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This paper reports on the methodology and materials used to construct anthro-
pomorphic phantoms for use in dosimetry studies, improving on methods and 
materials previously described by Jones et al. [Med Phys. 2006;33(9):3274–82]. 
To date, the methodology described has been successfully used to create a series 
of three different adult phantoms at the University of Florida (UF). All phantoms 
were constructed in 5 mm transverse slices using materials designed to mimic hu-
man tissue at diagnostic photon energies: soft tissue-equivalent substitute (STES), 
lung tissue-equivalent substitute (LTES), and bone tissue-equivalent substitute 
(BTES). While the formulation for BTES remains unchanged from the previous 
epoxy resin compound developed by Jones et al. [Med Phys. 2003;30(8):2072-81], 
both the STES and LTES were redesigned utilizing a urethane-based compound 
which forms a pliable tissue-equivalent material. These urethane-based materials 
were chosen in part for improved phantom durability and easier accommodation 
of real-time dosimeters. The production process has also been streamlined with 
the use of an automated machining system to create molds for the phantom slices 
from bitmap images based on the original segmented computed tomography (CT) 
datasets. Information regarding the new tissue-equivalent materials, as well as im-
ages of the construction process and completed phantom, are included.  
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I. IntroduCtIon

Anthropomorphic phantoms constructed from tissue-equivalent materials have historically 
been used to provide a physical representation of the body’s anatomy and attenuation char-
acteristics for radiation dosimetry studies. Of particular interest for this publication is the use 
of anthropomorphic phantoms for measuring dose in diagnostic imaging procedures, where 
such measurements have been used by several authors to calculate average organ doses as well 
as effective dose in computed tomography (CT), cone-beam CT, and pediatric radiology.(1-3) 
Quantifying organ doses in physical phantoms offers a distinct advantage over computational 
methods because knowledge of the exact photon energy spectrum or irradiation geometry is 
not required. This is especially useful considering the increasing use of proprietary scanning 
techniques that are difficult to model, such as automatic tube current modulation in CT and 
automatic exposure control (AEC) in fluoroscopy. The majority of organ dose studies in di-
agnostic imaging utilize commercially available anthropomorphic phantoms such as RANDO 
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(The Phantom Laboratory, Salem, NY) or ATOM phantoms (Computerized Imaging Reference 
Systems, Inc, Norfolk, VA).  In order to provide a representation of the human anatomy, these 
commercially available phantoms typically use three tissue equivalent materials imitating bone, 
lung, and soft tissue. To allow access to organ locations for the placement of dosimeters, the 
RANDO and ATOM phantoms are assembled in axial slices 2.5 cm thick. Unfortunately, the 
widespread clinical use of these phantoms has been limited by their prohibitive costs.  

The University of Florida (UF) has recently developed a series of low-cost tissue-equivalent 
materials that are easily prepared in the laboratory, and incorporated them in several sophis-
ticated anthropomorphic phantoms. To date, this process has been used to create a series of 
three adult phantoms. Expanding upon methods originally published by White et al.,(4,5) and 
later improved upon by Jones et al.,(6) three tissue-equivalent materials were developed for 
use in phantom construction: soft tissue-equivalent substitute (STES), lung tissue-equivalent 
substitute (LTES), and bone tissue-equivalent substitute (BTES). BTES is based on an epoxy 
resin that forms a hard thermoset polymer, as previously described by Jones et al. STES and 
LTES are based on a new urethane mixture that forms a pliable compound. This material was 
chosen, in part, for ease in phantom construction, improved phantom durability, and easier 
accommodation of real-time dosimeters.

The advantages of the UF phantoms compared to commercially available phantoms are that 
they utilize a 5 mm slice thickness, allowing greater options for dosimeter placement when 
performing internal dose measurements, and the anatomy is precisely known with respect to 
the CT data set used to construct the phantom. In addition, each physical phantom has a cor-
responding segmented computational phantom that was created from the same original CT 
data set, such as those developed by Lee et al.(7) This allows the physical phantom to serve as 
a direct comparison to the computational phantom for the experimental validation of Monte 
Carlo codes. In turn, the computational phantom can be used to determine point-to-organ dose 
scaling factors, allowing the calculation of average organ doses from simple point organ dose 
measurements made in the physical phantom.(8)  

The full-body data set includes over three hundred axial slices; however, the lack of radio-
sensitive organs in the legs justified their exclusion from fabrication. As such, each phantom 
includes approximately two hundred axial slices, ranging from the crown of the head to mid-
thigh. All internal organs in the phantoms are modeled as soft tissue and, therefore, dosimeter 
placement for organ dose measurements is based solely on position of the segmented organs 
in the original data set. To aid in dosimeter placement, organ locations have been transferred 
onto each slice from full-scale printouts of the original segmented data set.

 
II. MAtErIALS And MEtHodS

A.  Materials
The tissue-equivalent substitutes used for this undertaking were developed with two goals in 
mind: 1) similar physical properties to human tissue, such as density and attenuation coefficients, 
and 2) ease of integration into the phantom manufacturing process. To meet these goals, new 
urethane-based STES and LTES were developed.  

The developed tissue-equivalent materials were evaluated by measuring the material density 
and attenuation properties. The attenuation coefficient of the STES was evaluated by measuring 
the attenuation from multiple thicknesses of material using a narrow beam geometry generated 
by clinical radiographic unit. Additionally the Hounsfield Unit (HU) values were measured in 
the completed phantom using a Siemens Somatom Sensation 16-slice CT scanner operated at 
a tube voltage of 120 kVp and employing an mA modulated exposure control. The average 
HU was determined from the selected regions of interest (ROI) using areas of approximately 
10 cm2.
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Density measurements of each sample were then taken utilizing Archimedes’s principle. 
A cured sample of each material was weighed on a scale with 0.001 gram precision to find 
the dry mass, mdry, of each sample. The samples were then weighed submerged in a beaker of 
de-ionized water to find the wet mass, mwet, of each sample. Using both these measurements, 
as well as the known density of the de-ionized water, , the density of each sample was 
calculated using Eq. (1):

  

(1)

A. 1.  Soft tissue-equivalent substitute (STES)
A new urethane-based STES was designed to match the X-ray attenuation and density of hu-
man soft tissue within the diagnostic energy range (80–120 kVp). Specifically, the STES was 
designed to have a density similar to that of human soft tissue (1.04 g/cm3) and to achieve a 
target X-ray attenuation coefficient based on the ICRU-44 reference soft tissue composition.(9,10)  
The commercially available, two-part urethane rubber compound “PMC 121/30 Dry”, (Smooth-
On, Easton, PA), was combined with 2.8% by weight of powdered CaCO3 (Fisher Scientific, 
Hanover Park, IL) to achieve these design goals. The calcium carbonate was added to the two 
parts of urethane and mixed with an electric mixer, with care being taken to ensure a homo-
geneous mixture with no undissolved CaCO3. The durable, readily available urethane-based 
compound was found to be easy to work with and did not suffer from phase separation problems 
frequently encountered with epoxy resin based STES. An additional benefit of the urethane-
based STES is its flexibility, which allows easy removal from molds after curing.  

Adipose tissue was not specifically modeled in the construction of the anthropomorphic 
phantom. The distribution of subcutaneous as well as intra-abdominal adipose tissue was initially 
determined to be too complicated to directly model with a specific tissue-equivalent material. 
Thus, the STES was developed to be a homogeneous soft tissue analog that comprises skeletal 
muscle as well as organs, connective tissue, and adipose tissue. 

A. 2.  Lung tissue-equivalent substitute (LTES)
A new LTES was designed by combining uncured urethane-based STES, prepared as described 
above, along with poly-fil polystyrene micro beads (Fairfield Processing, Danbury, CT) in a 
10:1 ratio by weight. This LTES is very uniform and permits the fabrication of a range of tissue 
densities spanning various levels of inspiration. Since it does not rely on a tissue surfactant and 
foaming agent, the LTES is more uniform and reproducible than the method proposed by White 
et al.(11) While the density of lung tissue can vary widely depending on the level of inspiration, 
patients undergoing diagnostic procedures are typically asked to hold their breath during the 
exposure. Therefore, a value of 0.33 g/cm3 was chosen for the LTES, representing the density 
of a fully inspired lung.(10)  

A. 3.  Bone tissue-equivalent substitute (BTES)
The BTES used was the epoxy resin based material previously developed by Jones et al.(6) By 
mass, the mixture of the BTES is as follows: 36.4% Araldite GY6010 and 14.6% Jeffamine 
T-403 (Huntsman Corp., Woodlands, TX), as well as 25.5% Silicon dioxide and 23.5% Calcium 
carbonate (Fisher Scientific, Hanover Park, IL). It was designed to represent a homogenous 
mixture of cortical and trabecular spongiosa (bone trabeculae and bone marrow). The BTES 
composition was adjusted to match the mass density, mass attenuation coefficients (µ/ρ), and 
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mass energy absorption coefficients (µen/ρ) for those defined by the Oak Ridge National Labora-
tory (ORNL) stylized model series(12) within the diagnostic photon energy range. The effective 
atomic number for the BTES (8.80) is very similar to that of the ORNL reference tissue (8.59), 
and it was shown that values of µ/ρ and µen/ρ for BTES had a maximum deviation from ORNL 
reference values of only a few percent.(6)  

B. Phantom construction methodology
Initially, the methodology described by Jones et al.(13) in the construction of a newborn phan-
tom was to be used in the construction of the adult phantom series. This method involved 
several steps: preparing epoxy based soft tissue material in a vacuum chamber to eliminate air 
bubbles, pouring the material into a square mold, milling out the outer slice contour as well as 
appropriate voids for bone and lung tissue-equivalent material, and, finally, filling these voids 
with bone or lung tissue-equivalent material, as required. However, the far greater number 
and size of slices needed to construct an adult phantom, as compared to a newborn phantom, 
required many changes in the original construction methodology. The construction of the first 
adult phantom began with a segmented CT data set and an automated machining system and 
software (VisionPro Version 7, Vision Engraving and Routing Systems, Phoenix AZ), which 
was intended to speed up the phantom construction process. Once the phantom construction 
was initiated, problems were identified and overcome as they arose. The final means of produc-
tion are detailed below.

B. 1. Using segmented tomographic images with the engraving system
As previously mentioned, three different phantoms have been constructed to date. The first 
phantom was based on a 35-year-old Korean adult male, 172 cm in height and 68 kg in total 
body weight.(7) The exam was performed in conjunction with a cancer screening protocol using 
a Siemens Somatom Emotion Duo PET/CT system with a slice resolution of 1 mm. The next 
two phantoms constructed were based on hybrid computational phantoms of a 50th percentile 
adult male and female developed at the University of Florida. These phantoms originated from 
tomographic data, but were subsequently modified to match anthropometric dimensions and 
organ masses as defined by the International Commission on Radiological Protection (ICRP) 
publication 89(14) reference data for a 50th percentile human in a process similar to that described 
by Lee et al.(15,16) The original tomographic data for each hybrid phantom came from a 36-year-
old Korean adult male (176 cm height, 73 kg weight) and 25-year-old adult female (163 cm 
height, 60 kg weight). The adult male exam was performed as part of a cancer screening protocol 
using a Siemens Somatom Emotion Duo PET/CT system with a slice resolution of 3 mm. The 
adult female was performed with a 4.5 mm slice resolution. All scans were performed at full 
inspiration with an in-plane matrix size of 512 × 512 pixels. Organ segmentation was performed 
manually under supervision of a radiologist. While approximately 100 different tissues were 
segmented in the computational data set, only the organs needed for the calculation of effective 
dose, as outlined in ICRP 103,(17) were transferred to the physical phantoms.

The first step in constructing the phantom was to convert the segmented data set into a form 
that could ultimately be read with the automated machining software. Using ImageJ software 
(Version 1.34s, National Institute of Health, Bethesda, MD), each segmented image was con-
verted into a bitmap representing only soft tissue and other tissues (bone, lung, air). This was 
accomplished by segmenting bone, lung, and air to a single pixel value representing “voids,” 
while all remaining soft tissues were shaded with another single value representing soft tis-
sue. Registration marks for assisting in phantom assembly and alignment were also added to 
each bitmap image and the finished bitmaps were then imported into the VisionPro software. 
Each bitmap was adjusted to conform to the 256 value color range in the VisionPro software 
and vectorized in order to smooth the pixilated edges of the digital images. A speckle filter 
was used to eliminate tissue islands less than four pixels in area. Once these steps were com-
plete, engraving paths for all areas represented by the soft tissue pixel value were then created 



199  Winslow et al.: Anthropomorphic phantom build 199

Journal of Applied Clinical Medical Physics, Vol. 10, no. 3, Summer 2009

for each slice. Realizing that smaller diameter “end mill” bits allow finer details to be cut, a  
1/8-inch diameter bit was selected for body engraving paths while a 1/16-inch diameter bit was 
chosen for engraving paths in more detailed regions of the head.

The engraving paths were used to mill soft tissue molds in a high-density foam, which could 
then be filled with the soft tissue substitute. Foam blanks were fastened to the engraving table 
and single-pass engraving paths were set with depths resulting in 5 mm thick soft tissue slices. 
To create clean edges in each foam mold, a perimeter engraving path was first performed at a 
slow feed (0.6” per second), outlining the entire perimeter of the area to be cut. This was fol-
lowed by a much faster rate fill engraving path (3” per second), which removed all foam material 
within the perimeter engraving path. Molds for each slice could be created in approximately 
ten minutes. The process of manufacturing a soft tissue mold is shown in Fig. 1.  

After engraving was completed, the molds were checked to ensure that all areas to be filled 
with STES were connected, to aid in future placement. In cases where an area to be filled 
with STES was surrounded by bone or lung, small grooves were cut in the mold with a razor 
blade in order to connect the soft tissue island to the main body of the slice. This is similar to a 
stencil where the center of the letter “O” must be joined with thin connectors to ensure proper 
orientation. Finally, the job time for each slice was recorded. The job time and feed rate were 
used to determine the approximate volume/weight of soft tissue-equivalent material needed 
for each slice.

B. 2. Fabrication of soft tissue
Depending on how many soft tissue molds were being filled at a time, an appropriate amount 
of the urethane-based STES was mixed and immediately poured into the soft tissue molds. 
This was done fairly rapidly (less than 30 minutes), as the STES began setting immediately. 
The filled molds were covered with waxed paper and any trapped air pockets were relieved 
by slicing the waxed paper with a razor blade. The molds were then covered with smooth, 
weighted boards in order to force excess STES out of the molds, which would allow the soft 
tissue slices to cure at the correct thickness (5 mm). After roughly three hours, the weight and 

Fig. 1. The steps in the phantom construction process: (top left) segmented CT image; (top right) soft tissue bitmap; 
(bottom  left) VisionPro engraving path; (bottom right) engraving system milling a soft tissue mold.



200  Winslow et al.: Anthropomorphic phantom build 200

Journal of Applied Clinical Medical Physics, Vol. 10, no. 3, Summer 2009

waxed paper were removed from the partially cured soft tissue slices. It is important to remove 
the waxed paper prior to the STES fully curing in order to facilitate removal. After 24 hours, 
the soft tissue slice could be removed from the mold and any excess STES around the edges 
was trimmed with a razor blade.

B. 3. Fabrication of lung inserts
For images that included lung tissue, separate molds were created in a similar fashion to the 
soft tissue molds described above, in order to produce lung inserts for the phantom. Unlike the 
STES, the LTES is not fluid and must be spread into the lung molds. As with STES introduction, 
waxed paper along with smooth, weighted boards were used to ensure that the LTES inserts 
were uniform in thickness. The LTES is not as strong as the STES and did not remove as easily 
from the foam molds, requiring that the molds be cut away from the newly formed lung slices.
These slices, which were an exact fit to the corresponding voids in the soft tissue slice, were 
then fixed to the soft tissue slice with the introduction of the BTES into rib locations.

B. 4. Fabrication of bone
The method of placing bone into the soft tissue slices was analogous to that of Jones et al.(13) 
First, the bottom of each soft tissue slice was sealed using contact paper to prevent any uncured 
BTES from running under the slice. Any soft tissue island connectors were then removed 
using a razor blade. An appropriate amount of BTES was mixed to fill the voids in the soft 
tissue slices that were left for bone tissue. A heat gun was used to warm the BTES material in 
order to reduce its viscosity and make it easier to mix and pour. The BTES material was then 
placed in a pastry bag including a pastry tip (#12) and forced into the appropriate voids in the 
soft tissue slices, taking care to avoid creating any air pockets during the pouring. Air pockets 
that were trapped during bone insertion would typically rise to the surface, where they could 
be pierced and eliminated. Bone locations were slightly overfilled because it was found to be 
easier to remove excess bone than to add additional bone after curing. The segmented data 
set was referenced to avoid accidentally filling any voids intended to contain air. The BTES 
was allowed to cure for 48 hours. Finally, the contact paper masks were removed and the bone 
locations within each phantom slice were sanded flush with the soft tissue using a belt sander 
with an 80 grit belt. Figure 2 shows a completed slice which includes the STES, LTES, and 
BTES materials integrated into a transverse slice of the phantom.

Fig. 2.  A fully formed phantom slice including: (a) STES; (b) LTES; and (c) BTES.
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B. 5. Phantom assembly
Once all the phantom slices were completed, the organs and locations of dosimetric importance 
were selected. Full-scale printouts of the segmented images containing these measurement 
locations were used to trace and label the organs of interest onto the physical phantom slice 
using a permanent marker. Additionally, phantom slices containing these locations were left 
unattached to a bordering slice in order to allow access for dosimeter insertion. All other slices 
were bonded to adjacent slices using commercially available wood glue. The glue was placed 
uniformly over all areas of a slice surface with the exception of air spaces and LTES. Wood 
glue has been found to behave radiologically similar to soft tissue at diagnostic energies.(13) 
Bonding slices of the phantom into sections permits easy disassembly/reassembly of selected 
portions of the completed phantom. During assembly, slices were aligned using registration 
marks and then glued together sequentially. After assembly was completed, excess wood glue 
was removed using wire cutters and registration marks were removed with a razor blade.

 
III. rESuLtS 

A. Materials
A. 1. Soft tissue-equivalent material 
The STES was empirically evaluated using an X-ray source (3.9 mm Al HVL at 80 kVp) to have 
an HVL of 25 mm at 80 kVp, and 29 mm at 120 kVp. The measured density was 1.04 g/cm3. The 
average HU for the STES material was found to be 9.8, at the lower end of the widely accepted 
range for human muscle (10–40 HU). However, the measured value is considered acceptable 
because STES represents a homogenized mixture of both muscle and adipose tissue, with the 
latter having a HU range of -50 to -100.

A. 2. Lung tissue-equivalent material
The density of the LTES was measured to be 0.33 g/cm3, agreeing with the targeted lung density 
for full inspiration. The average HU for the LTES material is -678.4, consistent with widely 
accepted HU values for lung, which range from -500 to -1000.

A. 3. Bone tissue-equivalent material
The BTES has been previously characterized(6) and empirically evaluated to have an HVL of 
9.8 mm at 80 kVp, and 13.3 mm at 120 kVp. The BTES material had an average HU of 622. This 
result is consistent with widely accepted HU values of bone, which range from 400 to 1000.

B. Completed Phantom
To date, three adult phantoms have been created using the methods and materials described in 
the previous section. As previously mentioned, the first phantom created, shown in Fig. 3(a), 
was an adult male based on a segmented tomographic data set. The color differences observed 
between phantom regions occurs as a result of extended exposure of one of the pre-mixed 
urethane mixture components to humidity; however, testing showed no radiological differ-
ence. This color variation is more apparent in the first phantom since it was constructed over a 
longer period of time. While the arms are not shown in the figure, they can easily be attached 
when the phantom is used for dosimetry measurements. Also, as previously mentioned, the 
next two phantoms created were based on computational adult hybrid phantoms developed 
at UF representing the 50th percentile adult male and female, as shown in Fig. 3(b) and 3(c), 
respectively. Although not pictured, both hybrid phantoms also include a pelvis section that 
extends to mid-thigh. Surface markings seen on all phantoms (black markings) refer to slice 
number and were used during the assembly process to keep slices in order. 

Figure 4 shows a CT topogram of the adult tomographic phantom of Fig. 3(a). A Vac Fix 
reusable patient positioning system for radiation therapy (S&S Par Scientific, Houston, TX) 
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was used to hold the phantom and keep the slices together during imaging. The horizontal dark 
lines located within the phantom present in Fig. 4 are slight gaps resulting from the vacuum 
bag’s inability to perfectly hold all sections of a supine phantom in place. However, dosimetric 
measurements for CT have shown little difference when these gaps are present. The weight of 
the completed phantom as shown in Fig. 4 is 54 kg.

Fig. 3. (a) Phantom based on a segmented CT data set of an adult male; (b) phantom based on a computational adult 
female hybrid data set; (c) phantom based on a computational adult male hybrid data set.

Fig. 4.  A CT topogram of a tomographic physical phantom.
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IV. dISCuSSIon

The urethane-based STES has numerous advantages over the epoxy resin based soft tissue 
substitute originally proposed by Jones et al.(6) First, it is much less viscous than the epoxy 
resin soft tissue substitute, making it easier to pour into the foam molds. Once cured, it is easily 
removed from the foam molds; this is not the case with the epoxy resin materials. Additionally, 
it requires fewer modifying constituents than epoxy resin based tissue-equivalents, and therefore 
better retains homogeneity. The urethane-based STES remains pliable and strong when cured, 
while the epoxy resin soft tissue substitute is brittle when cured and can break under stress or 
when dropped. Because of these properties, the urethane-based material is more durable and 
unlikely to be damaged with use. Finally, STES better accommodates the insertion of real-time 
dosimeters, only requiring a thin slit to be cut into the material to allow passage of electrical or 
optical cords that connect the active regions of the detector to a read-out device. This avoids 
any potential concerns about radiation streaming along machined dosimeter channels.(13)

Creating molds resulting in uniform 5 mm thick phantom slices proved more challenging 
than expected. Small variations in individual slice thickness can accumulate to create large 
discrepancies when hundreds of slices are combined. Early on, molds would occasionally 
display a variation in cutting depth throughout the slice. The engraving system hardware and 
software was initially suspected and investigated. However, it was found that this variation in 
cutting depth was the result of the foam template bowing upwards and losing adhesion to the 
engraving table during the milling process. Similarly problematic, engraving path depths were 
also initially set to the desired 5 mm, which was expected to result in a 5 mm thick soft tissue 
slice. However, the excess freshly poured STES could not be pressed infinitely thin, and so an 
additional thickness of 0.5–1 mm would often result. Thicknesses of this magnitude, reflex-
ively considered minor, are in fact considerable with respect to 5 mm thick slices, resulting in 
slices that were 10%–20% too thick. This problem was corrected by adjusting the indicated 
engraving depth to 4 mm and using a consistent procedure to define the cutting surface to the 
engraving system.

 
V. ConCLuSIonS

A unique methodology has been developed to construct anthropomorphic phantoms for use in 
dosimetry studies. While the value of this methodology has already been proven with the con-
struction of three adult phantoms, it should be noted that the same methodology could be applied 
to the construction of phantoms of all sizes and ages. In particular, our group plans to develop 
a family of phantoms that accurately represent patients of differing heights and weights. Future 
works also include the investigation of an adipose tissue-equivalent substitute which could be 
added to the existing phantoms – or included as an additional step in the construction of a new 
phantom – to represent subcutaneous fat, in order to accurately model more obese patients.

While anthropomorphic phantoms have many potential applications, this particular phan-
tom series was created to quantify organ doses from diagnostic procedures. It is anticipated 
that other institutions could create their own phantoms for regular clinical use by following 
the methodology and using the described tissue equivalent materials for a total material cost 
of less than $3,500. 
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