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Atherosclerosis is the main cause of mortality in metabolic-related diseases, including
cardiovascular disease and type 2 diabetes (T2DM). Atherosclerosis is characterized by
lipid accumulation and increased inflammatory cytokines in the vascular wall, endothelial
cell and vascular smooth muscle cell dysfunction and foam cell formation initiated by
monocytes/macrophages. The characteristics of metabolic syndrome (MetS), including
obesity, glucose intolerance, dyslipidemia and hypertension, may activate multiple
mechanisms, such as insulin resistance, oxidative stress and inflammatory pathways,
thereby contributing to increased risks of developing atherosclerosis and T2DM.
Autophagy is a lysosomal degradation process that plays an important role in
maintaining cellular metabolic homeostasis. Increasing evidence indicates that impaired
autophagy induced by MetS is related to oxidative stress, inflammation, and foam cell
formation, further promoting atherosclerosis. Basal and mild adaptive autophagy protect
against the progression of atherosclerotic plaques, while excessive autophagy activation
leads to cell death, plaque instability or even plaque rupture. Therefore, autophagic
homeostasis is essential for the development and outcome of atherosclerosis. Here, we
discuss the potential role of autophagy and metabolic syndrome in the pathophysiologic
mechanisms of atherosclerosis and potential therapeutic drugs that target these
molecular mechanisms.
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INTRODUCTION

Atherosclerosis is the main cause of mortality and morbidity in metabolic-related diseases,
including cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) (Weber and
Noels, 2011; Barquera et al., 2015; Schneider et al., 2016). The formation of atherosclerotic
plaques is divided into four stages: fatty streaks, atheromatous plaques, complicated
atheromatous plaques and clinical complications (Hassanpour et al., 2019). Rupture
of plaques may lead to an acute occlusion of artery, myocardial infarction or stroke.
Three types of cells, endothelial cells (ECs), vascular smooth muscle cells (VSMCs) and
monocytes/macrophages, participate in the development of plaques. Lipids and multiple
inflammatory cytokines accumulate in the vascular wall. Monocytes migrate to the endothelium
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of blood vessels, enter into the inner membrane then proliferate
and differentiate into macrophages. In this process, monocytes
combine with lipoproteins to form foam cells. In smooth
muscle cells (SMCs), with the secretion of fibrous elements, the
accumulation of fatty streaks and the production of extracellular
matrix, plaques develop and increase in size gradually. When
macrophages and SMCs die, the necrotic core of the lesion rich in
lipid will be formed. Meanwhile, matrix metalloproteinases and
neovascularization secreted by macrophages weaken the stability
of fibrous plaques. Once plaque rupture, the recruitment of
platelets will be initiated to form thrombus (Lusis, 2000; Glass
and Witztum, 2001; Hassanpour et al., 2019).

Metabolic syndrome (MetS) is defined as a series of chronic
metabolic disorders. Although the details and criteria of the
definition differ among different associations, such as the
World Health Organization (WHO) (Alberti and Zimmet,
1998), the European Group for the Study of Insulin Resistance
(EGIR) (Balkau and Charles, 1999), the National Cholesterol
Education Program’s Adult Treatment Panel III (NCEP: ATP III)
(Expert Panel on Detection et al., 2001) and the International
Diabetes Federation (IDF) (Alberti et al., 2006), the essential
characteristics include obesity, glucose intolerance, dyslipidemia
and hypertension (Eckel et al., 2005; McCracken et al., 2018)
(Table 1). These characteristics of MetS may contribute to
insulin resistance, oxidative stress, inflammation and endothelial
dysfunction, which are pivotal mechanisms associated with the
pathogenesis of atherosclerosis. Therefore, the regulation of MetS
is essential for preventing the progression of atherosclerosis.

Autophagy is a lysosomal degradation process that plays an
important role in maintaining cellular metabolic homeostasis.
Previous studies have demonstrated that impaired autophagy is
associated with metabolic disorders such as T2DM and MetS via
inflammatory pathways and various metabolic stresses (Xu et al.,
2016; Kitada et al., 2017; Turkmen, 2017). Autophagy exerts both
protective and detrimental effects on cardiovascular disorders.
In the progression of atherosclerotic plaques, basal and adaptive
autophagy may reduce oxidative stress, inflammation and lipid
accumulation and delay the formation of plaques. However,
excessive autophagy may cause cell death and plaque instability
(Kitada et al., 2016; Luo et al., 2016; Zhu et al., 2017). Therefore,
maintaining autophagic homeostasis in cells may be a therapeutic
strategy for the treatment of atherosclerosis.

In this review, we discuss the role of autophagy and
MetS characteristics in the pathogenesis of atherosclerosis
and potential therapeutic drugs that target these
molecular mechanisms.

METABOLIC SYNDROME
CHARACTERISTICS AND THE
FORMATION OF ATHEROSCLEROTIC
PLAQUES

The prevalence of MetS is increasing worldwide. In the nearly
an decade from 2003 to 2012, the overall prevalence of MetS
increased by 1.2% (from 32.9 to 34.7%) in the United States based

on the NCEP: ATP III criterion (Aguilar et al., 2015). According
to a systematic review summarizing 18 studies, despite differences
in methodology, diagnostic criteria and the ages of subjects,
nearly 1/5th of the adult population or more are affected by
MetS, with a particular increase in prevalence in the Asia-Pacific
region (Ranasinghe et al., 2017). A cross-sectional study involving
109,551 Chinese adults showed that MetS was closely related to
CVD, especially when MetS was defined by the NCEP: ATP III
criteria (Li et al., 2019). The characteristics of MetS, including
obesity, glucose intolerance, dyslipidemia and hypertension, may
contribute to insulin resistance/hyperinsulinemia, the activation
of oxidative stress, the accumulation of proinflammatory
cytokines, endothelial dysfunction and other pathological
mechanisms. These changes may lead to the pathogenesis of
atherosclerosis (Eckel et al., 2005).

Obesity
Obesity is a chronic inflammatory disorder characterized by the
accumulation of both visceral and subcutaneous fat. Mechanisms
of obesity-induced atherosclerosis may involve insulin resistance,
an imbalance of adipokines, oxidative stress, inflammation
and endothelial dysfunction (Nigro et al., 2006; Lovren et al.,
2015) (Figure 1A).

Insulin signaling plays a pivotal role in activating nitric
oxide (NO), a vasodilator and antiatherogenic agent, to maintain
endothelial function (Zeng and Quon, 1996; Zeng et al., 2000).
Typically, insulin binds to the insulin receptor, resulting in
tyrosine phosphorylation of insulin receptor substrate-1/2 (IRS-
1/IRS-2) and the activation of phosphatidylinositol 3-kinase
(PI3K) and protein kinase B (Akt), subsequently augmenting
glucose transport and other metabolic processes (Di Pino and
DeFronzo, 2019). The administration of endothelin-1 (ET-1),
a vasoconstrictor, leads to insulin resistance, as characterized
by a decrease in IRS-1 protein levels and suppressed PI3K/Akt
activation in rat skeletal muscle (Wilkes et al., 2003) and
adipocytes (Ishibashi et al., 2001), further promoting increased
vasoconstriction and atherogenesis. In obese conditions, adipose
tissue, liver, and skeletal muscle are considered key organs
associated with insulin resistance (McArdle et al., 2013).
Circulating free fatty acids (FFAs) are released from adipose
tissue. In the liver, FFAs increase the production of hepatic
glucose and triglycerides (TGs) and induce the secretion of very
low-density lipoproteins (VLDLs), which are atherogenic. In
skeletal muscle, FFAs reduce insulin sensitivity by inhibiting PI3K
activation. Increasing FFAs induces pancreatic insulin secretion,
resulting in compensatory hyperinsulinemia and exacerbating
insulin resistance (Eckel et al., 2005; McCracken et al.,
2018). Moreover, FFA-induced hyperinsulinemia stimulates the
mitogen-activated protein kinase (MAPK) pathway and increases
reactive oxygen species (ROS) levels and proinflammatory
and prothrombotic mediator production via nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase stimulation,
linking insulin resistance, oxidative stress and inflammation
(Satish et al., 2019).

Adipose tissue is the main source of anti-inflammatory and
proinflammatory adipokines. Imbalances in these adipokines
may contribute to insulin resistance and endothelial dysfunction,
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TABLE 1 | Definitions of metabolic syndrome.

Characteristics WHO 1999 EGIR 1999 NCEP: ATP III 2001 IDF 2006

Basic elements Glucose intolerance, IGT or
diabetes mellitus and/or insulin
resistance plus 2 or more of
the following:

Plasma insulin concentration
>75th percentile of
non-diabetic patients plus 2 or
more of the following:

3 or more of the following: Central obesity plus any 2 of the
following:

Obesity Waist-to-hip ratio of 0.90 (men)
or 0.85 (women) and/or
BMI > 30 kg/m2

Waist circumference > 94 cm
(men) or 80 cm (women)

Waist circumference > 102 cm
(men) or 88 cm (women)

Waist circumference* (ethnicity
specific) or BMI > 30 kg/m2

Fasting plasma
glucose

Impaired fasting glucose ≥6.1 mmol/l (110 mg/dl) but
non-diabetic

≥5.6 mmol/l (100 mg/dl) ≥5.6 mmol/l (100 mg/dl) or previously
diagnosed T2DM

Dyslipidemia TG ≥ 1.7 mmol/l (150 mg/dl);
HDL-C < 0.9 mmol/l (35 mg/dl)
(men) or <1.0 mmol/l
(39 mg/dl) (women)

TG ≥ 1.7 mmol/l (150 mg/dl) or
on treatment;
HDL-C < 1.0 mmol/l (39 mg/dl)
(men and women)

TG ≥ 1.7 mmol/l (150 mg/dl)
HDL-C < 1.7 mmol/l (40 mg/dl)
(men); <1.29 mmol/l (50 mg/dl)
(women)

TG ≥ 1.7 mmol/l (150 mg/dl) or on
treatment HDL-C < 1.03 mmol/l
(40 mg/dl) (men) of <1.29 mmol/l
(50 mg/dl) (women) or on treatment

Hypertension ≥140/90 mmHg ≥140/90 mmHg Systolic ≥ 130 mmHg or
diastolic ≥ 85 mmHg

Systolic ≥ 130 mmHg or
diastolic ≥ 85 mmHg or on treatment

Others Urinary albumin excretion
rate ≥ 20 µg/min or
albumin/creatinine ≥ 20 mg/g

*Waist circumference: for European populations, >94 cm (men) and >80 cm (women); for South Asian, Chinese and Japanese populations, >90 cm (men) and >80 cm
(women); for ethnic South and Central American populations, use the South Asian data; and for sub-Saharan African, Eastern Mediterranean and Middle Eastern (Arab)
populations, use the European data.

leading to atherosclerosis (Lovren et al., 2015). Previous research
has shown that resistin, a proinflammatory adipokine, can induce
the expression of inflammatory cytokines such as tumor necrosis
factor-α (TNF-α) and interleukin-12 (IL-12) in macrophages in a
nuclear factor-κB (NF-κB)-dependent manner to promote foam
cell formation (Silswal et al., 2005). Moreover, resistin increases
the expression of vascular cell adhesion molecule-1 (VCAM-
1), monocyte chemoattractant protein (MCP-1) and ET-1 in
ECs (Verma et al., 2003). These link resistin to obesity-induced
atherosclerosis. Another important adipokine is leptin. Obese
individuals exhibit enhanced circulating leptin levels but fail
to increase energy expenditure and reduce food intake due to
leptin resistance. Two mouse models are widely used to study
diabetes- and obesity-associated atherosclerosis: ob/ob mice,
which have a mutation in the leptin-encoding gene, and db/db
mice, which encode the leptin receptor (Wu and Huan, 2007).
Leptin can also stimulate the production of proinflammatory
cytokines (Francisco et al., 2018). Adiponectin is an anti-
inflammatory adipokine that can directly upregulate insulin
sensitivity (Kadowaki et al., 2006; Yamauchi and Kadowaki,
2013). Adiponectin can directly stimulate the production of NO
via PI3K-dependent pathways in ECs to mediate vasodilator
actions (Chen et al., 2003). In ApoE−/− mice, adiponectin
attenuated serum TC, TG and LDL-C levels induced by a high-fat
diet, reduced the gene expression of TNF-α, interleukin-6 (IL-6),
and VCAM-1, suppressed the activation of the NF-κB pathway,
and ultimately inhibited the formation of atherosclerotic plaques
(Wang et al., 2016). Another study showed that the association
of adiponectin with T-cadherin can protect against neointima
proliferation and atherosclerosis (Fujishima et al., 2017).

In both obese human and mouse models, elevated levels
of FFAs and fat accumulation increase systemic oxidative
stress (Furukawa et al., 2004; Hansel et al., 2004). Oxidative

stress results from an imbalance between the production of
ROS and antioxidant defenses (Le Lay et al., 2014). In obese
mice and adipocytes, increased ROS production is due to
an increase in NADPH oxidase. Treatment with NADPH
oxidase inhibitors reduces ROS production (Hansel et al., 2004).
Elevated ROS can induce nuclear translocation of the NF-κB
p65 subunit, activating downstream inflammatory genes and
increasing the expression of intercellular adhesion molecule-
1 (ICAM-1) and VCAM-1 in ECs (Jayakumar et al., 2014;
Medda et al., 2015). Another important oxidative biomolecule
is oxidized low-density lipoprotein (oxLDL), which is also
elevated in obese individuals (Srikanthan et al., 2016). Oxidation
induced by oxLDL can activate IκB kinase (IKK)/NF-κB and
c-Jun N-terminal kinase (JNK), leading to endothelial cell
death and dysfunction, which contribute to the development of
atherosclerosis (Valente et al., 2014).

Obesity is considered a chronic low-grade inflammation
(Saltiel and Olefsky, 2017). Multiple inflammatory cytokines,
such as TNF-α, IL-6 and C-reactive protein (CRP), are
overproduced in adipose tissue, ECs and macrophages in
obese humans and in mouse models (Wellen and Hotamisligil,
2005; Coelho et al., 2013). Chronic activation of the NF-
κB pathway in ECs upregulates the levels of inflammation-
related genes, such as ICAM-1, VCAM-1, and MCP-1, and
proinflammatory cytokines, such as TNF-α, IL-6 and IL-1β,
further leading to endothelial dysfunction (Kitada et al., 2016).
In addition, inflammasome-mediated processes are important
in the development of atherosclerosis (De Nardo and Latz,
2011; Lu and Kakkar, 2014). During obesity, the circulating
FFAs palmitate and ceramide lead to the activation of the
nucleotide-binding oligomerization domain-like receptor family
pyrin domain containing 3 (NLRP3) inflammasome (De Nardo
and Latz, 2011). Then, NLRP3 activates the production of the

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 April 2021 | Volume 9 | Article 641852

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-641852 April 15, 2021 Time: 13:24 # 4

Xu et al. Autophagy and Metabolic Syndrome

FIGURE 1 | Mechanisms of MetS-induced atherosclerosis. (A) Mechanisms of obesity-induced atherosclerosis involvement in insulin resistance, imbalanced
adipokines, oxidative stress, and inflammation. (B) Mechanisms of hyperglycemia-induced atherosclerosis involvement in inflammation, insulin resistance, the
activation of AGEs and oxidative stress. (C) Mechanisms of dyslipidemia-induced atherosclerosis involvement in insulin resistance, inflammation and oxidative stress.
(D) Mechanisms of hypertension-induced atherosclerosis involvement in inflammation, the renin angiotensin system and oxidative stress.

mature forms of IL-1β and IL-18, which participate in insulin
resistance (Stienstra et al., 2010; Vandanmagsar et al., 2011;
Wen et al., 2011) and accelerate atherosclerotic progression
(Satish and Agrawal, 2020).

Glucose Intolerance
Clinical studies have demonstrated that hyperglycemia is a
major predictor of atherosclerosis in both diabetic and non-
diabetic subjects (Zhang et al., 2006; Nagareddy et al., 2013;
Gan et al., 2019). High glucose (HG) may damage arterial cells
and play an important role in the progression of atherogenesis.
The mechanisms of HG-induced atherosclerosis may involve
interactions among insulin resistance, inflammation, advanced
glycation end products (AGEs) and oxidative stress, ultimately
leading to endothelial dysfunction (Figure 1B).

Insulin resistance is a characteristic feature of T2DM and
is usually accompanied by compensatory hyperinsulinemia
(Roden and Shulman, 2019). Under diabetic conditions, insulin
signaling is impaired at the level of IRS-1, leading to decreased
glucose transport and metabolism, impaired endothelial nitric
oxide synthase (eNOS) activation and endothelial dysfunction.
With increasing concentrations of glucose, the PI3K/Akt
pathway is suppressed, leading to proliferative dysfunction
in ECs (Varma et al., 2005). Moreover, the MAPK pathway

is activated by compensatory hyperinsulinemia, subsequently
inducing the expression of VCAM-1 and monocyte adhesion.
Insulin resistance suppresses the PI3K/Akt pathway and induces
the MAPK pathway to promote endothelial dysfunction and
proatherosclerotic events in ECs (Madonna et al., 2004; Di Pino
and DeFronzo, 2019).

Another mechanism of HG-induced plaque formation
involves activation of the inflammatory/inflammasome
pathway. The endothelium is sensitive to changes in glucose
concentrations. HG promotes leukocyte adhesion to endothelial
cells, which is an initial step in atherogenesis. In human aortic
endothelial cells, short-term HG incubation (no more than 12 h)
may increase the levels of some adhesion molecules, such as
VCAM-1 and MCP-1, via protein kinase C (PKC) and/or NF-κB
pathway activation (Piga et al., 2007; Azcutia et al., 2010). These
adhesion molecules facilitate monocyte adhesion to ECs, and
monocytes differentiate into intimal macrophages and accelerate
fatty streak formation. Moreover, monocytes incubated in HG
exhibit increased expression of cytokines such as IL-1β and
IL-6 (Dasu et al., 2007). NLRP3 inflammasome activation is
elevated in type 2 diabetic patients (Lee et al., 2013; Chen et al.,
2019) and diabetic rodent models (Luo et al., 2014; Hou et al.,
2020). Excessive activation of NLRP3 is associated with cardiac
inflammation (Luo et al., 2014). The NLRP3 inflammasome
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also promotes the secretion of mature IL-1β and IL-18 to
initiate the recruitment of inflammatory cytokines, leading
to atherothrombosis (Satish and Agrawal, 2020). NF-κB can
promote the transcription of NLRP3, pro-IL-1β, and pro-IL-18
in the vascular endothelial cells of diabetic rats. Inhibition
of NF-κB reduces activation of the NLRP3 inflammasome
and mature IL-1β in HG-treated H9c2 cells, which are heart
myoblasts, ameliorating cardiac inflammation, apoptosis and
fibrosis (Luo et al., 2014).

HG-induced AGEs are also key proatherogenic mediators in
diabetes (Bornfeldt and Tabas, 2011). AGE-modified proteins
and lipoproteins can bind to and activate their receptors, such
as receptor for AGEs (RAGE). RAGE is expressed in ECs and
promotes VCAM-1 expression (Harja et al., 2009). Deletion of
RAGE attenuates leukocyte recruitment and protects against
atherosclerosis by reducing oxidative stress and decreasing
the expression of proinflammatory markers, including NF-
κB p65, VCAM-1, and MCP-1, in diabetic ApoE(−/−) mice
(Soro-Paavonen et al., 2008).

HG-mediated oxidative stress has been shown to accelerate
the progression of atherosclerosis (Giacco and Brownlee, 2010;
Katakami, 2018). In the context of diabetes, mitochondria exhibit
increased ROS production due to impaired electron transport
and ROS scavenging (Xu J. et al., 2020). In mitochondria,
ROS activate NADPH oxidases, uncouple eNOS, amplify the
production of ROS and reduce GAPDH activity. Inhibition of
GAPDH activity increases the expression of RAGE and activates
the PKC pathway, which links oxidative stress, RAGE and
inflammation and contributes to atherosclerosis (Schaffer et al.,
2012; Shah and Brownlee, 2016).

Dyslipidemia
Dyslipidemia in MetS is closely related to obesity and is
characterized by hypertriglyceridemia, low levels of high-
density lipoprotein cholesterol (HDL-C) and high levels
of low-density lipoprotein cholesterol (LDL-C) (Eckel
et al., 2005). Accumulating evidence has demonstrated that
hypertriglyceridemia is strongly associated with increased risk of
atherosclerosis (Do et al., 2013; Jørgensen et al., 2013; Thomsen
et al., 2014). The accumulation of toxic lipid metabolites in
muscle, liver, adipocytes and arterial tissues contributes to
insulin resistance and endothelial dysfunction and accelerates
atherosclerosis. With increases in circulating FFAs released from
adipose tissue and transported into the liver, hepatic TG synthesis
increases. Hypertriglyceridemia is also a reflection of insulin
resistance (Eckel et al., 2005). TG-rich lipoproteins (TRLs) of
hepatic origin, such as apolipoprotein B (apoB) 48 and apoB 100,
are related to atherosclerosis and are found in plaques (Pal et al.,
2003). Dyslipidemia-induced atherosclerosis may be related to
multiple mechanisms, including insulin resistance (as mentioned
in the obesity section), elevated ROS, and inflammation, leading
to endothelial dysfunction (Peng et al., 2017).

Endogenous NO is a signaling molecule that has
antiatherosclerotic effects. NO inhibition by excess ROS is
the main cause of endothelial dysfunction (Higashi et al., 2009;
Bruno et al., 2018). FFAs and TRLs can stimulate intracellular
ROS production and cause cellular injury and death in human

aortic endothelial cells (Wang et al., 2009). TG accumulation
is also related to macrophage oxidative stress, which elevates
mitochondrial ROS generation, further promoting foam cell
formation (Rosenblat et al., 2012).

Multiple studies have suggested that oxidized FFAs stimulate
inflammatory cytokines (Wang et al., 2009; Gower et al., 2011).
TRLs upregulate the endothelial expression of ICAM-1 and
VCAM-1, facilitate the monocyte infiltration and enhance the
endothelial inflammation (Wang et al., 2013). TRL remnants
can induce endothelial cell apoptosis and vascular injury by
increasing the secretion of cytokines such as IL-1β and TNF-α
(Shin et al., 2004). Elevated TG and VLDL were related to arterial
inflammation through the NLRP1 inflammasome activation in
ECs (Bleda et al., 2016). Low HDL-C is closely related to oxidative
stress and insulin resistance (Hansel et al., 2004), which results
in endothelial dysfunction through lipotoxicity (Satish et al.,
2019) (Figure 1C).

Hypertension
Blood pressure (BP) levels are strongly correlated with visceral
obesity and insulin resistance (Aboonabi et al., 2019). Under
insulin resistance/hyperinsulinemia, ET-1 can suppress insulin-
induced Akt activation in VSMCs to exacerbate the development
of hypertension and atherosclerosis (Lin et al., 2015). Increased
systolic BP levels may stiffen the arterial wall and accelerate
the progression of atherosclerosis (Mulè et al., 2014; Aboonabi
et al., 2019). Hypertension is associated with oxidative stress,
increased NADPH oxidase activity, the inactivation of NO,
and the downregulation of NO synthase (NOS) isoforms,
leading to endothelial dysfunction (Furukawa et al., 2004).
Inflammatory cytokines are also pivotal mediators. Increased
serum levels of CRP (Sesso et al., 2003), monocyte TNF-
α secretion, and serum IL-6 concentrations were reported
in patients with hypertension, suggesting a close association
between inflammation and hypertension. Moreover, the renin
angiotensin system (RAS) plays a major physiological role in
endothelial dysfunction and vascular inflammation (Montezano
et al., 2014). Studies have demonstrated that angiotensin (Ang) II
accelerates the development of atherosclerosis in apoE−/− mice
(Daugherty et al., 2000; Weiss et al., 2001). An in vitro study also
showed that Ang II can induce oxidative stress, inflammation and
mitochondrial damage in human umbilical vein endothelial cells
(HUVECs), leading to apoptosis and endothelial cell senescence
(Dang et al., 2018) (Figure 1D).

AUTOPHAGY IN ATHEROSCLEROSIS

Autophagy is a cellular pathway involved in protein and organelle
degradation to maintain cellular metabolic homeostasis
(Mizushima et al., 2008). Autophagic dysfunction is closely
associated with cancer, neurodegeneration and aging-related
diseases such as obesity, diabetes and cardiovascular disorders
(Mizushima et al., 2008; Rubinsztein et al., 2011; Kobayashi
and Liang, 2015; Kitada et al., 2017). The role of autophagy in
atherosclerosis is controversial. On one hand, multiple studies
have demonstrated a protective effect of maintaining basal
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autophagy in atherosclerosis (Kim and Lee, 2014; Nussenzweig
et al., 2015; Kim et al., 2018). Characteristics of MetS contribute
to impaired autophagy, leading to accumulation of cytotoxic
aggregates, dysfunctional organelles (Zhang et al., 2018)
and present within the atherosclerotic plaque (Lavandero
et al., 2015). Drugs targeting mammalian target of rapamycin
(mTOR) signaling showed an effect of stabilizing plaques
via repairing impaired autophagy (Ma et al., 2016). On the
other hand, although autophagy is critical for maintaining
cellular homeostasis under various stress conditions, excessive
autophagy may induce autophagy-dependent cell death
(Liu and Levine, 2015). MetS-induced reactive ROS, oxidized
lipids and inflammation seem to be related to impaired or
excessive autophagy activation, contributing to damage to the
vascular wall and the development of atherosclerosis.

Regulatory Mechanisms of Autophagy
Autophagy occurs at a basal level and is highly inducible
by starvation and other stresses to increase the number of
autophagosomes. Autophagosomes enclose misfolded proteins
or damaged organelles and then fuse with lysosomes to form
autophagolysosomes (Mizushima and Komatsu, 2011). During
these processes, multiple autophagy-related genes (Atgs) and
proteins are involved (Gatica et al., 2015). Atg1 and microtubule-
associated protein 1A/1B-light chain 3 (LC3) are widely regarded
as critical markers of autophagy initiation. The conversion of
LC3-I to LC3-II causes the formation of autophagolysosomes,
and nucleoporin p62 (p62) facilitates the docking of cargo to
the cell membrane (Nussenzweig et al., 2015; Hassanpour et al.,
2019). The regulatory mechanism of autophagy is closely related
to nutritional status. Under conditions of overnutrition or the
effects of insulin, class I PI3K is induced to activate mTOR and
mTOR complex 1 (mTORC1), thus inhibiting the activation of
Atg1. In conditions of nutrient insufficiency, the Class III PI3K-
beclin1 complex is triggered to promote the assembly of the
Atg12-Atg5-Atg16L complex and Atg8/LC3 and then stimulate
autophagosome formation (Shao et al., 2016). In the pathogenesis
of atherosclerosis, cavelin-1, a marker protein for caveolar
organelles, is involved in the regulation of autophagy. After
the formation of phagophore through both mTOR and PI3K
pathways, the complex of phagophore and Atg5-Atg12-Atg16
combine with caveolin-1, then interact with LC3 to promote
autophagosome formation and facilitate caveolin-1 degradation
(Hou et al., 2021). Caveloin-1 deficiency showed elevated Atg7,
beclin1 and LC3-II, which indicated an increasing of autophagic
activity and atheroprotection (Wu Z. et al., 2019). Characteristics
of MetS including glucose (Bai et al., 2020) and dyslipidemia
(Chen et al., 2018) inhibited the formation of autophagosomes
via activating caveolin-1. Therefore, autophagy may have a close
association with the characteristics of MetS and play a key role in
the pathogenesis of atherosclerosis (Figure 2A).

Autophagy in ECs
Endothelial cells are an effective, permeable barrier between
circulating blood and tissues (Zhu et al., 2017). MetS-
induced autophagy dysregulation has been identified as a
critical factor in endothelial dysfunction and atherosclerosis.

LDL can suppress endothelial autophagy by activating the
PI3K/Akt/mTOR pathway in ECs (Zhu L. et al., 2019). In
addition, ox-LDL can inhibit autophagic flux by suppressing the
Sirtuin 1 (SIRT 1)/forkhead box protein O1 (FoxO1) pathway
to promote apoptosis and adhesion molecule expression in
ECs (Wang et al., 2019; Wu Q. et al., 2019). A previous
study showed that basal autophagy in ECs induced endothelial
eNOS expression and NO bioavailability to maintain endothelial
function (Fetterman et al., 2016). Autophagy decreases oxidative
stress and inhibits the expression of inflammatory cytokines,
including MCP-1 and IL-8. Moreover, inefficient autophagy
promotes inflammation and apoptosis and contributes to
the development of atherosclerotic plaques in ECs. Impaired
autophagy (via Atg3 siRNA) suppresses eNOS phosphorylation
and NO production and induces ROS accumulation and
inflammatory cytokine production (Bharath et al., 2014). Our
previous study also showed that autophagy defects in ECs
induced IL-6-dependent endothelial-to-mesenchymal transition
and organ fibrosis (Takagaki et al., 2020). High glucose-
induced caveolin-1 enhanced LDL transcytosis via autophagic
degradation pathway (Bai et al., 2020) and attenuated autophagic
flux in response to proatherogenic cytokines (Zhang X. et al.,
2020), while caveolin-1 silencing induced autophagy in Human
ECs (Bai et al., 2020). This evidence indicates that basal
autophagy is a key regulator of oxidant-antioxidant balance and
inflammatory-anti-inflammatory balance in ECs.

However, excessive autophagy may mediate cell death
in ECs and lead to plaque instability (Martinet and De
Meyer, 2009). A previous study indicated that elevated ROS
generation caused by oxLDL could induce excessive autophagy
characterized by increases in LC3, beclin-1 and Atg5 and
apoptosis in ECs, which is a proatherosclerotic characteristic
(Ding et al., 2012). Additionally, other research showed that
elevated ROS (Shen et al., 2013) and oxLDL (Peng et al.,
2014) initiated autophagy in human ECs in an atherosclerotic
environment (Figure 2B).

Autophagy in VSMCs
Abnormalities, death and proliferation in VSMCs participate
in the formation and instability of atherosclerotic plaques
(Zhang Y. Y. et al., 2020), even lead to vascular neointimal
hyperplasia, a central pathogenetic event of post-percutaneous
coronary intervention (PCI) restenosis (Zhu and Zhang, 2018).
Autophagy is crucial for VSMC function, survival and the
development of neointimal hyperplasia in post-PCI restenosis
(Zhu and Zhang, 2018). The deficiency of autophagy in
VSMCs accelerates cell senescence and promotes diet-induced
atherogenesis (Grootaert et al., 2015). The characteristics
of MetS have complicated effects on autophagic activity in
VSMCs. Previous studies demonstrated that atherosclerotic
lesions were markedly increased in high-fat diet-fed ApoE−/−

mice and mice with VSMC-specific Atg7 deletion compared
with ApoE−/− control mice (Masuyama et al., 2018; Osonoi
et al., 2018; Nahapetyan et al., 2019). Modest concentrations
of oxLDL (10–40 µg/ml) (Ding et al., 2013) and excess free
cholesterol (Xu et al., 2010) enhanced autophagy in VSMCs,
as characterized by elevated levels of beclin-1, LC3-II, and
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FIGURE 2 | Regulation of autophagy and autophagy levels in different types of cells involved in the progression of atherosclerosis. (A) Regulation of autophagy in
different states via two major signaling pathways: the inductive pathway mediated by Class-III PI3K-beclin1 signaling and the inhibitory pathway mediated by Class I
PI3K-mTOR signaling. Some compounds, such as resveratrol, berberine, metformin, statins and geniposide, may activate autophagy by suppressing the mTOR
signaling pathway. Damaged mitochondria are eliminated by mitophagy through the accumulation of PINK1/Parkin pathway and BNIP3/NIX pathway on the
mitochondrial surface. With changes in mitochondrial membrane potential (9m), this process is coordinated with mitochondrial fusion and fission process. Ox-LDL
inhibited PINK1/Parkin then impaired mitophagy and stains activate Parkin-dependent mitophagy. (B) Basal and mild adaptive autophagy suppresses oxidative
stress and inflammation and increases cell survival and cellular homeostasis to protect against the progression of atherosclerotic plaques, while impaired and
excessive autophagy activation leads to increased oxidative stress and inflammation, cell death, and apoptosis, further contributing to plaque instability and rupture.

Atg5. Induced autophagy is considered a cellular survival
mechanism to prevent the death of VSMCs. All these evidence
indicate that basal and modest autophagic activity in VSMCs
is a protective mechanism against cell death and maintains
plaque stability.

In contrast, excessively activated autophagy may result in
VSMC death and plaque destabilization. Severe oxidative stress

or inflammation stimulates excessive autophagy. TNF-α induces
the expression of LC3-II and beclin1 via the JNK/Akt pathway,
leading to VSMC death (Jia et al., 2006). In addition, Ang II
increases the production of ROS, increases the levels of LC3-II
and beclin-1 and decreases Sequestosome 1 (SQSTM1)/p62 to
promote autophagosome formation in rat vascular SMCs, which
may also be detrimental (Yu et al., 2014) (Figure 2B).
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Autophagy in Macrophages
Macrophages play pivotal roles in all stages of atherosclerosis.
During the formation of atherosclerotic plaques, monocytes in
the bone marrow are stimulated by MetS conditions, such as
elevated TC and LDL, to enter the blood circulation. Circulating
monocytes move into the subendothelium of vessel walls and
differentiate into macrophages, subsequently turning into foam
cells that are filled with oxLDL (Tabas and Bornfeldt, 2016).

The suppression of autophagy in macrophages may lead
to apoptosis and plaque destabilization. Macrophage Atg5
deficiency increases apoptosis and oxidative stress in fat-fed
LDL receptor-knockout mice and promotes plaque necrosis
(Liao et al., 2012). Macrophage-specific Atg5-knockout mice
exhibit increased p62 levels and decreased LC3 levels, which
are characteristic of autophagy deficiency. Moreover, Atg5-
null macrophages secrete IL-1β, leading to inflammasome
activation and increased plaques (Razani et al., 2012). Another
study demonstrated that macrophage autophagy could be
induced by Akt inhibitors, mTOR inhibitors and mTOR-siRNA,
while PI3K inhibitors had the opposite effect, which indicates
that activating autophagy of macrophage via the inhibition
of the PI3K/Akt/mTOR pathway can stabilize vulnerable
atherosclerotic plaques (Zhai et al., 2014). This evidence suggests
an atheroprotective role for basal autophagy in macrophages.

However, excessive autophagy may also lead to autophagic
death in macrophages via poorly understood type II programmed
cell death, which further exacerbates the inflammatory response
(Liu and Levine, 2015; Hassanpour et al., 2019). Future studies
are necessary to identify the detrimental role of autophagy in
macrophages (Figure 2B).

Mitophagy
Mitochondrial dynamics, including mitochondrial fusion, fission,
biogenesis and mitochonial autophagy (mitophagy) can be
regulated by the characteristics of MetS (Vásquez-Trincado
et al., 2016). Cells selectively remove dysfunctional and
damaged organelles via mitophagy. Briefly, the process of
mitophagy is mainly regulated by PTEN-induced kinase 1
(PINK1) and Parkin proteins. Damaged mitochondria are
eliminated by mitophagy through the accumulation of PINK1
and Parkin on the mitochondrial surface. With changes
in mitochondrial membrane potential (9m), this process is
coordinated with mitochondrial fusion and fission process.
Pro-apoptotic BH3-only domain protein (BNIP3) and NIX
are also involved in the selective mitochondrial clearance
(Ashrafi and Schwarz, 2013; Vásquez-Trincado et al., 2016)
(Figure 2A). Deregulation of mitophagy leads to accumulation
of dysfunctional and damaged mitochondria, results in the
overload of ROS, depletion of adenosine triphosphate (ATP) and
apoptosis of cardiomyocytes, which may lead to the pathogenesis
of CVD including atherosclerosis (Chistiakov et al., 2018;
Morciano et al., 2020).

The molecular mechanism mediating mitophagy in the
pathogenesis of atherosclerosis may involve mitochondrial
fission, accumulation of PINK1 and the recruitment of
Parkin to mitochondria. Multiple studies demonstrated that

characteristics of MetS, especially obesity and dyslipidemia
impaired mitochondrial dynamic and mitophagy. Ox-
LDL decreased mitochondrial aldehyde dehydrogenase 2
(ALDH2) via ROS-mediated VSMCs senescence (Zhu H. et al.,
2019), caused endothelial apoptosis via inhibiting fusion and
mitophagy (Zheng and Lu, 2020). Ox-LDL inhibited PINK1
and Parkin then impaired mitophagy flux, which leads to
VSMC apoptosis (Swiader et al., 2016). Moreover, another
research showed that SIRT3/FOXO3a/parkin pathway in
macrophages is a potential target for suppressing NLRP3
inflammasome activation to attenuate plaque size and
vulnerability (Ma et al., 2018).

PHARMACOLOGICAL INTERVENTIONS
IN THE TREATMENT OF
ATHEROSCLEROSIS

Based on the effects of MetS characteristics and autophagy on
the pathogenesis of atherosclerosis, we suggest that targeted
autophagy therapy may be an effective and promising strategy
for atherosclerosis treatment. At present, many drugs for
the treatment of MetS have additional benefits on autophagy
regulation to protect against atherosclerosis. The underlying
mechanisms of these drugs are related to the inhibition of
the mTOR signaling pathway, oxidative stress, inflammation or
hyperlipidemia (Figure 2A and Table 2).

Resveratrol
Resveratrol, an activator of 5’-adenosine monophosphate-
activated protein kinase (AMPK), is a polyphenolic phytoalexin
that occurs naturally in many plant parts and products.
Resveratrol has been verified to have antidiabetic (Kitada et al.,
2011; Szkudelski and Szkudelska, 2015) and cardiovascular
benefits (Bonnefont-Rousselot, 2016). Resveratrol treatment
results in a decrease in the size and density of atherosclerotic
plaques and a reduction in layer thickness in a rabbit model
(Wang et al., 2005). Resveratrol prevents high-fat/sucrose diet-
induced central arterial wall inflammation and stiffening in a
monkey model (Mattison et al., 2014). In addition to directly
activating autophagy by inhibiting mTOR (Sanches-Silva et al.,
2020), the underlying mechanisms include the indirect activation
of autophagy via anti-inflammatory and antioxidant effects.
Resveratrol is the most well-known compound that stimulates
members of the sirtuin family. Our previous research showed
that sirtuin 1 (SIRT1) inactivation induces inflammation through
NF-κB activation and dysregulates autophagy via mTOR/AMPK
pathways in THP-1 cells, a human monocyte cell line (Takeda-
Watanabe et al., 2012), which indicated the relationship between
autophagy impairment and inflammation. Another in vitro
study showed that resveratrol enhanced autophagic flux and
promoted ox-LDL degradation in HUVECs (Zhang et al., 2016)
and macrophages (Liu B. et al., 2014) via the upregulation of
SIRT1. Resveratrol also attenuates EC inflammation by inducing
autophagy in part via the activation of the AMPK/SIRT1
pathway (Chen et al., 2013) and SIRT1/FoxO1 pathway (Wu Q.
et al., 2019). Moreover, resveratrol can promote autophagosome
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TABLE 2 | Antiatherosclerotic compounds and mechanisms.

Compounds Mechanisms of
autophagy induction

Primary
functions

Antiatherosclerotic
effects

Resveratrol AMPK activation,
mTOR inhibition,
anti-inflammation,
antioxidation, SIRT1
activation

AMPK
activation

Decreases the size and
density of
atherosclerotic plaques,
reduces the layer
thickness (Wang et al.,
2005)

Metformin AMPK activation,
mTOR inhibition,
anti-inflammation,
antioxidation,
anti-hyperlipidemia

Anti-
hyperglycemia

Reduces monocyte-to-
macrophage
differentiation
(Vasamsetti et al.,
2015), promotes
cholesterol efflux,
attenuates plaque
formation, and
decreases
atherosclerotic lesion
areas (Luo et al., 2017)

Statins mTOR inhibition,
anti-inflammation

Anti-
hyperlipidemia

Plaques stabilization
(Bea et al., 2002;
Rodriguez et al., 2017),
reduces infarct size
(Andres et al., 2014)

Berberine AMPK activation,
mTOR inhibition,
anti-inflammation,
antioxidation,
anti-hyperlipidemia

AMPK
activation

Inhibition of
inflammation in
macrophages (Fan
et al., 2015)

Geniposide mTOR inhibition Anti-
inflammation

Decreases the size of
atherosclerotic plaques
(Xu Y. L. et al., 2020)

formation characterized by LC3 production and p62 degradation
and suppress palmitic acid-induced ROS to attenuate endothelial
oxidative injury in HUVECs (Zhou et al., 2019).

Metformin
Metformin is the recommended first-line treatment for T2DM.
Beyond its antidiabetic effects, the benefits of metformin on MetS
and cardiovascular diseases have also been confirmed (Zhou et al.,
2018). As an inducer of AMPK, the underlying mechanisms
of metformin may contribute to stimulating autophagy via the
AMPK pathway and exert anti-inflammatory, antihyperlipidemic
and antioxidant effects.

Metformin can directly activate AMPK and then suppress the
mTOR pathway to induce autophagy and inhibit atherosclerosis
(You et al., 2020). An in vitro study showed that metformin
inhibits IL-1β, IL-6, and IL-8 in ECs, VSMCs, and macrophages
by blocking the PI3K-Akt/NF-κB pathway (Isoda et al., 2006).
In addition, metformin reduces monocyte-to-macrophage
differentiation and attenuates Ang II-induced atherosclerotic
plaque formation in ApoE−/− mice by decreasing AMPK
activity to suppress the phosphorylation of signal transducer and
activator of transcription 3 (STAT3) (Vasamsetti et al., 2015).
Given its antihyperlipidemic effects, metformin protects against
ox-LDL-induced lipid uptake and apoptosis in macrophage
(Huangfu et al., 2018), prevents TC uptake during oxidative

stress-induced atherosclerosis (Gopoju et al., 2018). Combination
therapy with metformin and atorvastatin decreased the
atherosclerotic lesion areas in rabbits fed a high-cholesterol
diet. In macrophages, this cotreatment promoted cholesterol
efflux to achieve antiatherosclerotic benefits (Luo et al., 2017).
In terms of antioxidant effects, metformin reduces NADPH
oxidase and increases antioxidative enzymes such as superoxide
dismutase (SOD), glutathione peroxidase and catalase in
cultured human monocytes/macrophages, which alter the
oxidative status of macrophages and increases antioxidative
activity (Bułdak et al., 2016).

Statins
Statins are the cornerstone for the prevention of atherosclerotic
cardiovascular disease (Rodriguez et al., 2017). Statins exert
stabilizing effects on vulnerable atherosclerotic plaques in both
clinical research (Rodriguez et al., 2017) and animal models
(Bea et al., 2002). Beyond the hypolipidemic effects, stains are
considered autophagy inducers via mTOR inhibition, mediating
anti-inflammatory elements to protect against atherosclerosis
(Mizuno et al., 2011; Martinet et al., 2014). In macrophages,
atorvastatin inhibits LPS-induced inflammatory factors such
as IL-1β and TNF-α by enhancing autophagy through the
Akt/mTOR signaling pathway (Han et al., 2018). In VSMCs,
atorvastatin protects against transforming growth factor-β1
(TGF-β1)-induced calcification by stimulating autophagy (Liu D.
et al., 2014). Moreover, atorvastatin can reverse the endothelial
cell dysfunction induced by Ang II (Dang et al., 2018).
Simvastatin, another kind of statin, inhibits the mTOR pathway
to increase autophagy (Wei et al., 2013) and activates Parkin-
dependent mitophagy (Andres et al., 2014) in cardiomyocytes.
This evidence highlights the role of statins in the treatment of
atherosclerosis.

Natural Products
Similar to resveratrol, berberine, an extract of Coptis, exhibits
antioxidant, anti-inflammatory, and antihyperlipidemic
effects (Tillhon et al., 2012). A previous study showed
that berberine suppressed ox-LDL-induced inflammation
and increased the conversion from LC3-I to LC3-II in
macrophages through the activation of the AMPK/mTOR
pathway (Fan et al., 2015).

Geniposide, an extract of Gardenia jasminoides Ellis, shows
antioxidant and anti-inflammatory effects (Fu et al., 2012).
Previous study demonstrated that geniposide decreased the
size of atherosclerotic plaques, inhibited the progression of
atherosclerosis in high fat diet-fed ApoE−/− mice. The potential
mechanism may contribute to the reinforce of macrophage
autophagy by inhibiting the triggering receptor expressed on
myeloid cell 2 (TREM2)/mTOR signaling (Xu Y. L. et al.,
2020).

CONCLUSION

The characteristics of MetS are closely related to oxidative stress,
inflammation, insulin resistance, and imbalanced adipokines
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and are responsible for both impaired and excessive autophagy.
Autophagy homeostasis is the key regulator of MetS-induced
atherosclerosis. Dysregulation of autophagy induced by MetS
contributes to endothelial dysfunction, monocyte/macrophage
migration and adhesion that lead to the progression of
atherosclerosis. Basal and mild adaptive autophagy protect
against the progression of atherosclerotic plaques, while impaired
autophagy or excessive autophagy activation induced by MetS
is related to oxidative stress, inflammation, apoptosis, and
foam cell formation, contributing to plaque instability or
even plaque rupture. Presently, multiple drugs used to treat
MetS have been indicated to regulate autophagy beyond their
fundamental effects. Given the double-edged sword effect of
autophagy, precise control of autophagy should be considered a
potential therapeutic strategy in the prevention and treatment of
atherosclerosis.
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