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Heparanase, amember of the carbohydrate-active enzyme (CAZy) GH79 family,

is an endo-β-glucuronidase capable of degrading the carbohydrate moiety of

heparan sulphate proteoglycans, thusmodulating and facilitating remodeling of

the extracellular matrix. Heparanase activity is strongly associated with major

human pathological complications, including but not limited to tumour

progress, angiogenesis and inflammation, which make heparanase a valuable

therapeutic target. Long-due crystallographic structures of human and

bacterial heparanases have been recently determined. Though the overall

architecture of human heparanase is generally comparable to that of

bacterial glucuronidases, remarkable differences exist in their substrate

recognition mode. Better understanding of regulatory mechanisms of

heparanase in substrate recognition would provide novel insight into the

anti-heparanase inhibitor development as well as potential clinical applications.
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Introduction

As a key component of the extracellular matrix (ECM), heparan sulfate proteoglycans

(HSPGs) comprise of a transmembrane or secreted protein core to which one or more

heparan sulfate (HS) chains are covalently attached (Iozzo, 2005; Iozzo and Schaefer,

2015). HSPGs are one of the most highly negatively charged biopolymers occurred

naturally, collaborating with other ECM components to orchestrate the ECM remodeling

and structural integrity (Belting, 2003; Lindahl and Kjellen, 2013). Significantly, HS chains

of HSPGs act as a storage depot, providing binding sites for a wide variety of bioactive

molecules, such as growth factors, chemokines, lipoproteins and enzymes, which enables

HSPGs to play essential roles in regulation of numerous physiological and pathological

activities (Varki et al., 2009; Iozzo and Schaefer, 2015).

Heparanase (HPSE; HPSE-1), a member of the glycoside hydrolase (GH) 79 family,

has been defined as the only known endo-β-D-glucuronidase that catalyzes HS hydrolysis

to date (Parish et al., 2001). Since the cloning and expression of HPSE in 1999, emerging
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evidence highlighted the involvement of HPSE in cancer

progression, inflammation and angiogenesis (Fairbanks et al.,

1999; Hulett et al., 1999; Kussie et al., 1999; Toyoshima and

Nakajima, 1999; Vlodavsky et al., 1999). Of interest is that HPSE

expression is elevated virtually in all major types of cancers, and

this up-regulation is positively correlated with metastatic

potential of tumor and poor prognosis, which makes HPSE a

valuable therapeutic target. It has to be noted that another HPSE

isoform, HPSE-2 that lacks enzymatic activity, was reported in

2000 (McKenzie et al., 2000). HPSE-2 appears not only to be able

to inhibit HPSE activity but also regulate a multitude of signaling

pathways that mediate cell differentiation, apoptosis and tumor

vascularity, leading to tumor suppression.

Interpretation of the substrate specificity of HPSE has been

complicated, partly if not all, by the nature of HS structural

heterogeneity, which is derived from the extent of the sulfation,

deacetylation and epimerisation in HS biosynthesis (Ringvall et al.,

2000; Li et al., 2003; Pallerla et al., 2008). The structural features of

HPSE also critically contribute to the plasticity in its substrate

specificity, which is central to the proper biological function of

HPSE. There are three members with available crystallographic

structures to date in the GH79 family: Acidobacterium

capsulatum β-glucuronidase (AcaGH79) (Michikawa et al., 2012),

Burkholderia pseudomallei HPSE (BpHPSE) (Bohlmann et al.,

2015) and human HPSE (hHPSE) (Wu et al., 2015) as well as its

pro-form HPSE (hproHPSE) (Wu et al., 2017). The structure of the

exo-acting AcaGH79 was characterized first, followed by the recent

structural determination of endo-acting bpHPSE and hHPSE.

Though hHPSE represents an overall similar folding to that of

two bacterial GH79 members, structural variations within the

substrate binding canyon fine-tune the distinct substrate

specificities. Compelling evidence suggest that HPSE is a

multifaceted protein participating in multiple biological processes,

some excellent reviews are available pertaining to the engagement of

HPSE in cancer progression, inflammation and angiogenesis (Fux

et al., 2009b; Vlodavsky et al., 2012; Peterson and Liu, 2013; Pisano

et al., 2014; Rivara et al., 2016; Masola et al., 2018; Mohan et al.,

2019). In this minireview, we firstly provide an insight into the

structure-based rationale of HPSE substrate recognition. Next, we

briefly review the pro-tumorigenic effects of HPSE, which may

highlight its therapeutic potential against cancer.

Heparan sulfate proteoglycan

HSPGs consist of variable HS chains that covalently attach to

core proteins depending on the context of source and growing

conditions (Karamanos et al., 2018). HSPGs not only are present as

crucial components of the ECM and basement membrane (Sertie

et al., 2000; Arikawa-Hirasawa et al., 2001; Campos-Xavier et al.,

2009), also are found in secreted vesicles regulating various

biological activities after secretion (Zernichow et al., 2006),

including membrane-bound syndecans, glypicans, betaglycan,

neuropinlin and CD44v3, ECM components perlecan, agrin and

collagen XVIII, and secreted serglycin. After the attachment of

xylose to specific serine residues in core proteins of HSPGs, HS

biosynthesis is commenced by synthesizing a linkage

tetrasaccharide, glucuronic acid (GlcA)-galactose-galactose-xylose.

Structurally, HS is a glycosaminoglycan (GAG) chain with

potential modifications of sulfation, epimerization and

deacetylation, comprising of a linear repeating disaccharide unit

constituted by acetylated hexosamines (N-acetyl-glucosamine,

GlcNAc or N-sulfo-glucosamine, GlcNS) and uronic acids (GlcA

or its C5 epimer L-iduronic acid, IdoA) (Kjellen and Lindahl, 1991).

Further O-sulfation can take place at O2 of the uronic acid (2-O

sulfation) and O3 and O6 of the hexosamine (3-O and 6-O

sulfation). Numerous combinations of the low sulfation and high

sulfation domains along HS chains as well as the specific sulfation

patternwithin each domain complicate the recognition ofHSPGs by

HPSE. Early studies suggest that the minimum recognition

backbone of HSPGs by HPSE is a trisaccharide, and the cleavage

occurs at the internal β(1,4)-linked glycosidic bond between GlcA

and GlcNS (Figure 1A) (Matsuno et al., 2002; Peterson and Liu,

2013). Further investigation revealed that HPSE cleavage of HSPG is

dependent on sulfation types rather than a defined saccharide

sequence, and the cleavage by HPSE is regulated by specific

sulfation contexts around the cleavage site (Peterson and Liu, 2010).

The number of attached HS chains, together with the sulfation

distribution along the HS chains, leads to high structural

heterogeneity of HSPGs. In addition, modifications of HS

occurred during its biosynthesis appear to be non-template,

context-specific and in response to stimuli, therefore resulting in

remarkable variations in HS chains (Armistead et al., 2011; Sarrazin

et al., 2011; Shi et al., 2011). Of relevance is that the structural

heterogeneity of HS facilitates its capability of accommodating a

variety of binding partners, which is essential to the diverse

biological roles of HSPGs upon HPSE breakdown, leading to

activation of downstream signal cascades and promotion of cell

proliferation, tumor cell dissemination, inflammation and

angiogenesis (Bernfield et al., 1999; Elkin et al., 2001; Iozzo and

San Antonio, 2001; Sasaki et al., 2004; Barash et al., 2010b; Goodall

et al., 2014). Previous studies have demonstrated that hHPSE is able

to act in either a consecutive or a gapped cleavage mode depending

on the saccharide sequences released from its initial cleavage

(Peterson and Liu, 2013), which allows the efficient release of

distinct bioactive molecules from regions with different sulfation

patterns along HS chains.

HPSE

Overview

The gene coding for HPSE consisting of 14 exons and

13 introns is located on chromosome 4q21.3 and expressed as

two mRNAs (5 and 1.7 kb) by alternative splicing containing the
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same open reading frame (Dong et al., 2000). HPSE is initially

synthesized as a preproenzyme of 68 kDa containing a signal

sequence spanning Met1–Ala35, which is then processed into a

proHPSE form after cleaving the signal sequence by signal

peptidase. Lysosomal activation by cathepsin L excises a linker

domain of Ser110–Gln157, giving rise to the mature HPSE as a

non-covalent heterodimer containing an N-terminal 8 kDa

(Gln36-Glu109) and a C-terminal 50 kDa (Lys158-Ile543)

subunits.

β-glucuronidases are categorized into three GH families, GH1,

GH2, and GH79, on the basis of their amino acid sequences

(Henrissat and Davies, 1997; Cantarel et al., 2009). There are

four characterized β-glucuronidase members in the GH79 family,

including heparanase (EC 3.2.1.166), baicalin-β-D-glucuronidase
(EC 3.2.1.167), 4-O-methyl-β-glucuronidase, and β-glucuronidase
(Sasaki et al., 2000; Parish et al., 2001; Eudes et al., 2008; Konishi

et al., 2008). Though both GH2 andGH79 belong to the GH-A clan,

the GH79 family is composed of enzymes of both endo-acting HPSE

and exo-acting β-glucuronidase, which contrasts that the

GH2 family only consists of exo-acting β-glucuronidase. Folding
prediction as well as multiple sequence alignment has predicted

HPSE being a member of GH-A clan, proposing An (β/α)8-TIM
barrel as the key folding feature of HPSE (Nardella et al., 2004). This

was confirmed after the recent determination of the long-anticipated

hHPSE and hproHPSE structures.

HPSE structure and substrate recognition

The structure of apo hHPSE consists of a heterodimer

formed by the 8-kDa subunit (residues Gln36–Glu109) and

the 50-kDa subunit (Lys159–Ile543) (Wu et al., 2015), with

the domain architecture comprising a catalytic (β/α)8-TIM

barrel domain flanked by a β-sandwich domain (Figure 1B).

Both the 8-kDa subunit and the 50-kDa subunit contribute to the

formation of the catalytic (β/α)8-TIM barrel and the β-sandwich
domain. Though the β-sandwich domain was reported to

facilitate secretion and activation, cellular trafficking,

enzymatic and nonenzymatic activities of HPSE, its function

demands to be further characterized (Simizu et al., 2007; Lai et al.,

2008; Fux et al., 2009a). In addition, there are six putative

N-glycosylation sites identified in the 50-kDa subunit of

hHPSE. After the deglycosylation treatment of Endo-H during

the protein preparation, N-linked GlcNAc residues were visible

in the apo hHPSE structure at Asn162, Asn200, Asn217,

Asn238 and Asn459, respectively (Wu et al., 2015).

Intriguingly, glycosylation regulates HPSE secretion and

endoplasmic reticulum-to-Golgi transport, but it is not

required for enzymatic activity of HPSE (Simizu et al., 2004).

A binding groove of approximately 10 Å in the catalytic (β/
α)8-TIM barrel domain was recognized in the hHPSE structure.

This binding groove contains residues Glu343 and Glu225, which

are conserved in the GH79 family and have been previously

identified as the catalytic nucleophile and acid-base pair of HPSE,

suggesting that the HS-binding site is contained within this

groove (Hulett et al., 2000). As shown in Figure 2A, the HPSE

binding canyon is lined by side chains of basic residues, which

correlates well with the negatively charged nature of HS

substrates. Of interest is that the orientation of two subunits

in the solved hHPSE structure implicates that the excised

Ser110–Gln157 linker of the proHPSE could locate very close

in space to the HS binding groove, which would physically clash

the HS substrate. This is consistent with the reported hproHPSE

structure in 2017, showing the restricted access to the active site

cleft for oligosaccharide HS substrates due to the presence of the

6-kDa linker loop (Figure 2B) (Wu et al., 2017).

FIGURE 1
Cleavage of the glycosidic bond by HPSE. (A) The internal β(1,4)-linked glycosidic bond between GlcA and GlcNS is highlighted by an arrow in
red; (B) The overall fold of hHPSE is illustrated in ribbon representation with α-helix in red, β-strand in yellow and loop in green.
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Structures of hHPSE in complex with HS analogues provides

a structural rationale, clearly demonstrating that hHPSE

recognizes a trisaccharide spanning the −2, −1 and

+1 subsites, with the identical binding of GlcA at

the −1 subsite in all bound HS analogues (Figure 2A). This

conserved binding of GlcA is also observed in the GH79 bacterial

members, suggesting a key GH79 structural motif that has been

fine tuned to recognize GlcA (Michikawa et al., 2012; Wu et al.,

2015). Significantly, N-sulfate at the −2 subsite and 6O-sulfate at

the +1 subsite appear to be themain determinants for recognition

of HS analogues due to their direct engagement in the hydrogen-

bonding interactions with HPSE. 6O-sulfate at the −2 subsite and

N-sulfate at the +1 subsite also contribute to the anchorage of HS

substrates through electrostatic interactions to basic residues

lining the active site cleft. Overall, structural information

gained from the complexes of hHPSE with its HS substrate

analogs is consistent with the findings of previous studies that

HS sulfation patterns are essential for hHPSE enzymatic activity.

Furthermore, sulfation contexts of HS substrates appear to act as

a molecular signal that guides the precise cleavage of designated

glycan sites. In addition, sulfate groups on the −2 and +1moieties

are implicated to aid hHPSE to unwind the substrate HS helix for

a better access of the catalytic residues to facilitate the cleavage of

the glycosidic bond.

Structure-based rationale for the exo- and
endo-acting modes of GH79 β-
glucuronidases

When compared in the sequence alignment, a loop of

40 amino acids (Gly78–Thr117), which forms part of the exo-

acting substrate-binding pocket identified in the

AcaGH79 structure, corresponds to its counterpart that is

substantially reduced in size of endo-acting BpHPSE

(24 amino acids, Gly67–Pro90). Structurally, this shorter loop

of BpHPSE allows the transition of the binding pocket into an

open-end binding groove capable of accommodating elongated

HS chains, which hereby provides a well-explained structure-

based rationale of the discrepancy in acting modes of the

substrate cleavage between the exo-AcaGH79 and endo-

BpHPSE enzymes (Figure 2B).

The overall folding of hHPSE is comparable to that of two

characterized bacterial GH79 members (Michikawa et al., 2012;

Bohlmann et al., 2015), with Cα r.m.s. differences of 2.35 Å and

2.59 Å for AcaGH79 and BpHPSE, respectively. In particular, the

6 kDa linker peptide of hproHPSE that is proteolytically cleaved

to enable the activation of hHPSE also corresponds to the

AcaGH79 loop. Intriguingly, structural observations revealed

that the physical presence of the hproHPSE linker peptide

create a binding pocket on the protein surface containing

those two highly conserved glutamate, resembling some

structural characteristics of the exo-acting active site of

AcGH79 (Wu et al., 2017). Detailed data indicate that this

hproHPSE pocket is not involved in the HS interactions and

GlcA occupation of the proHPSE pocket does not inhibit HPSE

maturation, suggesting extra subsite interactions may be required

for anchoring single GlcA molecules to proHPSE. Further

investigations are thus required to determine whether this

proHPSE pocket possesses any substrate specificity.

Whereas both hHPSE and BpHPSE demonstrate the endo-

acting mode of substrate cleavage, differences exist between their

substrates recognition. BpHPSE has preference for cleaving HS-

containing GlcNAc residues (low sulfation), contrasting that

GlcNS is preferably recognized by hHPSE. Moreover,

sequence alignment of several eukaryotic HPSEs with BpHPSE

FIGURE 2
HPSE substrate binding site and structural superimposition. (A) hHPSE (electrostatic surface) in complex with a bound tetrasaccharide (our
unpublishedwork) in stick presentation (carbon in yellow, nitrogen in blue and oxygen in red) spanning through binding subsites +1,−1, −2, −3 (Davies
et al., 1997); (B) BpHPSE is illustrated in surface representation with two conserved catalytic glutamate highlighted in red; the loop that forms part of
the substrate-binding pocket in AcaGH79 is colored inmagenta; the 6-kDa linker of hproHPSE is illustrated in ribbon representationwith α-helix
in red, β-strand in yellow and loop in green; the bound GlcA are colored with carbon in yellow and oxygen in red.
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and AcaGH79 revealed a remarkable conservation of key

residues for accommodating GlcA at the −1 subsite of hHPSE,

demonstrated by absolute conservation of residue Asn224,

Glu225, Glu343, Gly350 and Tyr391 and evolutionary

conservation of residue 62 (Asp of hHPSE vs Glu of BpHPSE

and AcaGH79), 97 (Thr of hHPSE vs. Asn of BpHPSE and

AcaGH79), 349 (Gly of hHPSE and BpHPSE vs Gln of

AcaGH79), whilst residues at the −2 and +1 subsites show

much poorer conservation in the BpHPSE and AcaGH79,

thus providing a structure-based rationale for distinct

substrate specificity amongst those GH79 enzymes (Wu et al.,

2015).

Transport and function of HPSE in nucleus
and extracellular

It is generally known that mature HPSE is the only known

endo-β-D-glucuronidase in mammals, which can cleave the HS

chain of HSPG to release growth factors, chemokines,

lipoproteins and enzymes, play a role in promoting tumors

outside the cell. Many studies have shown that the function of

HPSE is regulated by histones. Histones mainly exist in the

nucleus and extracellular regions and secreted proteins.

Histones (H1, H2A, H2B, H3, and H4) contain a large

number of basic R-based amino acids, which are positively

FIGURE 3
Roles of HPSE in cancer progression. (A) HPSE modulates cancer progression by mediating oncogenic signaling and proliferative signaling; (B)
HPSE promotes cancer by resisting cell death, initiating angiogenesis, contributing to anti-immunity failure, circumventing growth inhibition and
reprogramming energy metabolism.
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charged in aqueous solutions. While HSPG as one of the most

negatively charged biopolymers, HSPG and histones bind to the

GAG chain of HSPG through charge interaction to play a

regulatory role. For example, extracellular histone H4 induces

HS degradation by activating HPSE in chlorine (Cl2)-induced

acute respiratory distress syndrome (ARDS). Knockdown of

HPSE by RNAi demonstrated that histone h4-induced HS

degradation requires HPSE and is dependent on the

enzymatic activity of HPSE (Zhang et al., 2022). In cells

expressing high levels of HPSE, reduction of nuclear

syndecan-1 results in increased histone acetyltransferase

(HAT) activity, which stimulates protein transcription and

transcriptional upregulation of multiple genes that drive

aggressive tumor phenotypes (Purushothaman et al., 2011). In

lymphangiosarcoma (SS), histone deacetylase inhibitors

(HDACi) upregulate HPSE by inducing the expression of the

positive regulator EGR1 and inhibit the negative regulation of

p53 by acetylation. By co-treatment with MEK inhibitor

(trametinib) or HPSE inhibitor (SST0001/rooneparstat),

blocking HDACi-induced erk-egr1-HPSE pathway enhanced

antiproliferative and proapoptotic effects (Lanzi et al., 2021).

With the deepening of research, it was found that HPSE can

inhibit tumor after entering the nucleus. Human HPSE

sequences contain two potential nuclear localization signals

(residues 271-277; PRRKTAK and residues 427-430; KRRK),

which mediate nuclear localization of enzymes. Secondly, HPSE

nuclear translocation can be promoted by its heparin binding

domain, using HS as its carrier (Nadav et al., 2002). Yang et al.

(2015) using atomic force microscopy and co-precipitation

methods, found a direct molecular interaction between HPSE

and DNA driven by charge, indicating that HPSE has dual

functions in malignant melanoma, with primary extracellular

activity and tumor-suppressive nuclear effect. In type 1 diabetes,

heparin and HS can be transported to the nucleus and directly or

indirectly affect gene transcription. Based on Chip-on-chip

studies, heparin interacts with promoters and transcription

regions of hundreds of genes and micro-RNAs in activated

Jurkat T cells and upregulates transcription at the molecular

level. Nuclear HPSE appears to regulate methylation of histone

3 lysine 4 (H3K4) by influencing demethylase recruitment of

transcription-active genes (Parish et al., 2013).

HPSE in cancer and its therapeutic
potential

As aforementioned, quite a few excellent reviews are

available pertaining to activities of HPSE in different

physiological and pathological contexts, we thus briefly

summarize the pleiotropic actions of HPSE herein and will

not go into detailed discussion (Figure 3). Function of HPSE is

strongly associated with major human pathological

complications, evidenced by that various literatures have

linked overexpression of HPSE to enhanced tumor growth,

metastasis and poor prognosis. Further, silencing of HPSE or

treatment of tumor with compounds that block HPSE activity

is shown to remarkably attenuate tumor progression.

Therefore, targeting HPSE is considered as a promising

therapeutic strategy for cancer treatment. Several classes of

inhibitors have been developed, ranging from nucleic acid-

based inhibitor, vaccines, MicroRNAs, anti-HPSE

monoclonal antibodies, poly-sulfated saccharides to small-

molecule inhibitors (Rivara et al., 2016). Though MicroRNAs

and anti-HPSE antibodies are demonstrated to have high

specificity, none of those so-called biological drugs, such as

vaccines, antibodies, and antisense RNAs, have ever passed

the clinical trials. Further, small molecule drugs also failed to

enter clinical studies.

To the best of our knowledge, only few polysaccharide-

based candidates synthesized by either semi-synthetic or total

synthesis methods are currently clinical tested by

competitively targeting the substrate binding site of HPSE.

Irrespective of distinct mechanisms of action, those

polysaccharide-based inhibitors, such as PI-88, M-402,

PG545, and SST0001, appear to be the most promising

anti-tumor agents due to their specificity and reasonable

druggability. Significantly, the development of HPSE

inhibitors still exist several drawbacks, among of which are

structural uncertainty, per-sulfation, in vivo instability, poor

bioavailability and apparent side effects (Rosenthal et al.,

2002; Levidiotis et al., 2004; Hossain et al., 2010). As a

result, novel strategies are emerging to develop HPSE

inhibitors with higher specificity and greater selectivity

(Sletten et al., 2017). Intriguingly, recent findings disclose

that HPSE-2, a close homolog of HPSE but lacks enzymatic

activity, can regulate antitumor mechanisms. However, this

theme is not the main focus of this minireview, therefore it will

not be further discussed.

Conclusions and future perspective

Intensive studies have demonstrated that increased levels of

HPSE expression are strongly associated with a multiplicity of

hematological and solid malignancies. To this end, HPSE has

become a promising target for fighting cancer. The therapeutic

potential of HS mimetics, due to their ability to bind and

modulate the function of HPSE, has therefore been

exploited. Although several HS mimetics have advanced into

clinical trials, unforeseen adverse effects are documented due to

the heterogeneous nature and nonspecific or pleiotropic effects

of those HS mimetics (Kudchadkar et al., 2008; Zhou et al.,

2011).

Further, HPSE is a multifaceted protein having both

enzymatic and non-enzymatic activities. To the best of our

knowledge, all HPSE inhibitors under development are
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predominately targeting on the enzymatic inhibition of HPSE.

Therefore, one main question raised in the development of anti-

HPSE inhibitors is whether the enzymatic activity of HPSE is

the critical determinant of its pro-tumor and pro-metastasis

effects, given the fact that the T5 splice variant of HPSE lacking

its enzymatic activity exerts roles in promotion of tumor

progress (Barash et al., 2010a; Barash et al., 2019). Intensive

studies are thus required to further explore non-enzymatic

activities of HPSE attributed to its physiological and

pathological function.

Recent determination of crystallographic structures of

human and bacterial HPSE could offer an improved

understanding of mechanisms of action of HPSE at the

atomic level, which will greatly aid the design of HPSE

inhibitors. Given the anti-tumor action of HS mimetics

appears to be context-dependent and in response to external

stimuli, it is advisable to develop HS mimetics as inhibitors in a

system where appropriate malignancies and patient population

are rationally selected for clinical trials. In addition, HS mimetics

are characterized by good safety and tolerability profiles, which

make them highly suitable for inclusion in combined therapies

with other drugs to enhance anti-tumor efficacy of conventional

treatments.
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