ could result in many different

groups of initial target genes for the TE-MIRs, while miRNAs

generated from inverted duplication of target gene have purely

one group of target genes.

Taken together, our results suggest that plant TEs can evolve

into new miRNA genes. Incorporation of homologous TE

sequences into protein-coding sequences could result in the

formation of target genes. Through formation of miRNA and

target genes, TEs could supply as resource for the network of

miRNA mediated regulation of gene expression in plants. In

addition to the previously reported roles of TEs in host genome

evolution, the domestication of TEs into miRNA regulation system

could be another important contribution to the host in plants.

Materials and Methods

Identification of TE related and annotated miRNAs
miRNA foldback sequences were downloaded from miRbase

(version 13.0) [60]. Then BLAST (version 2.2.14) searched

against repeat sequences of corresponding species in TIGR

Plant Repeat database (ftp://ftp.tigr.org/pub/data/TIGR_

Plant_Repeats) [61]. Overlapping of the miRNAs with repeat

sequences in the rice genome was examined manually through

rice genome browser (http://sundarlab.ucdavis.edu/cgi-bin/

smrna_browse/rice2).
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Expression analysis using existing small RNA sequencing
data

Rice small RNA sequences were downloaded from CSRDB,

MyRNA and NCBI GEO (GSE11014 and GSE13152) [26,27,

28,29]. Sequencing abundances of the small RNAs were

normalized to transcripts per quarter million (TPQ) for

GSE13152. Sequencing values from CSDRB, MyRNA and

GSE11014 were used directly without further processing. The

small RNAs were mapped onto the miRNA foldback sequences

without any mismatch or indel by a costumed perl script. Genome

hit number of the small RNAs were obtained by mapping the

short sequences to rice genome (J Craig Venter Institute, osa1

version 6.0, downloaded from ftp://ftp.plantbiology.msu.edu/

pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudo

molecules) using oligomap [62].

Search of initial targets for the TE related miRNA or
hairpin siRNAs

The repeat associated miRNA foldbacks in rice were BLAST

searched against the CDS of the J Craig Venter Institute rice

annotation database (osa1 version 6.0, downloaded from ftp://ftp.

plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/

annotation_dbs/pseudomolecules). High-scoring Sequence Pairs

(HSP) with an E # 0.05 and genes having at least one HSP with

an E # 0.01 were considered. Genes encoding hypothetical

proteins were removed. Then, CDS of the resulted genes were

used for target gene prediction of small RNAs derived from

cognate miRNA foldbacks using TargetFinder [40]. MFE ratios

were calculated based on folding energy predicted using

RNAduplex in Vienna RNA Secondary Structure Package

(version 1.8) [63]. Genomic annotation information of the target

genes were manually inspected through the Rice Genome

Browser (URL: http://rice.plantbiology.msu.edu/cgi-bin/gb

rowse/rice/).

Detection of site-specific cleavages for miRNA targets
Rice degradome sequencing data were downloaded from NCBI

GEO (GSE17398, GSE19050 and GSE18248) [43,44,45]. The

software CleaveLand was downloaded from http://homes.bio.psu.

edu/people/faculty/Axtell/AxtellLab/Software.html [46]. Se-

quencing tags that can be mapped on the cDNAs of the targets

along with the initial target cDNA and TE-MIR derived sRNAs

are used for CleaveLand analysis. The cDNA sequences used in

CleaveLand analysis are the same as that used for TargetFinder.

RNA secondary structure prediction and drawing
RNA secondary structures were predicted using mfold through

(URL: http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi) [64].

Pictures of RNA secondary structures were drawn using RNAviz

[65].

Supporting Information

Figure S1 Genomic context of the typical TE-MIRs. Stem-loop

precursors are yellow and annotated mature miRNAs are red.

(JPG)

Figure S2 More example of the typical TE-MIRs small RNA

production. Presented in the same way as in Figure 2B.

(JPG)

Figure S3 Formation of TE-MIR by adjacent cognate TEs with

inverted orientation. Presented in the same way as in Figure 3.

(JPG)

Figure S4 Examples of site-specific cleavages induced by TE-

MIR sRNAs detected by CleaveLand using high-throughput

sequencing degradome data. Pairings of the sRNAs and

corresponding target sites are indicated by ‘‘|’’. The positions of

cleavage supported by degradome data are indicated by arrows.

Accession numbers of degradome databases, category and percent

of the abundance in the total reads of the gene are indicated above

the arrows and separated by comas. Information of the gene and

sRNA is shown at the right side.

(JPG)

Table S1 Plant miRNAs deposited in miRbase that have

significant sequence similarity with genomic repeats by BLAST

search.

(DOC)

Table S2 Characterization of rice TE-MIRs.

(DOC)

Table S3 Copy number of canonical rice miRNAs in the rice

genome.

(XLS)

Table S4 Initial target genes of TE-MIRs predicted to be target

of their small RNAs.

(DOC)
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