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Introduction
Big data has garnered a lot of interest among cli-
nicians in the current scenario. There is no 
denying the fact that almost every sector in the 
world today is driven by data and the healthcare 
industry is no exception. Advances in medical 
technology, electronic medical databases and 
computational capacity are generating big data in 
the field of medicine.1 This massive quantity of 
data obtained also involves information from 
devices as small as ingestible sensors, smart-
phones and watches, along with a variety of elec-
tronic health data sets. The electronic health 
record (EHR) enables big data in the health 
industry as patient care is routinely documented 
in EHRs. The data is then fed to large repositories 
which grow in size and scope, becoming big data 
resources.2 Analysing the information presented 
in this data may reveal connotations, patterns and 
trends to progress patient care and reduce costs.3

With the data emerging at an exponential rate, 
the complexity of dealing with and utilizing it 
increases. This leads to difficulties in offering per-
sonalized treatment plans.4 To offer a precise and 
transversal view of a clinical scenario, artificial 
intelligence (AI) with machine learning (ML) 
algorithms and artificial neural networks (ANNs) 
process was adopted. This soon had a promising 
wide application and urology is one such area 
where AI is being widely adopted.5

Urology is a specialty that has always been at the 
forefront of innovation and research where tech-
nologies have been rapidly embraced, and this has 
helped achieve better patient outcomes.6 It is one 
of the most rapidly expanding surgical super spe-
cialties and AI paired up with big data plays an 
important role behind its exponential propulsion. 
The scientific breakthroughs have certainly 
helped over the past 20 years, where AI has been 
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extensively applied for the diagnosis,7 manage-
ment8 and outcome prediction8,9 of urological 
diseases and conditions (Figure 1).

AI systems are armed with a lot of information to 
assist in clinical decision making in both predic-
tive and prescriptive analysis. Therefore under-
standing what exactly big data is and how it is 
used in these AI applications for urology is of 
utmost importance. In this review, we explore the 
major sources of big data used for the advance-
ments in urology and explicate their current and 
future applications.

Search strategy and article selection
A non-systematic review of all urology related 
English language literature published in the last 
decade (2010–2020) was conducted in June 
2020 using MEDLINE, Scopus, EMBASE and 
Google Scholar. Our search strategy involved cre-
ating a search string based on a combination of 
keywords. They were: ‘Big Data’, ‘Big Data 
Analytics’, ‘Urology’, ‘Artificial Intelligence’, 
‘AI’, ‘Machine learning’, ‘ML’, ‘ANN’, 
‘Convolutional Networks’, ‘Electronic Health 
Records’, ‘EHR’, ‘EMR’, ‘Bioinformatics’, 

‘Genome’, ‘Prostate cancer’, ‘Urinary inconti-
nence’, ‘Kidney stone disease’, ‘Ureteric stones’, 
‘Infertility’, ‘Andrology’, ‘Renal cell carcinoma’, 
‘Paediatric urology’ and ‘Bladder cancer’. We 
included original articles published in English.

Inclusion criteria
1. Articles on Big Data Analytics, urology and 

AI;
2. Full-text original articles on all aspects of 

diagnosis, treatment and outcomes of uro-
logical disorders.

Exclusion criteria
1. Commentaries, reviews and articles with no 

full text context and book chapters;
2. Animal, laboratory or cadaveric studies.

The literature review was performed as described 
above. The evaluation of titles and abstracts, 
screening, and the full article text was conducted 
for the chosen articles that satisfied the inclusion 
criteria. Furthermore, the authors manually 
reviewed the selected articles’ reference lists to 
screen for any additional work of interest. The 

Figure 1. Application of Big Data Analytics and artificial intelligence in healthcare.
EHR, electronic health record; EMR, electronic medical record.
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authors resolved the disagreements about eligibil-
ity for a consensus decision after discussion.

Big Data Analytics in urology
Digitization of healthcare in recent times led to 
the generation of large amounts of health data on 
a day-to-day basis. The data produced is beyond 
manageable by the traditional software and hard-
ware in terms of storage, processing and analysis, 
thus rightly being given the name ‘big data’.10,11 
In simple words, big data in healthcare corre-
sponds to the digitally collected patient data 
amassed from numerous sources including EHRs, 
medical imaging and genomic sequencing to 
name a few. The difficulty in harnessing big data 
is a result of its characteristics – volume (amount 
of data), variety [type – (structured or unstruc-
tured), format – (images, text, video, audio)] and 
velocity (the increasing rate of data accumula-
tion).2 To understand where exactly the data is 
acquired from and how it contributes to urology 
in particular, it is essential to discuss the different 
sources of big data in urology and their respective 
applications.

Sources and their utilization

EHRs and electronic medical records
EHRs are considered to be the most appropriate 
form of clinical data available. They comprise the 
patient’s medical history, diagnosis, medications 
and treatment plans, allergies, imaging data, lab-
oratory reports, test results and clinical outcomes. 
In short, they are a comprehensive report of a 
patient’s entire health information that can be 
accessed by authorized users whenever and wher-
ever in the world. Their relevancy compared with 
any other source of big data in healthcare comes 
from the fact that they are patient-centred and are 
created by authorized professionals with the sole 
purpose of supporting interoperability between 
health organizations. An ideal EHR system is one 
that improves aggregation, analysis and commu-
nication of patient information.11

Often confused with EHRs, electronic medical 
records (EMRs) on the other hand are digitized 
patient charts that are limited to one practice 
itself. It contains the medical and treatment his-
tory of a patient within one practice alone. These 
are used by the provider for early diagnosis and 
treatment, unlike EHRs, which are highly used 

for decision-making. The main aim of EMR sys-
tems is to enhance the quality of care by utilizing 
its information for various tasks, from scheduling 
patient appointments to monitoring vital param-
eters.12 When choosing a particular EMR system 
for their practices, the providers must check with 
the system’s features. There are some accom-
plishments an efficient EHR system is expected to 
achieve, the most important being privacy for 
patient data. Figure 2 depicts nine crucial fea-
tures to look for in the right EHR/EMR.

Traditionally, EMR vendors were fixated upon 
delivering general-purpose systems that can be 
used across different specialties. This led to the 
generation of several gaps within the collected 
data, thus failing to capture precise data related to 
a particular disease state. Though such limita-
tions initially hindered the usage of EMRs and 
EHRs due to lack of important features and inef-
ficient design of the systems, various add-on data 
analytics platforms were introduced to mitigate 
these difficulties.11,12 Along with enabling patient 
identification and population management, 
incorporating data analytics into EMR systems 
provided visibility into clinical data such as symp-
tom scores and medication utilization.12 
Consequently, workflows could be created target-
ing the highest-priority patients first and deliver-
ing appropriate care to them promptly and more 
efficiently.

In the present-day scenario, many urology-based 
EHR systems are available that primarily focus on 
gathering disease-specific information from the 
patient. With the existence of urology-specific 
EHR templates for conditions such as recurrent 
urinary tract infections, benign prostate disor-
ders, urolithiasis, uro-oncology and many more, 
extracting relevant information for studies and 
research has become easier. Focusing on patient-
centred outcomes, Tina et al.13 used an EHR sys-
tem to detect urinary incontinence following 
prostatectomy, highlighting how the data cap-
tured in EHRs can be used to assess disease treat-
ment. Other similar studies that made use of 
existing hospital EHR and EMR systems are dis-
cussed in Table 1.

The studies shown in Table 1 emphasize how 
data from EHRs and EMRs, known as big data, 
contribute to deriving significant insights related 
to patients and urological diseases. With frequent 
upgrades in technology, increasing the adoption 
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Figure 2. Nine crucial features of EHR/EMR.
EHR, electronic health record; EMR, electronic medical record.

of certified urology EMR and EHR systems in 
practices enables several advantages to move 
ahead and remain financially competitive in a 
healthcare setting.

Administrative data
Administrative data (also known as routinely col-
lected data) is another source of big data in 
healthcare that is highly employed to inform clini-
cal research.33 Unlike EMRs or EHRs, adminis-
trative data (AD) is primarily collected for reasons 
other than research (financial aspects of health-
care) and usually consists of enrolment data, hos-
pital in-patient and out-patient data, health 
insurance claims and pharmacy data.33,34 
Typically, the data obtained from AD is used to 
determine and analyse national healthcare utiliza-
tion trends, access, charges, quality and out-
comes.34 Though EMRs offer an advantage over 
AD in terms of possessing more informed patient 
details, assessing primary care process quality 
measures, laboratory test ordering or prescrip-
tions, using it for secondary purposes is not advis-
able.35,36 Therefore, secondary data analysis is 
most commonly applied to AD.

Secondary data analysis is leveraging the data for 
research traditionally collected by someone other 
than the investigator.37 Especially in urological 
literature, there has been a dramatic increase in 
utilizing secondary data analysis for clinical 
research.37 NIS (National Inpatient Sample) and 
KID (Kid’s Inpatient Database) derived from sam-
ples of the SID (State Inpatient Database) are some 
examples of nationally representative discharge 
data sets that employ secondary data analysis.34 
PHIS (Paediatrics Health Information System) and 
National Surgical Quality Improvement Data 
(NSQID) are some popular administrative data-
bases used in urology. The latter comprises more 
than 100 data points and is widely used in uro-
logical studies. Various other AD sources and the 
reviews of urology contingent on them are dis-
cussed in Table 1.

Gathered to analyse and deal with the financial 
burden of diseases, AD has certain limitations 
that include difficulty in access and use of 
incomprehensive information on diagnosis and 
uncertainty regarding its generalizability. Using 
EMR (clinical) data as a reference standard for 
AD (financial) could facilitate in providing a 
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comprehensive picture of patient health infor-
mation that can be utilized to assess outcomes 
more accurately.38 Similarly, having a clear goal 
for the study, choosing an appropriate dataset 
and avoiding ill-fitted statistical analysis could 
resolve the issues when applying secondary data 
analysis on data sets.37

Bioinformatics and genomic databases
The dawn of the genomic medicine era triggered 
unforeseen perception towards genetic variations 
that drives tumour development and progres-
sion.39 The emergence of modern bioinformatics 
in biomedical research opened up tremendous 
opportunities to derive powerful insights from the 
clinically constructed genetic databases.

Today an individual’s entire genome sequence is 
shared securely over the web. Databases known 
as genome browsers offer a way of sharing genome 
information in an accessible format after it is 
sequenced, assembled and annotated.40 Some 
examples of genome browsers include Ensembl, a 
joint project between European Bioinformatics 
Institute (EBI), part of the European Molecular 
Biology Laboratory (EMBL) and the Wellcome 
Trust Sanger Institute (in UK), UCSC (genome 
browser-based from University of California 
Santa Cruz) and NCBI (National Centre for 
Biotechnology Information).40 Some of the prom-
inent genome databases that make up big data in 
healthcare dealing with biological information are 
shown in Table 2.

The genome is a complete set of information in 
an organism’s DNA.41 Though the basic concepts 
involved in discussing genome medicine such as 
DNA, microRNA, biomarkers and others are 
challenging to comprehend, understanding them 
might lead to perceiving various diseases.42 This 
highly aids providing optimum care to the patients 
by identifying individual risk factors and recom-
mending strategies to counter them in short, per-
sonalized treatment. Major advances in genome 
medicine aim to deliver precision medicine, gene 
therapy and genetic therapy and contribute to the 
field of ‘omics’.41,42

Identification of genetic alterations that progress 
malignant diseases such as prostate cancer facili-
tates the possibility of personalized medicine. In 
urology, though genome data was primarily 
focused on cancer therapy, in recent years there 
has been a significant influence on non-cancerous 
diseases such as erectile dysfunction (ED) and 
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Figure 3. Classification of clinical registries used as healthcare data.

Table 2. Prominent genome browsers available online.

Serial 
Number

Name Year of 
launch

URL Type of data/resource Target user

1 NCBI Genome 1988 https://www.ncbi.nlm.nih.gov/
genome

Genome sequences, maps, 
chromosomes, assemblies and 
annotations

Geneticist

2 Ensembl 
Genome

1999 http://ensemblgenomes.org/ Variant knowledge base, meta 
resource

Geneticist, 
molecular 
biologists and other 
researchers

3 GMOD Project Early 
2000s

http://gmod.org/wiki/Main_
Page

A deep catalogue of human 
genetic variations

Geneticists and 
biologists

4 H-InvDB 2004 http://www.h-invitational.jp/ Human genes and transcripts Geneticist

5 GWASCentral 2001 https://www.gwascentral.org/ Summary level findings from 
genetic association studies.
Primary focus on single-
nucleotide polymorphisms

Genetic 
counsellors, 
geneticists

6 dbVar 2012 https://www.ncbi.nlm.nih.gov/
dbvar

Genotype and Phenotype Geneticist

7 UCSC 2000 https://genome.ucsc.edu/ Genome sequence data from a 
variety of species

Geneticist

8 ENCODE 2003 https://www.encodeproject.
org/

All functional elements of 
human genome

Geneticist

9 IGSR (1000 
Genomes)

2008 http://www.
internationalgenome.org/

Human genetic variations Geneticist

10 GenBank 1982 https://www.ncbi.nlm.nih.gov/
genbank/

Nucleotide and protein 
sequences

Genetic counsellors 
and geneticists

https://journals.sagepub.com/home/tau
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https://www.ncbi.nlm.nih.gov/genome
http://ensemblgenomes.org/
http://gmod.org/wiki/Main_Page
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bladder dysfunctions as well. One such case is the 
study by Patel et al. based on identifying causes of 
ED through genome data.43 Studies shown in 
Table 1 give an idea of the range of urologic dis-
eases utilizing bioinformatics and genome data-
bases for advancements in disease identification 
and treatment.

The global availability combined with ease of 
access to DNA-sequencing data has bestowed 
upon genetics research an unparalleled potential 
required to understand diseases and their com-
plex traits.42 Inappropriate use of genomic data 
poses particular risks since it can be used to iden-
tify an individual.44 Provided such risks can be 
avoided, or at the least be reduced, large-scale 
sharing of genome information could help in 
extending biomedical research and help tackle 
and potentially help with certain diseases.

Specialty pharmacy data
The main aim of Speciality Pharmacies (SPs) is to 
provide expert clinical care to people suffering 
from serious illnesses such as cancer. They are 
equipped to handle complicated conditions and 
have access to advanced medications compared 
with traditional pharmacies. The high-touch ser-
vices delivered by high-cost and highly complex 
specialty pharmaceuticals create data (clinical 
and financial) opportunities that hold an excep-
tional value amongst their stakeholders. SPs need 
to collect and aggregate data for their efficient 
patient management and overall success. The 
patient data stored at SPs is gathered by direct 
interaction with a patient through utilization 
reviews, patient counselling and follow-up care.45 
This factor makes data from SPs highly valuable 
for pharmaceutical industries who use it to 
enhance their drug’s efficacy.44,45 Strengthening 
the therapeutic value of the drug not only increases 
the drug efficacy but also ensures a better patient 
experience and improves the health of the 
population.45

Urologic oncology is one sub-specialty of urology 
that SPs highly contribute to, in terms of therapy. 
For effective treatment of patients with condi-
tions such as prostate cancer, bladder cancer, kid-
ney cancer and other urologic diseases, specialty 
pharmaceuticals are prescribed by urologists.46 
There is also a provision of providing additional 
SP treatment options in the future. SPs’ impact 
on urology is expected to continuously grow as 
the data generated by SPs continues to benefit 

various life-threatening diseases both in urologi-
cal diseases and other fields of medicine.45,46

Clinical or condition-specific registries
Condition-specific registries are a type of clinical 
registry with examples such as population regis-
try, specialty registry, medical device registry and 
payer registry. Each registry typically focuses on 
collecting information based on a particular 
aspect.46,47 The medical device registry gathers 
information fit to answer questions concerning 
the effectiveness, value and safety of medical 
devices. Similarly, specialty registries are a type of 
clinical registry that possesses information similar 
to SPs. While SPs focus on advancing care for a 
patient of complex diseases, specialty registries 
concentrate on doing the same with a medical 
specialty or sub-specialty (such as surgery or 
pathology).37,47 The classification of clinical regis-
tries used as healthcare data is shown in Figure 3.

Condition-based registries are large data sets pro-
duced from clinical data of patients with a specific 
type of disease or disorder.37 Unlike administra-
tive data or claims data, condition-specific regis-
tries are generated to study and analyse a 
particular disease condition. Apart from being the 
primary source of study, these are also often used 
by urologic investigators for secondary data anal-
ysis.37 Some examples of such registries that are 
mostly used for secondary data analysis are the 
SEER (Surveillance, Epidemiology, and End 
Results), CaPSURE (Cancer of the Prostate Strategic 
Urologic Research Endeavor), and NTDB (The 
National Trauma Data Bank) data sets.37 A few 
urology studies based on these clinical registries 
are illustrated in Table 1.

Though registries provide a solution for some 
issues when using AD, their core limitation of cost 
restricts their scalability. While both automated 
and manual (by paid registrars) data abstraction 
costs a lot, the former is susceptible to inaccura-
cies as well.48 Nonetheless, clinical registries 
though are recent developments and are likely to 
play crucial roles in quality improvement and yield 
studies that will hold a large share of urologic lit-
erature given their advantages over AD.48

Discussion
These five sources mentioned above hold up for 
a significant part as big data sources in the health-
care industry, especially in urology. We have 
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discussed the critical applications of each source 
for urology and briefly corroborated with the 
studies listed in their respective tables.14–19,26–32 
The impact of Big Data Analytics and secondary 
data analysis on the collected data is evident. 
Both processes result in discovering associations 
and hidden patterns in the collected data to pre-
vent epidemics, cure diseases and improve patient 
quality of life.5–10

Though the real-life implementation of AI 
remains limited, it has the potential to change the 
way urology is and will be practised. It enables 
faster diagnosis and reduction of unnecessary 
costs in the medical field. Furthermore, AI mod-
els are extensively used to enhance treatment effi-
ciency by enabling faster diagnosis, predictive 
analysis and precision medicine.9 The application 
of novel AI technology in urology has been 
regarded as a promising step towards improving 
diagnostic capability and prediction of disease 
recurrences.49 By using highly predictive and 
accurate AI algorithms, improved diagnoses of 
male infertility, urinary tract infections and paedi-
atric malformations are possible.50 Advancements 
in technology with the aid of virtual or augmented 
reality brings in greater potential of AI-assisted 
surgeries and improves patient care.

While AI is hailed for all these accomplishments, 
it would not have reached that status without big 
data. AI and big data are equally important and 
responsible for the advancements made in urol-
ogy. Therefore, to offer a complete and clear per-
spective on the future beheld for urology, this 
review discusses the prominent big data sources 
in urology in detail.10,11

Genome data and SP data can truly deliver ground-
breaking results in uro-oncology. While the former 
can help understand the reason behind the disease, 
the latter enables a chance to deliver improved 
medication and patient care for advanced condi-
tions. Both of these sources have the utmost sig-
nificance in providing precision medicine.12 Along 
with assisting quality enhancement, condition-spe-
cific registries provide extremely relevant clinical 
data valuable for urological research. EHRs and 
AD together can provide a broader view to deal 
with many aspects of the healthcare industry. 
Compared with traditional statistical models, AI 
models are considered superior by the majority of 
surveyed studies. As the construction and manage-
ment of big data resources develop along with 

much more reliable and efficient AI techniques, we 
believe that there truly will be a transformation in 
the way urological diseases are dealt with in terms 
of diagnosis and treatment.15–18 With the onslaught 
of the COVID pandemic, big data is also being 
used to tackle it and to prioritize mass vaccination 
programmes.51,52

While data from the Internet of Things (IoT) 
devices are also considered a major contribution 
to healthcare data, IoT is still in very early stages, 
especially in urology. For the sake of brevity, sur-
vey and research data, which plays a less signifi-
cant role compared with other sources, is not 
discussed in this review. We did not carry out a 
‘risk of bias’ assessment in our study, which 
should also be done in future studies.

Conclusion
The use of Big Data Analytics in urology has seen 
a quantum jump over the last decade. The emer-
gence of AI and its application in urology using 
the data available from various databases is show-
ing a promising trend. The generalized utilization 
of big data for the diagnosis of several urological 
conditions and their treatment is still in the incip-
ient stage and under validation. However, in the 
future big data is no doubt going to take a para-
mount role in the treatment of various urological 
conditions.
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