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Abstract: Halide perovskite based solar cells (PSC’s) have shown tremendous potential based on
its facile fabrication technique, and the low cost of perovskite thin film formation with efficiency
passing through an unmatched growth in recent years. High quality film along with morphology and
crystallinity of the perovskite layer influences the efficiency and other properties of the perovskite
solar cell (PSC). Furthermore, semitransparent perovskite solar cells (ST-PSC) are an area of attraction
due to its application in tandem solar cells, although various factors like suitable transparent rear
electrodes and optimized technique limit the power conversion efficiency (PCE). In this article, we
fabricated perovskite film using a technique termed Double-sided sandwich evaporation technique
(DS-SET) resulting in high quality perovskite film (MAPbI3 and MAPbIxCl3−x). Using this fabrication
approach as compared to the traditional spin-coating method, we reported an enhanced photovoltaic
performance of the PSC with a better surface morphology and homogeneity. The best parameter via
DS-SET was found to be SET 30 min, which demonstrated a PCE (%) up to 14.8% for MAPbI3 and
16.25% for MAPbIxCl3−x, respectively. Addressing the tandem solar cell, incorporating thin Ag as a
transparent electrode with a thickness of 20 nm onto the PSC’s as the top cell and further combining
with the Si solar cell results in the four terminal (4T) tandem solar cell exhibiting a PCE (%) of 24.43%.

Keywords: double-sided sandwich evaporation technique; sandwich structure; perovskite solar cell;
tandem solar cell; transparent electrodes; four-terminal; power conversion efficiency

1. Introduction

Utilizing renewable resources and energy is the sole source for the exponential increase
in the energy demand and climate crisis. Solar energy is one of the most generous renewable
resources on the earth [1]. From the last decade, hybrid perovskites have gained an immense
attraction within the field of solar cells due to significant growth in its power conversion
efficiency (PCE), and is generally considered as an upcoming advance in solar cells [2,3].
Furthermore, its excellent photovoltaic (PV) performance and economical in nature [4,5]
has drawn researchers toward it. Properties like high optical absorption coefficient value,
defect-tolerant properties, long carrier lifetime and diffusion length (>1 µm for perovskite),
flat, broad absorption at shorter wavelength and due to the development of roll-to-roll
technology make them a promising candidate for visible light optoelectronics at a large
scale [2,6]. Perovskite solar cells (PSCs), as compared to others, are very reliable, being
cost effective and having an efficiency of PSCs (25.2%) close to Si-solar cells (26.1%) with
an expectation of nearly 28% in the near future [6]. Escalating the PCE by adopting
different routes such as interface modification, or compositional engineering such as doping
engineering and morphology alteration are the key research focus [7,8], as with minimizing
the non-radiative energy loss at the interface of the photoactive layer and transport layer.
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The photovoltaic performance of the perovskite also depends on the reduction in parasitic
absorption in the interlayers and at the metal contact [9].

However, the efficiency of single-junction cells is difficult to break through, and it
cannot provide enough solar power, so it is a costly deal as compared to thermal power
generation. Multi-junction solar cells are expected to solve this problem. Many researchers
have combined materials with different energy gaps through tandem technology to achieve
a multiplicative effect. Since perovskite materials have the capability of energy gap tuning
in the range of 1.51–2.18 eV by changing the halide in their structure, they can be applied
to many tandem solar cell architectures (i.e., top cell or bottom sub cell), with inorganic
or organic secondary cells, even combined with photoelectrochemical cells. Taking the
double-junction solar cell as an example, it has a theoretical efficiency of around 43% [10],
and the efficiency of group III–V semiconductors is the highest. However, due to the
complicated epitaxial process, the cost is relatively high, and the application range cannot
be as wide as that of a silicon solar cell. Therefore, research is on how to combine other
solar cells, so that these two materials work together and complement each other. Among
the various combinations of semiconductors for perovskite, perovskite/silicon (PSC/Si) is
the most common tandem cell combination, mainly as silicon crystalline solar cells are easy
to obtain and the power generation performance is quite stable. A Perovskite–Si hybrid
structure for solar cells has great potential for large-scale industrial production. Perovskite
mainly converts green light and blue light into electricity, while silicon is responsible for
red light and near-infrared light, making excellent use of the solar spectrum. Therefore,
high band-gap perovskites are important materials and are preferred for multi-junction
solar cell architectures.

Generally, MAPbIxCl3−x has higher bandgap energy with excellent optoelectronic
properties as compared to MAPbI3. Doping engineering like the addition of halogen atoms
to chlorine (Cl−) in CH3NH3I3 resulting in CH3NH3IxCl3−x also enhances the stability
and carrier mobility. To date, various methods like solution process using one-step or
two-step solution process spin-coating for active layer and vapor deposition technique
are widely adopted for the fabrication of the composite [11,12]. Controlling the growth
rate of crystallization in a traditional one-step or two step solution process is very difficult,
limiting the production of CH3NH3IxCl3−x at a large scale. Recently, thermal evaporation
has been widely accepted for the large-scale production of various perovskite solar cells.
Poor crystallinity, and the effect of a different evaporation rate for the perovskite, leading
to residual formation, are some of the major issues experienced when using thermal evapo-
ration, limiting the commercialization [13]. In this article, solving the issue faced from a
traditional evaporation technique, double-sided sandwich evaporation technique (DS-SET)
was adopted using a low-cost homemade chamber for the all-evaporated perovskite. The
proposed sandwich structure comprises of MAI-PbI2-MAI and MAI-PbCl2-MAI, with
methylammonium iodide (MAI) as the bottom layer formed via spin-coating or a home-
made sandwich evaporation technique (SET) chamber, further with the evaporation of
PbCl2 or PbI2 using an evaporator, and then layering the MAI powder as the top layer with
the same SET setup, respectively. The so-formed MAPbI3 perovskite showed a PCE (%) of
14.8%, whereas, MAPbIxCl3−x has a PCE (%) of 16.25% and the longer diffusion length of
the latter is responsible for the higher PCE. The crystallinity was also enhanced to a great
extent by using this technique for the perovskite fabrication.

Besides, the top solar cell must transmit the light so that the bottom solar cell can
absorb the corresponding spectrum. Transparent electrode transmittance affects the ab-
sorption range and absorption rate of the bottom cell. Therefore, PSCs with transparent
electrodes are crucial for the performance of silicon solar cells as the bottom cell. There-
upon, we investigated an efficient transparent electrode with better conductivity, high
transmittance and found that the use of a thermally evaporated silver thin film as the trans-
parent electrodes with further post-annealing can effectively solve the problems related to
transmittance, conductivity, and damage to the perovskite film during the manufacturing
process [14].
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Usually, the two secondary cells of the four terminals (4T) are fabricated on separate
substrates, with the two operating independently, and are stacked on the top of each other.
The 4T does not consider the matching of the upper and lower cell currents, which has
the advantage of a simple structure. Therefore, PSC is combined with the silicon solar cell
through a 4T configuration to form a tandem solar cell in this work. Using the DS-SET
method, we produced the chlorine-based perovskite solar cell combined with a transparent
electrode with PCE, a fill factor of the top-cell of 16.1% and 74.25%, respectively, along with
PCE, a fill factor of the bottom cell of 8.33% and 75.54%, respectively, resulting in a high
PCE of 24.43%.

2. Materials and Methods
2.1. Preparation for Perovskite Thin Film

First, we focused on the fabrication of the perovskite layer (MAI), the first layer using
two different paths (Spin-coating and SET) (Figure 1). We prepared four different sets of
perovskite structures (Table 1).
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Table 1. Different stage fabrication parameters of perovskite sandwich structure.

Material

Layer MAI (1st)
(Spin-Coating, SET)

PbX2 (2nd)
(Thermal Evaporator)

MAI (3rd)
(SET) SE-SA 1

MAPbI3
Spin-coating (3000 rpm, 30 s)

PbI2 185 nm

3 torr, 30 min

NO
SET (3 torr, 15–30 min)

MAPbIxCl3−x

Spin-coating (3000 rpm, 30 s)
PbCl2 195 nm Yes

SET (3 torr, 15–30 min)
1 Sandwich Evaporation-Solvent Annealing.

2.2. Perovskite Solar Cells Device Fabrication

Indium Tin Oxide (ITO)-coated substrate (15 mm × 15 mm × 0.7 mm, South China
Science and Technology Co. Ltd., Shenzhen, China) was cleaned with isopropanol (IPA),
acetone (ACE), IPA, and methanol (MeOH) for 15 min followed by ultraviolet ozone
treatment for 30 min. Then, PEDOT:PSS (PEDOT-Al4083, CleviosTM, Hanau, Germany)
was spin-coated as the hole-transport layer (HTL) at 4000 rpm for 30 s and annealed in
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atmospheric conditions at 120 ◦C for 10 min. After SET experiment for all the technique,
the excess MAI on the surface was rinsed with IPA at 4000 rpm for 10 s and annealed
at 120 ◦C for 5 min to obtain a smooth surface and black color perovskite. Interestingly,
for a chlorine-based structure, dimethyl sulfoxide (DMSO) is used as a solvent via the
SE-SA technique [15] due to the need to control the crystallinity, along with the reduction
in pinhole effects and surface defects also playing an important part for a perovskite
layer. Electron transport layer (ETL), phenyl-C60-methyl butyrate (PC60BM) (99.5%, Echo
Chemical Co., Ltd., Taipei, Taiwan) (20 mg/mL) dissolved in chlorobenzene (CB, 99%,
Acros Organics, Antwerpen, Belgium) was spin-coated on the perovskite structure at
3000 rpm for 60 s and kept under the vacuum for 12 hrs to volatilize CB. Finally, 5 nm
bathocuproine (BCP) and 120 nm Ag electrodes were deposited via thermal evaporation to
complete the solar cell structure (Figure 2a). For the semi-transparent perovskite solar cell,
the Ag transparent electrodes were thermally evaporated for certain thickness followed by
annealing at 120 ◦C. Afterwards, the filtered perovskite for measuring the bottom cell was
thermally evaporated for the whole substrate area of 2.25 cm2. Finally, the PSC/Si tandem
solar cell was fabricated by physically stacking via the 4T technique (Figure 2b).
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bottom cell (Si).

2.3. Measurement

The characterization was measured in an ambient atmosphere. A Keithley 2400
(Keithley, Cleveland, OH, USA) source was used to measure the current density and
voltage (J−V) curves at an intensity of 100 mW/cm2 at AM 1.5G. X-ray diffractions (XRDs)
were analyzed using a Rigaku Miniflex powder X-ray diffractometer (Rigaku, Tokyo, Japan)
equipped with a CuKα (1.54 Å) radiation source in the range of 0.7–95◦ with a step size
of 0.01◦ under 40 kV, 15 mA. Scanning electron microscopy (SEM) images and energy
dispersive spectroscopy (EDS) spectra were analyzed using 10 kV field emission on a JEOL
JSM-7800F microscope (JEOL, Tokyo, Japan). UV-vis spectrum was measured by JASCO
V770 spectrophotometer (JASCO, Tokyo, Japan) and the bandgap was determined via a
Tauc plot.

3. Results and Discussion

In order to realize the formation and evolution of the perovskite thin film phase and
crystallization by the variation in fabrication technique, XRD analysis was performed.
The strength of the ionic bond Pb-X (X = Cl, I) generates strain energy due to the size
mismatch between the two different halides and plays an important role in the physical
properties of perovskite films. From the periodic table, compared to an I− ion, Cl− has
higher electronegativity, which results in a stronger bond formation with Pb2+, and these
stronger ionic bond help to overcome the strain energy that evolves from the lattice size
mismatch. From the unit cell volume for MAPbI3 and MAPbIxCl3−x calculation, it clearly
depicts that there is a reduction in the unit cell volume from MAPbI3 to MAPbIxCl3−x
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for the same SET time, indicating that the successful incorporation of Cl− and anion
mixing in the sample [16]. The XRD pattern of the so formed MAPbI3 and chlorine doped
MAPbIxCl3−x first layer of the perovskite sandwich structure was examined in the 2θ range
of 10–30◦ for the two different fabrication techniques: Spin-coating and SET. The XRD
diffraction plot for MAPbI3 (Figure 3a) reveals good crystallinity and uniformity, especially
for the SET technique with prominent peaks at 14.1◦ and 28.44◦ corresponding to (110) and
(220) planes of the MAPbI3 tetragonal phase [17]. For the spin-coating technique, the XRD
pattern has a diffraction peak at 12.4◦ corresponding to residual PbI2 resulting from the
incomplete reaction of the bottom PbI2 with the first MAI layer, further confirmed by SEM
results. Furthermore, XRD diffraction peaks showed no PbI2 diffraction peak, illustrating
the complete reaction of PbI2 with MAI into perovskite via a SET technique for different
times (15 min to 30 min with an interval of five minutes). Using Debye Scherrer’s equation,
the crystallite size was calculated for different techniques and the full width half maximum
(FWHM), and the results showed that the perovskite layer fabricated via SET technique
has better crystallinity, narrower FWHM and has larger crystallite size (Table 2).
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Table 2. Structural information of perovskite thin films for MAI (Spin-coating, SET)-PbI2-MAI (SET)
structure with different parameters for first layer.

Parameter 2θ (◦) FWHM (◦) Crystallite
Size (nm) Crystallinity (%) Unit Cell

Volume (Å)

Spin-coating 14.09 0.119 64.97 68.75 1000.116

SET 15 min 14.10 0.0851 90.85 96.83 996.685

SET 20 min 14.09 0.0749 103.22 95.31 997.311

SET 25 min 14.11 0.0852 90.74 96.61 995.263

SET 30 min 14.08 0.0846 91.38 95.31 999.876

Additionally, for the MAPbIxCl3−x perovskite structure, a similar trend was observed
to that found in MAPbI3. The diffraction peak at 12.4◦ is due to the PbCl2 residual and
results from an incomplete reaction of the bottom PbCl2 with the first MAI layer for the
sample prepared via the spin-coating technique, whereas the XRD diffraction for the
samples prepared via the SET method at different times (15 min to 30 min with an interval
of five minutes) resulted in the complete reaction of PbCl2 with MAI as the time increased
(Figure 3b). Interestingly, at 14.1◦ there were two prominent diffraction peaks indicating
two different phases, which with the increase in SET time resulted in one pure single phase
along with the disappearance of PbCl2 (Figure 3c). From the Braggs diffraction formula
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nλ = 2dsinθ, with the condition of nλ being constant, the iodide ion being larger in size as
compared to the chloride ion will result in the diffraction angle shifting towards a lower
θ value and vice versa. Furthermore, at a lower SET time, the existence of two phase
simultaneously indicates the presence of both iodide and chloride ions and with an increase
in SET time, complete transformation to MAPbIxCl3−x occurred. From the structural and
morphological analysis, it is found that the SET technique has better crystallinity and a
larger size with a SET time of 30 min having the highest crystallinity for MAPbIxCl3−x
(Table 3), which was further verified by SEM measurement.

Table 3. Structural information of perovskite thin films for MAI (Spin-coating, SET)-PbCl2-MAI (SET)
structure with different parameters for first layer.

Parameter 2θ (◦) FWHM (◦) Crystallite
Size (nm) Crystallinity (%) Unit Cell

Volume (Å)

Spin-coating 14.13 0.0902 85.71 53.69 991.22644

SET 15 min 14.04 0.1498 51.61 75.85 1004.0315

SET 20 min 14.09 0.1002 77.16 81.46 995.53726

SET 25 min 14.13 0.1879 41.15 93.53 990.90779

SET 30 min 14.12 0.1097 70.47 98.55 993.89328

The SEM images of the top surface and cross-section morphologies of MAPbI3 and
MAPbIxCl3−x for spin-coating and SET 30 min is shown in Figure 4. The SEM results clearly
indicate that the grain size for the sample prepared via SET is larger than prepared via
spin-coating. As the SET time increases, the uniformity, density and the smoothness of the
film enhanced with the increase in the grain size and the decrease in pin-holes, which can
be observed for 30 min SET time sample. Additionally, the cross-section SEM images show
the presence of PbI2 residual in the spin-coating sample. For the SET samples, the increase
in the SET time has resulted in a reduction in grain accumulation and grain boundaries,
with more regularity in the grain size as compared to spin-coating. Furthermore, with an
increase in SET time, the MAI availability is more for the reaction with PbCl2 and the 30 min
SET time clearly shows columnar crystal with less grain boundaries for MAPbIxCl3−x. The
ratio of Cl/(I + Cl) is an important parameter for the optimized efficiency of the perovskite.
According to the EDS result, the ratio of Cl/(I + Cl) shows that if the ratio is higher than
five, the excess amount of chlorine with iodide being lesser in content results in inhibiting
the replacement of I− from Cl− for the formation of MAPbIxCl3−x. Whereas, for the ratio
range of between 2–5, the perovskite is in a transition state with MAPbI3 and MAPbIxCl3−x
existing simultaneously. For a ratio lower than two, iodide is in excess, with a lesser amount
of chlorine, which increases the probability of the MAPbIxCl3−x complete formation.

In order to investigate the optical properties of the various perovskite structure formed
via the spin-coating and SET technique, we measured the UV-visible absorption spectra
of the so-formed perovskite films and examined the band-gap variation from a Tauc plot
for perovskite films formed at different SET times. Figure 5a shows the absorption spectra
for PbI2 and MAPbI3 formed with spin-coating and SET (different time period). It is
clearly seen that the absorption onset for PbI2 is around 518 nm, with a band gap of
2.39 eV. With the change in the fabrication technique from the spin-coating to the SET
method, there is a remarkable increase in the absorption (%). For this reason, we initially
fabricated the perovskite solar cell under this environment. For SET 30 min, there is a
clear absorption edge at 780 nm indicating the formation of MAPbI3, which can be further
verified from the XRD plot for MAPbI3 (Figure 5a) [18]. A similar observation was found
for MAPbIxCl3−x, with a significant increase in the absorption range with the increase in
SET time (Figure 5b). Furthermore, a blue shift (10 nm) was observed for MAPbIxCl3−x
as compared to MAPbI3, indicating the Cl inclusion (Figure 5c,d). Halide ions have the
ability to tune the band gap energy of the perovskite crystal depending on the composition
profile and chlorine-based perovskite displays the largest band gap, with a sequential
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decrease in the band gap due to the increase in the size of halide ion-based perovskite
(MAPbCl3 > MAPbBr3 > MAPbI3) [19]. In our study, from the Tauc plot profile, we can
clearly depict that for both the fabrication route, the chlorine-based perovskite structure
has a higher band gap, as compared to iodide (Figure 5e) [15].
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To probe the effect of the various critical parameters used in the SET based experiment
on photovoltaic performance of the device, J–V curves of the two different methods (Spin-
coating and SET 30 min) adopted for the MAPbI3 and MAPbIxCl3−x are plotted in Figure 6a.
Figure 6b shows the variation in PV parameters like the fill factor (FF), short-circuit current
density (Jsc), and the PCE as a function of the different methods adopted. It is worth noting
that the use of the SET technique resulted in higher PCE as compared to spin-coating,
which is conducive to the enhancement of Jsc and FF. From the various results above, the
use of DS-SET resulted in enhanced crystallinity and grain size with a lowered bandgap,
and it further decreased the grain boundaries. This might be the possible pathway for
electrons and holes crossing the layer interfaces. Furthermore, MAPbIxCl3−x has a longer
diffusion length compared to MAPbI3, which is linked with a higher PCE.

From the J–V parameter, shunt resistance (Rsh) will not have an effect on the open-
circuit voltage (Voc), but can affect Jsc. Theoretically, the value of the Rsh should be infinite,
close to the state of insulation, but the presence of defects in the device results in the
path formation for current leakage, resulting in dropped Rsh. Furthermore, the result
indicates a higher Rsh value for the DS-SET technique as compared to spin-coating, which
is responsible for efficiency increment.

From the J–V characteristic curves shown in Figure 6, the best parameter of MAPbI3
found for the highest power conversion efficiency is SET 30 min, with Voc = 0.9564 V,
Jsc = 20.85 mA/cm2, FF = 74.24%, PCE = 14.8%. As for the MAPbIxCl3−x, highest power
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conversion efficiency was also for SET 30 min, with Voc = 0.968 V, Jsc = 22.26 mA/cm2,
FF = 75.42%, PCE = 16.25%.
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Figure 6. (a) J–V characteristic of perovskite solar cells for different sandwich structures (b) Photo-
voltaic parameters of perovskite solar cell.

Figure 7a shows the transmission spectrum of transparent electrodes with a different
thickness of Ag, annealed at 120 ◦C for 20 min. Note, that with an increment in the
thickness, initially there was a red shift with a broadening in the position of resonance dip
followed by a blue shift. From the references [20,21], we can realize that the position of the
resonance dip is linked to localized surface plasmon resonance (LSPR) phenomenon. The
reason behind the red shift is the larger diameter of the Ag nano-particles and the longer
relaxation time of electrons, with an increase in the Ag thickness resulting in a lowering in
the resonance frequency, leading to red shift of the resonance wavelength. Enlargement
of the Ag nano-particles helps the coupling effect to become stronger, deriving larger
surroundings dielectric constant. Additionally, when the distance between the Ag particles
becomes less, the electromagnetic field between Ag particles will produce a coupling effect.
Therefore, the resonance frequency will become higher, leading to the blue shift in the
resonance wavelength.
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The prime reason of higher light scattering is the presence of a rough surface, grain
boundaries, and defects. However, with the annealing process of the Ag thin film, there
is a remarkable reduction in surface defects with the presence of a large dense surface.
As a result, reflectivity, as well as light scattering, decreases with a relative increase in
transmittance.

As the resistance for lower thickness of the Ag film is too large to conduct electricity,
we tried to increase the thickness of the film. Figure 7b shows the J–V characteristics of
perovskite solar cells with different silver thickness as transparent electrodes. It can be
further seen from Table 4 that the resistance value measured through the multi-meter shows
that it is smallest for 20 nm, and the efficiency is maintained up to 99.07%, with a near-
infrared light range transmittance average of 70.11%, which is transparent theoretically.

Table 4. Characteristic of PSCs using different thickness of Ag transparent electrodes.

Ag Thickness (nm) Resistance (Ω) PCEs 1/PCEr 2 (%) Tave (%) (800–1200 nm)

10 38.5 71.4 77.76

15 11.5 77.57 72.76

20 8.2 99.07 70.11
1 PCE of semitransparent perovskite solar cell with transparent electrodes. 2 PCE of reference perovskite solar cell
with Ag 120 nm.

Figure 7c shows the transmission spectrum of perovskite solar cells with transparent
electrodes of thickness 20 nm for each sandwich structure. The perovskite mainly absorbs
the visible light range, and about 40–45% of the transmittance is left for the silicon solar
cells underneath for absorption.

Finally, the formed perovskite solar cell is merged with the silicon solar cell via a 4T
configuration for the formation of a tandem solar cell, and the result is shown in Figure 8a,b.
A PCE (%) of 23.07% is achieved for MAPbI3 using the SET technique. Table 5 shows the
upper semitransparent PSC had an efficiency of 14.6% with photovoltaic parameter being
Voc = 1.02 V, Jsc = 19.6 mA/cm2, and FF = 73.57%, while the lower silicon solar cell had an
efficiency of 8.47% with Voc = 0.62 V, Jsc = 18.1 mA/cm2, and FF = 75.45%.
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As for MAPbIxCl3−x using SET up to 24.43% is achieved. The upper semitransparent
PSC had an efficiency of 16.1%, Voc = 1.037 V, Jsc = 20.9 mA/cm2, and FF = 74.25%. The
lower silicon solar cell had an efficiency of 8.33%, Voc = 0.618 V, Jsc = 17.8 mA/cm2, and
FF = 75.54%.

Figure 8c shows the SETFOS simulation results for the PSC/Si tandem solar cell
at some certain perovskite bandgaps. From the results, we remark that the efficiency
has an increase trend between 1.55–1.62 eV. Compared with our experimental data, it
shows the same PCE (%) trend of PSC/Si with an increment in bandgap from MAPbI3 to
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MAPbIxCl3−x, which is located in the range. The above result depicts that using a suitable
bandgap of the perovskite matched with silicon to form a tandem solar cell can effectively
absorb the solar spectrum to attain the highest usage.

Table 5. Summary of the photovoltaic parameters of the semitransparent perovskite cell, silicon cell,
filtered silicon cell, and the summed 4T perovskite/silicon tandem solar cell.

Parameter Area (cm2) Voc (V) Jsc (mA/cm2) FF (%) PCE (%)

Si cell 2.25 0.65 44.4 77.77 22.3

ST-PSC (SET 30 min-PbI2-SET 30 min) 0.08 1.02 19.6 73.57 14.6

Filtered Si cell 2.25 0.62 18.1 75.45 8.47

Sum 0.08 - - - 23.07

ST-PSC (SET 30 min-PbCl2-SET 30 min) 0.08 1.037 20.9 74.25 16.1

Filtered Si cell 2.25 0.618 17.8 75.54 8.33

Sum 0.08 - - - 24.43

Figure 9 presents the EQE spectra of the perovskite/Si tandem solar cell with a different
perovskite sandwich structure as the top cell. Figure 9a,b corresponds to the Figure 8a,b,
respectively. It displays the spectra in the spectral range of 400–800 nm with a highest
EQE value up to ~70% for the iodide and ~75% for chloride based perovskite structure at
λ = 575 nm, respectively. Besides, the top cell with a chlorine based perovskite shows a
higher EQE rate and ~5 nm blue shift onset as compared to the iodide based perovskite,
which can be further linked with the results of lattice shrinkage obtained from XRD, blue
shift in the absorption spectra, and the increment of current density from MAPbI3 to
MAPbIxCl3−x.
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4. Conclusions

In this article, we mainly focused on the perovskite sandwich structure with a struc-
tural composition of MAI-PbI2-MAI and MAI-PbCl2-MAI by changing the fabrication
approach of the first layer MAI from spin-coating to SET. Furthermore, we built the per-
ovskite thin film via double inter-diffusion by reacting MAI with PbI2/PbCl2. As compared
with other fabrication techniques, in this article, we investigated the effect of the SET
time and its effect on the physical and chemical properties of the perovskite setup. The
most optimized parameter via DS-SET was found to be SET 30 min, which resulted in
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the PCE (%) increasing up to 14.8% for MAPbI3 and 16.25% for MAPbIxCl3−x, respec-
tively. The SET technique resulted in a higher PCE as compared to spin-coating, which
was conducive to the enhancement of Jsc and FF. Interestingly, MAPbIxCl3−x has a longer
diffusion length compared to MAPbI3, so is linked with higher PCE. Additionally, we
designed semitransparent PSCs with 20 nm Ag electrodes annealed at 120◦C for 20 min and
maintaining around 99.07% performance of the opaque PSCs with an increment in average
transmittance by 50% in the mid-infrared range of 800–1200 nm, showing its potential in
near infrared light absorption by the bottom solar cell. Afterwards, merging the PCE (%)
of the perovskite top cell and the filtered Si bottom cell, the PCE of the 4T tandem solar
cells attained a value of 23.07% for MAPbI3 and 24.43% for MAPbIxCl3−x, respectively,
which was higher than that of the single opaque PSCs. Finally, the EQE of the two different
halide-based perovskite sandwich structures was calculated and the value was around
70% for iodide and 75% for the chloride based perovskite structure in the spectral range
of 400–800 nm. Compared with the SETFOS simulation results, it showed the same PCE
(%) trend of PSC/Si with an increment in bandgap from MAPbI3 to MAPbIxCl3−x, which
is located in the range. The above result depicts that using a suitable bandgap of the
perovskite matched with silicon to form a tandem solar cell can effectively absorb the solar
spectrum to attain the highest usage.
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