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Abstract: The conversion factor of the electrochemical motion sensors at low frequencies is usually
quite high. At the same time, it decreases significantly with the increase in frequency. Thus, increasing
the conversion factor for high frequencies is essential for practical use. In this work, the theoretical
model that allows establishing the basic laws governing the conversion of high-frequency signals in
an electrochemical cell has been suggested. The approach was based on the fact that in the case of high
frequencies, the diffusion length is less than the distance between the electrodes and the thickness of
the channel and it is enough to consider the transformation of the fluid motion into electrical current
only near the cathodes. It was found that the signal output current can be represented as the sum of
the term which is proportional to the steady-state concentration gradient along the surface on which
the cathode is located, and the term proportional to the concentration gradient normal to the surface.
Both first and second terms and the total signal current have been calculated for a particular case
of a four-electrode planar system. The practical conclusion is that the high frequency conversion
factor increases with the interelectrode distance and the channel width decreases compared to the
cathode dimension.

Keywords: electrochemical sensor; MET sensor; microelectrodes; microhydrodynamics; diffusion;
electrolyte; sensitivity; conversion factor

1. Introduction

Electrochemical cells with characteristic geometrical dimensions of electrode systems
from one to several hundred micrometers are used as sensitive elements of motion sensors
and wave fields in seismometers, accelerometers, geophones and hydrophones [1–13].
The most important advantage of electrochemical sensors is a high conversion coefficient
in combination with a rather simple design, the production of which on a mass scale is
possible with the use of modern micromachined technologies. The fields of application of
such sensors, such as seismology, seismic exploration and structural monitoring require
measuring weak signals. Therefore, many works published in recent years have been
devoted to the study of ways to increase the conversion factor of sensors of this type [14–17].

Increasing the conversion factor for high frequencies is of particular importance for
practical use. The fact is that at low frequencies, the conversion coefficient of electrochemi-
cal sensors is always quite high. Even the very first sensors of this type had extremely high
sensitivity at low frequencies [18,19]. However, with an increase in frequency, the conver-
sion coefficient of early versions of electrochemical sensors decreased dramatically, which
limited the range of the first samples to a band of up to 0.5 Hz [18–22]. Later, thanks to the
efforts of many researchers and technological advances, the sensitivity at high frequencies
and the measurement range were significantly increased. Nevertheless, when compared
with other technologies (piezoelectric, electrodynamic sensors), a typical situation is when
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electrochemical sensors are many times superior in sensitivity to their counterparts at low
frequencies and begin to yield to them as the frequency increases.

It is difficult to optimize the converting system for high frequencies because the signal
conversion process depends on the microscopic structure of the converting system, in
particular, on the shape of the electrodes of the electrochemical cell and on the peculiar-
ities of the placement of the electrodes relative to the surrounding dielectric elements of
the structure of the electrochemical cell. Therefore, theoretical models should take into
account the micro-scale geometry of the electrodes, and experimental samples should be
manufactured with high accuracy.

If a special identification of approximations is not used, the calculations require a de-
tailed description of the distribution of velocities and concentrations at small distances from
the electrodes surface and require the division of the studied area into smaller parts with
high detail, which increases the amount of computation and makes numerical modeling of
characteristics at high frequencies quite difficult.

As a result, most of the previously performed calculations have been performed for a
limited area of high frequencies [22,23]. Until recently, the calculations were carried out
mainly for frequencies not exceeding 10–50 Hz. Recent calculations have been carried out
for frequencies up to 100 Hz [24]. The same methods as for lower frequencies have been
used, while the objectives of the study were not set to determine the nature of regularities
specific for high frequencies according to the conversion coefficient depending on the
geometry of the transforming cell, related specifically to the high-frequency area.

The aim of this work was to create a theoretical model that allows the establishment of
the basic laws governing the conversion of high-frequency signals in an electrochemical cell.
The object of the study was a planar converting cell. In the case of high frequencies, when
the diffusion length becomes less than the distance between the electrodes and the size of
the channel where the working liquid flows, it is sufficient to consider the transformation
of the fluid motion only near one of the electrodes (cathode). The role of other electrodes is
reduced to the creation of a stationary concentration field, the interaction of which with
hydrodynamic flows causes the output signal in electrochemical sensors. It was found
that the signal output current can be represented as the sum of two terms. The first term
is proportional to the steady-state concentration gradient along the surface on which the
electrode is located, the second term depends on the concentration gradient normal to
the surface. Generally speaking, the contributions of these terms to the signal current are
comparable to each other, however, the quantitative ratio is determined by the stationary
concentration distribution, and consequently by the design of the entire electrode system.
For a particular case of a four-electrode planar system of electrodes located on the walls
of a channel with flat walls, the stationary concentration field was calculated and the
dependences of each of the terms and the total signal current on the distance between the
electrodes, their dimensions and the thickness of the channel in which the working fluid
flows were established.

2. Materials and Methods

The electrochemical cell, used as a transforming element of a motion or wavefield
sensor, in which the working fluid is an aqueous solution of potassium or lithium iodide
with a small addition of molecular iodine, is the most common option. Molecular iodine in
the solution is in the form of triiodide ions I−3 . The following electrochemical reaction takes
place on the electrodes [25,26]:

I− � I−3 + 2e

In each of these elementary reactions, two electrons are transferred across the electrode
surface. Thus, the electric current can be calculated if the flux of tri-iodide ions through the
electrode surface is determined. This fact is used in a model based on convective diffusion,
which makes it possible to exclude other types of ions from the analysis and to consider the
transport of only tri-iodide ions, which simplifies the mathematical problem. Tri-iodide
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ions are called the active component of the solution. In principle, the subsequent analysis
is applicable to other redox systems as well.

The electrochemical cell is a microscopic structure containing many channels filled
with a working fluid. In the channels, the fluid flow caused by an external mechanical
signal flows in the vicinity of the electrodes, between which a constant potential difference
is applied. As a rule, the arrangement of the electrodes along the fluid flow corresponds to
the anode-cathode-cathode-anode scheme (ACCA layout). For many designs developed,
the electrodes are placed on the walls of the channels, and their sizes satisfy the relation
L� b� w, where L, b are the sizes of the electrodes along the surface of the channel wall
perpendicular and parallel to the fluid flow, respectively, and w is the electrode thickness.
Such cells are called planar [27,28] and they are looked into in this paper.

2.1. Mathematical Formulation of the Problem

The mathematical model combines the following equations.

(1) Navier–Stokes equation for incompressible liquid:

∂
→
v

∂t
= ν∆

→
v − 1

ρ
∇p, (1)

(2) the continuity equation for incompressible liquid:

div
→
v = 0, (2)

(3) the convective diffusion equation for the active component of the electrolyte:

∂c
∂t

= D∆c− (
→
v∇)c, (3)

where v is the velocity of the electrolyte solution in the channel, ν is the kinematic viscosity
of the electrolyte solution, ρ is the density of the electrolyte solution, D is the diffusion
coefficient of the active component of the electrolyte solution, c is the concentration of the
active component of the electrolyte solution.

If the distribution of the concentration of the active ions is known, the electric current
through the electrode surface can be calculated according to the following expression:

I = 2Dq
∮

Se
(∇c, n) dS, (4)

Here the integration is over the electrode surface, q is the electron charge, n is the
normal vector to the surface. Coefficient 2 takes into account that two electrons are involved
in one electrochemical reaction on the surface. As a rule, the current flowing through the
cathode is used as a signal.

At low speeds of the electrolyte solution, the concentration of the active component
can be presented as an expansion in powers of speed

→
v :

c = cst + c1, (5)

where cst is the concentration of the active component in the stagnant electrolyte solution,
c1 is the linear in speed addition to the concentration. Substituting the Equation (5) into (3)
and discarding the terms of the second and higher order of smallness, obtain:

∆cst = 0, (6)

∂c1

∂t
− D∆c1 = −

(→
v∇
)

cst, (7)

The boundary conditions for hydrodynamic Equations (1) and (2) are no-slip con-
ditions on the channel walls. For Equation (3), a simple boundary condition of zero
concentration for the cathodes and the constant concentration on the anodes are used
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similar to many previously published studies [21,29–31]. Besides, the dielectric boundaries
will be considered as non-penetrable for active ions.

The boundary conditions for the concentration cst, c1 can be formulated as follows:

cst|x∈Sc
= 0,

cst|x∈Sa
= ca,

c1|x∈Sc ,Sa
= 0,

(∇c1, n)|x/∈Sc ,Sa
= (∇c1, n)|x/∈Sc ,Sa

= 0,

(8)

where Sc, Sa are the surfaces of cathodes and anodes, respectively. The first three equations
express the condition of zero concentration for the cathodes and the constant concentration
on the anodes, the last equation expresses the absence of ion flux through the dielectric
surface.

To study the characteristics of a planar transforming element, we can use two-dimensional
equations.

2.2. Non-Stationary Convective Diffusion

A distinctive feature of the conversion of a mechanical signal into an electric current
at high frequencies ω is the smallness of the diffusion length rD =

√
D/ω in comparison

with the distance between the electrodes and the channel width. Therefore, when solving
the nonstationary diffusion Equation (7), it is sufficient to consider each electrode indepen-
dently of the others. The role of other electrodes is to create a steady-state concentration cst
presented on the right side of Equation (7).

Assume the stationary concentration distribution and the hydrodynamic velocity to
be known and find a solution to Equation (7) near the cathode. The cathode is a long
thin strip located on a flat non-conducting surface. Consider the fluid flow to be directed
perpendicular to the long side of the electrode (Figure 1).
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In Equation (7), carry out the Fourier transform in time and coordinate x:

∂2c1

∂z2 − (k2 +
iω
D

)c1 = L(k, z), (9)

Here L(k, z) is given by the following expression:

L(k, z) =
∫ +∞
−∞ L(x, z)e−ikxdx,

L(x, z) = 1
D

(
vx

∂cst
∂x + vz

∂cst
∂z

)
,

(10)
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Additionally, take into account that at high frequencies the volume near the channel
surface, i.e., for small z, is of high interest and use the following expansion for the stationary
concentration cst:

cst(x, z) = cst(x, 0) +
∂cst

∂z
(x, 0)z, (11)

The importance of preserving not only the first but also the second term of the expan-
sion will be clear from what follows. Additionally, take into account that the tangential
velocity decreases when approaching the surface according to a linear law, while the normal
component decreases according to a quadratic law, and represent the fluid velocity near
the surface in the following form:

vx(x, z) = τ(x)z,
vz(x, z) = n(x)z2,

(12)

Accordingly, take into account (10)–(12) and obtain:

L(x, z) =
z
D

[
τ(x)

∂cst(x, 0)
∂x

+ z
(

τ(x)
∂2cst(x, 0)

∂z∂x
+ n(x)

∂cst(x, 0)
∂z

)]
, (13)

The solution to Equation (9) can be represented as follows:

c1(k, z) =
j1(k)
2Dqλ

e−λz +
1
λ

∫ z

0
L(k, ζ)sinh(λz− λζ)dζ − coshλz

λ

∫ d

0
L(k, ζ)eλd−λζ dζ, (14)

Here, λ2 = k2 − iω
D , Reλ > 0.j1(k) = 1

2π

∫
ξ∈Sc,,Sa,

j1(ξ)e−ikξ dξ is the Fourier transform
of the electric current density on the surface.

Take z = 0 and carry out the inverse Fourier transform, assuming, according to the
boundary conditions (8), that the concentration on the surface of the electrodes c1 = 0:

∫ ∞

−∞

dk
λ

∫
sc

j1(ξ)e−ikξ+ikxdξ = 2Dq
∫ ∞

0
dζ
∫ +∞

−∞
L(ξ, ζ)dξ

∫ +∞

−∞

e−λζ+ik(x−ξ)

λ
dk, (15)

In this equation, the x coordinate corresponds to a point on the surface of the electrode.
Substitute (14) and carry out the integration over ζ on the right-hand side of the equation,
and replace λ → λD on the left-hand side of the equation for high frequencies (here

λD =
√

iω
D ) to obtain the following expression:

j1(x) = 2qλD

∫ +∞

−∞
dξ
∫ +∞

−∞

(
τ(ξ)

∂cst(ξ, 0)
∂ξ

1
λ3 +

(
τ(ξ)

∂2cst(ξ, 0)
∂z∂x

+ n(ξ)
∂cst(ξ, 0)

∂z

)
2

λ4

)
eik(x−ξ)dk, (16)

For the term containing ∂2cst(x,0)
∂z∂x , integrate over ξ by parts:

j1(x) = 2qλD

∫ +∞

−∞
dξ
∫ +∞

−∞

[
τ(ξ)

∂cst(ξ, 0)
∂ξ

1
λ3 + (τ(ξ)ik + n(ξ))

2
λ4

∂cst(ξ, 0)
∂z

]
eik(x−ξ)dk, (17)

It can be seen from the obtained expression that the regions in ξ that make a nonzero
contribution to the integral are different for the first and second terms in the expression in
square brackets. The first term is nonzero only outside the electrode since the stationary
concentration on the cathode surface is constant due to the boundary conditions. On
the contrary, the second term is nonzero only at the electrode, due to the boundary con-
dition, which expresses the impossibility of current flow through the dielectric surface.
Accordingly, expression (17) can be represented as follows:

j1(x) = 2qλD

[∫
ξ /∈Sc

∫ +∞

−∞
τ(ξ)

∂cst(ξ, 0)
∂ξ

1
λ3 eik(x−ξ)dkdξ +

∫
ξ∈Sc

∫ +∞

−∞
(τ(ξ)ik + n(ξ))

2
λ4

∂cst(ξ, 0)
∂z

eik(x−ξ)dkdξ

]
, (18)
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Returning to the expansion (11), note that it is precisely this circumstance that makes
it necessary to preserve the term ∼z2. On the one hand, in the first term in (18), the
parameter 1/λ appears to a lesser extent than in the first term, which should correspond to
a weaker drop with increasing frequency. On the other hand, the integration for the first
term is carried out over the region outside the electrodes corresponding to large absolute
values (x− ξ). As a result, it becomes impossible to determine which of the terms in
expression (18) are dominant before performing the calculations.

Compared to the methods based on the numerical solution of the Equation of nonsta-
tionary convective diffusion (7), Equation (18) for calculating the high-frequency response
of an electrochemical transforming element has the advantage that it does not require
computer time-consuming and detailed concentration distribution c1 in the near-electrode
area, which is demanding on the accuracy of calculation results and is essential for the cal-
culation of the gradient according to (4), and the problem is reduced to a simple integration
of the parameters characterizing the stationary concentration distribution.

The final result of the calculation is the electric current flowing through the cath-
odes under the action of the hydrodynamic motion of the liquid, which can be found by
integrating Equation (18) over the electrode surface.

2.3. Hydrodynamics

To perform subsequent calculations, specify the geometry of the transforming element.
Assume all the electrodes to be located on one wall of the channel bounded by two infinite
planes. b is the size of the electrodes, ac is the distance between the cathodes, a is the
distance between the anode and the adjacent cathode, d is the thickness of the channel. The
cell is assumed to be symmetric, and the origin of the coordinate system is placed on the
channel wall containing the electrodes, at the central point of the electrode structure, as
shown in Figure 2.
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Suppose an external mechanical signal causes the fluid to flow through the channel
with the volumetric flow Q and frequency ω. Taking into account the boundary conditions,
obtain the expression for the x-component of the velocity of the electrolyte solution in the
channel:

vx(z) =
Q
dL

sinh (αd)− sinh (αz)− sinh (αd− αz)
sinh (αd)− 2

αd (cosh (αd)− 1)
, (19)

Here α =
√

iω
ν . At small distances from the surface, the expression for the velocity

can be represented by a term linear in z.

vx(z) = τz, (20)
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Here τ = 6Q
d2L f (αd). In the limiting cases of high and low hydrodynamic frequencies:

f (αd) = αd, |αd| � 1
f (αd) = 1, |αd| � 1

(21)

2.4. Distribution of the Stationary Concentration

Calculate the stationary concentration distribution. Similarly to [31], use the Fourier
transform method. After the Fourier transform by x coordinate in (6), go to the Fourier
component j0(k) of the electrical current density j0(x) = −2Dq ∂Cst

∂z

∣∣∣
z=0

the concentration
distribution can be calculated from the equation:

cst(k, z) =
cosh k(d− z)

sinh kd
j0(k)
2Dqk

+ c0, (22)

Taking into account the boundary conditions (7) using the relation j0(ξ) = j0(−ξ) and
transforming to dimensionless values: ã, d̃, ãc = a, d, ac/b. j̃ = jb

2πDqc0
, c̃ = c

c0
obtain the

following integral equation to determine the unknown function j̃0(ξ̃):

∫ +∞

0
dk̃
∫

Sel

cosh k̃d̃
sinh k̃d̃

j̃0(ξ̃)
k̃

cos k̃x̃cos k̃ξ̃dξ̃ =

 −1, x ∈
[

ãc
2 , ãc

2 + 1
]

c̃a, x ∈
[

ãc
2 + ã + 1, ãc

2 + ã + 2b̃
] , (23)

c̃a is a priori unknown additive, the method for determining which is described below.
Split the anode and cathode into N equal sections each. Within each section, the

electric current density will be considered constant.
Additionally, take into account that the currents at the anode and cathode must be

equal to each other, as required from the law of conservation of charge:

j̃0 = −i0 + ∑N
n=1 An(Θ(ξ̃ − x̃n − 1

2N )−Θ(ξ̃ − x̃n +
1

2N )), x̃n = ãc
2 + n

N −
1

2N ,

ξ̃ ∈
[

ãc
2 , ãc

2 + 1
]
,

j̃0 = i0 + ∑N
n=1 Bn(Θ(ξ̃ − ỹn − 1

2N )−Θ(ξ̃ − ỹn +
1

2N )), ỹn = ã + 1 + ãc
2 + n

N −
1

2N ,

ξ̃ ∈
[

ãc
2 + ã + 1, ãc

2 + ã + 2
]
,

(24)

i0 is the average electric current density on the electrode surface. An, Bn are the
unknown coefficients, the sum of which is equal to 0, i.e., they satisfy additional conditions:

AN = −
n=N−1

∑
n=1

An; BN = −∑n=N−1
n=1 Bn.

Introduce the notation an = πAn
4i0

, bn = πBn
4i0

, c∗0 = πc̃0
4i0

, c∗a = πc̃a
4i0

. After substitution of
expressions (24) in (23), integration and transformation to matrix form, obtain the system:

(an, i0, bn, ca)M = ((−1..− 1), (0..0)), (25)

where M is a square matrix of size 2N × 2N:

M =


Acc Aca
‖ − X‖ ‖Y‖

Acc Aaa
(0..0) (−1..− 1)

, (26)

Acc, Aac, Aca, Aaa are the matrices (N − 1)× N, elements of which are specified by
the expression:
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Acc,nl =
∫ ∝

0
coshkd

k2sinhkd sin k
2N sin k

2 (xN − xn)sin k
2 (xN + xn)coskxldk,

Aca,nl =
∫ ∝

0
coshkd

k2sinhkd sin k
2N sin k

2 (yN − yn)sin k
2 (yN + yn)coskxldk,

Aac,nl =
∫ ∝

0
coshkd

k2sinhkd sin k
2N sin k

2 (xN − xn)sin k
2 (xN + xn)coskyldk,

Aaa,nl =
∫ ∝

0
coshkd

k2sinhkd sin k
2N sin k

2 (yN − yn)sin k
2 (yN + yn)coskyldk,

(27)

l = 1..N, n = 1..N − 1. (0..0), (−1..− 1) are the rows of N length comprising of “0”
and “−1” correspondingly. ‖X‖ and ‖Y‖ are the strings of length N, components of which
are calculated according to the following expressions (l = 1 . . . N)):

Xl = −
∫ ∞

0
coshkd

k2sinhkd sin k
2 sink 1+a

2 sink
(
1 + a+ac

2
)
coskxldk,

Yl =
∫ ∞

0
coshkd

k2sinhkd sin k
2 sink 1+a

2 sink
(
1 + a+ac

2
)
coskyld,

(28)

l = 1 . . . N. After the solution of the system of Equation (26) has been found,
Equations (22) and (24) allow calculating the concentration distribution in space and the
electric current density on the surface of the electrodes.

For the subsequent calculation, see Equation (18) in dimensionless form:

j̃1(x̃) =
Q̃λ̃D

d̃2

[
−
∫

ξ̃∈Sc

∫ +∞

0

∂c̃st(ξ̃, 0)
∂z̃

2k̃
λ̃4

sink̃(x̃− ξ̃)dk̃dξ̃ +
∫

ξ̃ /∈Sc

∫ +∞

−∞

∂c̃st(ξ̃, 0)
∂ξ̃

1
λ̃3

cosk̃(x̃− ξ̃)dk̃dξ̃

]
, (29)

Here, the following notation is used: λ̃D =
√

iω̃ =
√

iωb2

D , Q̃ = 6Q
πLD f (αd).

3. Results

The resulting equations were used to calculate the conversion factor for the following
ranges of geometric characteristics of the converting electrochemical cell: 0.5 < d̃ < 10;
0.5 < ã < 10; 0.5 < ãc < 10. For each set of characteristics, the stationary problem was
first solved and the electric current density on the electrode surface was determined from
Equation (24). Then, from (22), the stationary concentration distributions were calculated
and the distribution of the tangential and normal components of the concentration gradient
on the channel wall was determined. Finally, Equation (29) was used to calculate the signal
current.

3.1. Stationary Concentration and Gradient of the Stationary Concentration

An example of the distribution of the stationary electrode current density j̃0 according
to Equation (24) is shown in Figure 3. In this example, the following geometric parameters
of the system are used: d̃ = 2, ã = 1, ãc = 1. The obtained distribution is characterized by
the presence of pronounced maximums of the current density at the edges of the electrodes
because of the diffusion of active carriers on these parts of the electrodes not only from the
area directly above the electrode but also from the areas adjacent to the electrodes.

The spatial distribution of the stationary concentration at the same parameters of the
electrochemical cell is shown in Figure 4 for the cell volume, and in Figure 5 for the channel
wall. In particular, it can be seen from Figure 5 that the obtained concentration distribution
does correspond to the given boundary conditions. Besides, the obtained dependencies
qualitatively correspond to the results of calculations performed in [31], which confirm the
equivalence of the calculation methods and can serve as a method for verifying a computer
code.
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Figure 3. Dimensionless current density distribution. Transforming cell parameters: d̃ = 2,
ã = 1, ãc = 1. Only portions of electrodes corresponding to the positive coordinates are shown.
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Figure 5. Dimensionless stationary concentration vs. coordinate on the electrochemical cell channel
walls. Thick black lines correspond to the electrodes position.

Equation (29) implies that the signal current is expressed through the distribution
of the normal and tangential components of the steady-state concentration gradient. For
several sets of geometries, the corresponding plots are shown in Figure 6 for tangential
components and in Figure 7 for normal components.
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Figure 6. Tangential component of the stationary concentration gradient distribution. (a) 𝑑ሚ = 2; 𝑎෤ =1; 𝑎෤௖ = 1; (𝐛) 𝑑ሚ = 1; 𝑎෤ = 1; 𝑎෤௖ = 1; (c) 𝑑ሚ = 2; 𝑎෤ = 0.5; 𝑎෤௖ = 1; (d) 𝑑ሚ = 2; 𝑎෤ = 1; 𝑎෤௖ = 0.5. The black 
thick lines show the areas on the channel wall where the electrodes are located. 

Figure 6. Tangential component of the stationary concentration gradient distribution. (a) d̃ = 2;
ã = 1; ãc = 1; (b) d̃ = 1; ã = 1; ãc = 1; (c) d̃ = 2; ã = 0.5; ãc = 1; (d) d̃ = 2; ã = 1; ãc = 0.5. The black
thick lines show the areas on the channel wall where the electrodes are located.
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Figure 7. Normal component of the stationary concentration gradient distribution. (a) 𝑑ሚ = 2; 𝑎෤ =1; 𝑎෤௖ = 1; (𝐛) 𝑑෩ = 1; 𝑎෤ = 1; 𝑎෤௖ = 1; (c) 𝑑ሚ = 2; 𝑎෤ = 0.5; 𝑎෤௖ = 1; (d) 𝑑ሚ = 2; 𝑎෤ = 1; 𝑎෤௖ = 0.5. The black 
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Figure 7. Normal component of the stationary concentration gradient distribution. (a) d̃ = 2;
ã = 1; ãc = 1; (b) d̃ = 1; ã = 1; ãc = 1; (c) d̃ = 2; ã = 0.5; ãc = 1; (d) d̃ = 2; ã = 1; ãc = 0.5. The black
thick lines show the areas on the channel wall where the electrodes are located.
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From these figures, for all parameters of the system, the components of the concentra-
tion gradient have pronounced extrema at the edges of the electrodes. The indicated peak
values deserve special attention since these peaks make the most significant contribution
to the integrals of expression (29) when calculating the signal current. Table 1 shows the
values of the absolute peak values of the components of the concentration gradient near the
cathode edges. The calculations were carried out for two values of the number of segments
into which the electrode N is divided: N = 40 and N = 80 and the difference in the results
obtained is presented as an error.

Table 1. Absolute values
∣∣∣∣ ∂c̃st(ξ̃,0)

∂z̃

∣∣∣∣ и ∣∣∣∣ ∂c̃st(ξ̃,0)
∂ξ̃

∣∣∣∣ near the cathode edges.

Cell Parameters | ∂
~
cst(

~
ξ,0)

∂
~
z

|, Adjacent
Anode Side

| ∂
~
cst(

~
ξ,0)

∂
~
z

|, Cathode Side
| ∂

~
cst(

~
ξ,0)

∂
~
ξ

|, Adjacent

Anode Side
| ∂

~
cst(

~
ξ,0)

∂
~
ξ

|, Cathode Side

d̃ = 2; ã = 1; ãc = 1; 7.58 ± 0.08 2.81 ± 0.03 4.39 ± 0.04 1.59 ± 0.02
d̃ = 1; ã = 1; ãc = 1; 6.21 ± 0.06 1.26 ± 0.02 3.68 ± 0.03 0.7 ± 0.01

d̃ = 2; ã = 0.5; ãc = 1; 11.2 ± 0.09 3.20 ± 0.02 6.42 ± 0.06 1.94 ± 0.02
d̃ = 2; ã = 1; ãc = 0.5 7.63 ± 0.08 2.38 ± 0.02 4.42 ± 0.04 1.33 ± 0.02

The presented data show that with a decrease in the channel thickness d̃, the concen-
tration gradient on both sides of the cathode decreases, a decrease in ã leads to an increase
in the gradients, and the value of ãc has very little effect on the values of the concentration
components on the cathode side facing the anode, but decreases their values at the opposite
edge of the cathode. In this case, a decrease in any of the sizes d̃, ã, ãc increases the difference
between the concentration gradients on the opposite sides of the cathode.

3.2. Signal Current Dependence on the Geometrical Characteristics

After the distributions of the stationary concentration of the active component were
determined, the stationary and signal cathode currents were calculated depending on the
geometric characteristics of the converting system. The signal current was determined at
ω̃ = 10. Figure 8 shows the dependence of the stationary background current (Figure 8a)
and the signal current (Figure 8b) on the channel width d̃, while Figures 9 and 10 show
similar dependencies on the interelectrode distances ã, ãc.
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The obtained results show that the stationary and signal currents depend on the
geometry of the electrochemical cell in different ways. The stationary current increases with
an increase in the channel thickness (Figure 8) and the intercathode distance (Figure 10) and
it decreases with an increase in the anode-cathode distance (Figure 9). The signal current
generally increases with a decrease in any of the studied geometric parameters. The only
exclusion is in the dependence of the signal current on the distance between anode and
cathode, which has a minimal value at âc ∼ 0.5, slightly increases at a large distance and
grows noticeably at a small distance.

Moreover, the frequency response of the output signal was investigated in the fre-
quency range of dimensionless frequencies from 10 to 1000. The condition |αd| � 1 is
considered to be valid. The graph presented in Figure 11 shows that the frequency depen-
dence has a character of ∼ 1

f 1.4 , which practically coincides with the dependence of ∼ 1
f 1.5 ,

as was found experimentally in a number of works [32–35].

Micromachines 2022, 13, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 11. Output current frequency response. 

4. Discussion 
In this work, high frequencies are understood as signal frequencies at which the dif-

fusion length is significantly less than the distance between the electrodes. For such fre-
quencies, the conversion of signals at each electrode occurs independently of the others. 
Even in this case, the relative position of the other electrodes fundamentally affects the 
conversion coefficient. Mathematically it is seen as the expression for the output current 
that contains two terms proportional to the components of the steady-state concentration 
gradient డ௖ೞ̃೟൫క෨ ,଴൯డ௭෤  and డ௖ೞ̃೟൫క෨ ,଴൯డక෨  . The values of these quantities essentially depend on the 
position of the other electrodes and the size of the channel in which the liquid flows. The 
calculations performed for a cell, which is a system of flat electrodes deposited on the 
channel walls, show that the conversion coefficient increases with a decrease in the dis-
tance between the electrodes, as well as with a decrease in the channel thickness. The in-
dicated dependencies correlate well with the previously obtained experimental and cal-
culated data. Experimentally, an increase in the conversion coefficient at high frequencies 
with a decrease in the cathode-anode distance was observed in [28,32,33], with a decrease 
in the intercathode distance in [31]. According to [33], the conversion coefficient increases 
with decreasing thickness of the working channel with other parameters being the same, 
also in agreement with the results obtained in this work. In the latter case, however, it 
should be borne in mind that, in contrast to the geometry considered here, in [33] only 
cathodes were located on the channel walls, and the anodes were placed outside the chan-
nel. It is important to note that there is no direct correlation between the behavior of the 
background and signal currents. For example, the background current always increases 
with increasing channel thickness, while the signal current has an opposite trend. At the 
same time, there is a clear correspondence between the changes in the conversion coeffi-
cient and the difference between the absolute values of the gradient of stationary concen-
tration డ௖ೞ̃೟൫క෨ ,଴൯డ௭෤  and డ௖ೞ̃೟൫క෨ ,଴൯డక෨  at the cathode edges. An increase in this difference leads to an 
increase in the conversion factor, regardless of which cell parameters have been changed. 

The conclusion here is that an increase in the conversion coefficient can be achieved 
by increasing the size of the electrodes themselves. In this case, because of the decrease in 
the influence of the adjacent anode on the concentration distribution at the opposite end 
of the cathode, the difference between the values of the steady-state concentration gradi-
ent at the opposite ends of the cathode will also increase. 

Thus, the practical result of the calculations performed are ways to increase the sen-
sitivity of the electrochemical sensor at high frequencies. For the case of a flat channel, on 
the walls of which the electrodes are located, the conversion factor can be increased by 
decreasing the distance between the electrodes and the thickness of the channel, as well 
as increasing the size of the electrodes. 

Figure 11. Output current frequency response.



Micromachines 2022, 13, 153 14 of 16

4. Discussion

In this work, high frequencies are understood as signal frequencies at which the
diffusion length is significantly less than the distance between the electrodes. For such
frequencies, the conversion of signals at each electrode occurs independently of the others.
Even in this case, the relative position of the other electrodes fundamentally affects the
conversion coefficient. Mathematically it is seen as the expression for the output current
that contains two terms proportional to the components of the steady-state concentration

gradient ∂c̃st(ξ̃,0)
∂z̃ and ∂c̃st(ξ̃,0)

∂ξ̃
. The values of these quantities essentially depend on the

position of the other electrodes and the size of the channel in which the liquid flows. The
calculations performed for a cell, which is a system of flat electrodes deposited on the
channel walls, show that the conversion coefficient increases with a decrease in the distance
between the electrodes, as well as with a decrease in the channel thickness. The indicated
dependencies correlate well with the previously obtained experimental and calculated
data. Experimentally, an increase in the conversion coefficient at high frequencies with
a decrease in the cathode-anode distance was observed in [28,32,33], with a decrease in
the intercathode distance in [31]. According to [33], the conversion coefficient increases
with decreasing thickness of the working channel with other parameters being the same,
also in agreement with the results obtained in this work. In the latter case, however, it
should be borne in mind that, in contrast to the geometry considered here, in [33] only
cathodes were located on the channel walls, and the anodes were placed outside the
channel. It is important to note that there is no direct correlation between the behavior of
the background and signal currents. For example, the background current always increases
with increasing channel thickness, while the signal current has an opposite trend. At the
same time, there is a clear correspondence between the changes in the conversion coefficient
and the difference between the absolute values of the gradient of stationary concentration
∂c̃st(ξ̃,0)

∂z̃ and ∂c̃st(ξ̃,0)
∂ξ̃

at the cathode edges. An increase in this difference leads to an increase

in the conversion factor, regardless of which cell parameters have been changed.
The conclusion here is that an increase in the conversion coefficient can be achieved

by increasing the size of the electrodes themselves. In this case, because of the decrease in
the influence of the adjacent anode on the concentration distribution at the opposite end of
the cathode, the difference between the values of the steady-state concentration gradient at
the opposite ends of the cathode will also increase.

Thus, the practical result of the calculations performed are ways to increase the
sensitivity of the electrochemical sensor at high frequencies. For the case of a flat channel,
on the walls of which the electrodes are located, the conversion factor can be increased by
decreasing the distance between the electrodes and the thickness of the channel, as well as
increasing the size of the electrodes.

The most important practical result is the ability to use Equation (18) to determine
the high frequency response for a transforming cell of arbitrary geometry. The calculation
requires the solution of only the stationary diffusion equation and the equations of hydro-
dynamics. The result should be the local values of the components of the concentration
∂c̃st(ξ̃,0)

∂z̃ and ∂c̃st(ξ̃,0)
∂ξ̃

and the functions τ(ξ), n(ξ), characterizing the distribution of the hy-

drodynamic velocity in the vicinity of the cathodes. Then, the output current is calculated
from Equation (18).

Moreover, Equation (18) can be used to optimize the geometry of the transforming
element. For example, the geometry of the channels for the flow of the working fluid can be
set, then find the areas on the channel walls with the maximum values of τ(ξ), n(ξ), place
the cathodes in the vicinity of these areas, and then place the anodes in such a way as to
obtain the maximum value of the integral in the Equation (18).

However, increasing the conversion factor cannot be the only goal of optimizing the
design of the converting element. A more important criterion for assessing the ability to
measure extremely small signals is the comparison of the signal-to-noise ratio for different
designs of the conversion element. The approaches developed in this work can also be
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generalized for modeling the self-noise of a converter in the high-frequency region if
we consider the hydrodynamic velocity as a random variable, the spatial and temporal
correlation of the values of which can be found by solving the equations of hydrodynamics
with Langevin random sources in the right-hand side similar to the works [27,36,37]. The
authors suggest that the use of this approach may be a topic for further research.
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