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Background. A powerful way to identify genes for complex traits it to combine genetic and genomic methods. Many trait
quantitative trait loci (QTLs) for complex traits are sex specific, but the reason for this is not well understood. Methodology/

Principal Findings. RNA was prepared from bone marrow derived macrophages of 93 female and 114 male F2 mice derived
from a strain intercross between apoE-deficient mice on the AKR and DBA/2 genetic backgrounds, and was subjected to
transcriptome profiling using microarrays. A high density genome scan was performed using a mouse SNP chip, and expression
QTLs (eQTLs) were located for expressed transcripts. Using suggestive and significant LOD score cutoffs of 3.0 and 4.3,
respectively, thousands of eQTLs in the female and male cohorts were identified. At the suggestive LOD threshold the majority
of the eQTLs were trans eQTLs, mapping unlinked to the position of the gene. Cis eQTLs, which mapped to the location of the
gene, had much higher LOD scores than trans eQTLs, indicating their more direct effect on gene expression. The majority of cis
eQTLs were common to both males and females, but only ,1% of the trans eQTLs were shared by both sexes. At the significant
LOD threshold, the majority of eQTLs were cis eQTLs, which were mostly sex-shared, while the trans eQTLs were
overwhelmingly sex-specific. Pooling the male and female data, 31% of expressed transcripts were expressed at different
levels in males vs. females after correction for multiple testing. Conclusions/Significance. These studies demonstrate a large
sex effect on gene expression and trans regulation, under conditions where male and female derived cells were cultured ex
vivo and thus without the influence of endogenous sex steroids. These data suggest that eQTL data from male and female
mice should be analyzed separately, as many effects, such as trans regulation are sex specific.
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INTRODUCTION
The combination of quantitative trait locus (QTL) mapping and

gene expression profiling allows for the identification of expression

quantitative trait loci (eQTLs), which are loci associated with the

expression of each transcript. This method was first applied to a

yeast strain intercross, where both cis-acting and trans-acting loci

were identified associated with the expression level of hundreds of

transcripts [1]. eQTL analysis was applied to mouse tissues from

an F2 cohort derived from a strain intercross yielding thousands of

eQTLs, which were distributed non-randomly over the genome

yielding hotspots that each contained hundreds of eQTLs [2].

eQTLs have also been described using human lymphoblastoid cell

lines from defined pedigrees [2–4]. This methodology has been

used, in so-called ‘genetical-genomics’ studies [5], as an aid to

identify candidate genes for complex phenotypic traits, such as

obesity, in mouse strain intercross studies [6–9]; and, it has been a

major shortcut in the identification of QTL causative genes, for

example the identification of ABCC6 as the gene responsible for

dystrophic cardiac calcification in DBA/2 mice [10].

Sex specific effects are quite common in mouse studies, for

example PPARc agonist treatment reduces atherosclerosis lesion

areas in male, but not female, LDL receptor-deficient mice [11].

Similarly, gene expression studies in male and female F2 mice have

shown a large degree of sexually dimorphic gene expression in

liver, adipose tissue, muscle, and to a lesser extent in brain [12,13].

Mouse phenotypic QTLs, such as gonadal fat pad mass [12] or

atherosclerotic lesion areas [14,15], are also commonly sexually

dimorphic, with many specific QTLs found in only male or female

cohorts. Likewise, many mouse tissue eQTLs are also sexually

dimorphic [12,13]. Prior mouse eQTL studies employed freshly

isolated tissues, thus, many sexually dimorphic effects on gene

expression could be due to exposure to the different hormonal

milieu in male and female mice. In the current study, we employed

bone marrow derived macrophages from a mouse strain intercross

that was cultured 2 weeks ex vivo. We still found that many eQTLs

are sex specific, and remarkably, that 30% of expressed genes were

differentially expressed in female vs. male macrophages, suggesting

that a large extent of sexually dimorphic gene expression may be

directly dependent on X and Y chromosome dosage, rather than

on the hormonal environment.

RESULTS

Suggestive eQTLs
Microarray (Affymetrix 430v2) gene expression data were

obtained from bone-marrow derived macrophages of 93 female

and 114 male F2 mice derived from a strain intercross between

apoE-deficient mice on the AKR and DBA/2 backgrounds. Since

gene expression in somatic mouse tissues is highly sex specific

[12,13], we analyzed eQTLs separately in males and females. We
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limited our analysis to transcripts that were expressed in at least 1/

3 of the samples within each sex, using this liberal cut off so as not

to omit transcripts that expressed in only one of the parental

strains. The female sample had 21,798 expressed transcripts, with

17,986 (82%) of these transcripts expressed in at least 75% of the

female samples. Due to presence of multiple probes for some

genes, these 21,798 transcripts represent only 11,531 unique

genes. We used the gene expression of each of these transcripts as a

phenotype, along with a high density genome scan composed of

1,967 informative SNPs on a mouse SNP chip [15], to identify

eQTLs associated with the expression level of each transcript in a

genome-wide method of generating LOD plots for expression of

each transcript across the mouse genome. We used an initial

suggestive LOD cutoff of $3.0. With 2 degrees of freedom, this

suggestive LOD threshold corresponds to a nominal p-value of

161023 [16]. We calculated a genome wide p-value of 0.25 for

this LOD threshold by 1000 permutations each of 10 randomly

selected female eQTLs with a LOD score of 3.00. We identified a

total of 9,308 eQTLs in the female mice that met this suggestive

LOD threshold, and applying our genome wide p-value at this

threshold, we expect ,7000 of these eQTLs to be authentic. We

characterized as cis eQTLs those in which the eQTL mapped on

the same chromosome and within 20 Mb of the transcript location

on the mouse genome. All of the remaining eQTLs were identified

as either trans eQTLs (eQTL maps at a different locus than the

transcript), or ambiguous eQTLs for which the Affymetrix probe

target sequence matched to more than one genomic location.

There were 1,859 cis eQTLs in the female mice, representing 20%

of the total eQTLs, and their average LOD score was 8.77. There

were 6,117 trans eQTLs in the female mice, representing 66% of

the total eQTLs, and their average LOD score was 3.55. We also

identified 1332 ambiguous eQTLs, representing 14% of the total

eQTLs, with an average LOD score was 5.08. Table 1 provides a

summary of the eQTL findings, and Supplemental Table S1 gives

the details of each of the 9,308 female eQTLs, arranged by the

genomic location of the eQTL.

A similar eQTL analysis was performed for the male cohort

with 21,733 expressed transcripts (representing 11,557 unique

genes), with 17,632 (81% of these transcripts) expressed in at least

75% of the male samples. For the 19 autosomes and the X

chromosome, we identified 12,361 eQTLs with a LOD score of

$3.0. We calculated a genome wide p-value of 0.25 for this LOD

threshold by 1000 permutations each of 10 male eQTLs with a

LOD score of 3.00. There were 1,990 cis eQTLs, representing

16% of the total male eQTLs, and their average LOD score was

9.46. There were 8,625 trans eQTLs, representing 70% of the total

eQTLs, and their average LOD score was 3.64. There were also

1,746 ambiguous eQTLs, representing 14% of the total, with an

average LOD score of 5.07. As our strain intercross used males from

both strains, we also looked for eQTLs due to the grandparental Y

chromosome, and we detected 1145 that met the LOD.3.0

threshold. 90% of these were trans eQTLs, 10% were ambiguous

eQTLs, with only 4 potentially cis eQTLs, associated with probes

mapping to the Y chromosome (Table 1). Supplemental Table S2

provides the details of each of the male eQTLs.

Overall, as seen in prior eQTL studies using a liberal LOD

threshold [2,12], there were many more trans eQTLs observed in

both the female and male cohorts, but these had lower LOD

scores than the cis eQTLs, presumably due to the more direct

effect of cis variation in regulatory or transcribed regions on gene

expression or mRNA stability.

eQTL Hotspots
We examined the distribution of these suggestive eQTLs over the

mouse genome in partially overlapping 20 Mb bins. There were

non-random distributions in both female and male cohorts. In the

female samples there were 11 hotspots of eQTLs, each having over

200 eQTLs (.2% of all female eQTLs), with the largest peak on

chromosome 7 in a bin that had 339 eQTLs (Figure 1A). There

were 2 hotspots on the X chromosome in the females, and overall

there were 861 eQTLs on the X chromosome (11 cis, 698 trans, and

170 ambiguous). In the males there were 13 hotspots with over 200

eQTLs (Figure 1B). The male data yielded three super hotspots each

containing between 8.5 to 11.5% of all the male eQTLs, one near

the proximal end of chromosome 1 containing 1316 eQTLs, one on

chromosome 16 containing 1434 eQTLs, and one for the entire Y

chromosome containing 1145 eQTLs (Fig 1B). Gene ontology

analysis did not detect over representation in any functional group of

the transcripts in the chromosome 1 and 16 eQTL hotspots

compared to all male eQTLs. For the transcripts associated with the

Y chromosome eQTL hotspot compared to all eQTL associated

transcripts on the autosomes and the X chromosome, the gene

ontology analysis found several over represented classes including the

chromosome and extracellular cellular components, the cell cycle M

phase and DNA metabolic biological processes, and the microtubule

motor activity molecular function (see Supplemental Table S3 for

full list and P values). There was only limited overlap of the eQTL

Table 1. eQTL summary in female and male F2 mice
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Females Males (autosomes, X Chr) Males Y Chr

Count Ave. LOD Count Ave. LOD Count Ave. LOD

LOD 3.0

Total eQTLs 9,308 4.81 12,361 4.78 1,145 4.06

Cis eQTLs 1,859 (20.0%) 8.77 1,990 (16.1%) 9.46 4 (0.35%) 5.71

Trans eQTLs 6,117 (65.7%) 3.55 8,625 (69.8%) 3.64 1,026 (89.6%) 4.07

Ambiguous eQTLs 1,332 (14.3%) 5.08 1,746 (14.1%) 5.07 115 (10.0%) 3.96

LOD 4.3

Total eQTLs 2,177 9.38 2,988 8.95 334 5.30

Cis eQTLs 1,321 (60.7%) 10.89 1,445 (48.4%) 11.67 2 (0.60%) 7.86

Trans eQTLs 526 (24.2%) 5.14 1,086 (36.4%) 5.06 309 (92.5%) 5.29

Ambiguous eQTLs 330 (15.1%) 10.13 457 (15.3%) 9.6 23 (6.9%) 5.34

doi:10.1371/journal.pone.0001435.t001..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

Sex Specific Gene Regulation

PLoS ONE | www.plosone.org 2 January 2008 | Issue 1 | e1435



hotspot positions in females and males, near the distal ends of

chromosome 1 and 4, and near the proximal end of chromosomes 7

and 13. Interestingly, there were only 46 eQTLs in the male cohort

that mapped to the X chromosome (20 cis, 11 trans, and 15

ambiguous), showing an unexpectedly large difference compared to

the female cohort where 861 eQTLs mapped to the X chromosome.

In order to identify potential candidates responsible for the two

male autosomal super hotspots, we examined cis eQTLs that

mapped to these hotspots and had a LOD score of $5.5. We then

correlated the expression levels of each of these cis eQTLs with the

expression of the trans eQTLs that mapped precisely to the most

common marker for trans eQTLs in these region. We found nine cis

eQTLs probes on chromosome 1 whose expression had an average

absolute value correlation coefficient .0.20 with 308 trans eQTLs at

that locus; and, we found three chromosome 16 cis eQTLs whose

expression had an average absolute value correlation coefficients

.0.2 with 379 trans eQTLs at that locus. Each of these cis eQTLs,

listed in Tables 2 and 3, respectively, are candidate genes whose

expression is strain dependent that could be responsible for

mediating the trans regulation of ,1000 other genes.

Suggestive eQTL Sharing Between the Sexes
We examined the suggestive eQTLs on the autosomes and the X

chromosome to determine how many were shared between the

female and male cohorts, thus the identical probe had an eQTL in

both sexes that mapped within 20 Mb to the same locus (Table 4).

1,285 cis eQTLs were shared, representing 69% of the female and

65% of the male cis eQTLs (Supplemental Table S4). Among

these sex-shared cis eQTLs, the LOD scores for the female eQTLs

were highly correlated with the LOD scores in males (r2 = 0.71,

p,0.0001), highlighting the similarity of these shared eQTLs. A

very different picture emerged from the trans eQTLs, with only 71

being shared between the sexes, representing only 1.2% and 0.8%

of the female and male trans eQTLs, respectively. Supplemental

Table S5 details each of these 71 shared trans eQTLs that had

mean LOD scores of 4.07 and 4.13 in the female and male

cohorts, respectively. Among these sex-shared trans eQTLs, a

correlation between female and male LOD scores was evident

(r2 = 0.26, p,0.0001), but was weaker than that observed for the

sex shared cis eQTLs (r2 = 0.71). There was some clustering of

these sex-shared trans eQTLs, with 7 mapping to the proximal

end of chromosome 1, 11 mapping to the distal end of

chromosome 1, and 7 mapping to the distal end of chromosome

4. The gene ontology associations of the sex-shared trans eQTLs

were statistically compared against all of the trans eQTLs. This

analysis yielded no apparent clustering based on known gene

functions, or any particular pathway in the sex shared trans

eQTLs. There were also 243 sex-shared ambiguous eQTLs with

very high average LOD scores (11.35 and 12.7 in females and

Figure 1. Genomic location of eQTLs. Bone marrow derived macrophage eQTLs with LOD$3.0 were mapped to partially overlapping 20 Mb bins in
female (A) and male (B) F2 mice. The horizontal dotted line denotes the arbitrary cutoff for eQTL hotspots. eQTLs for sex biased transcripts with
LOD$3.0 were mapped to partially overlapping 20 Mb bins in female (C) and male (D) F2 mice.
doi:10.1371/journal.pone.0001435.g001
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males, respectively), indicating that most of these ambiguous

eQTLs were actually cis eQTLs, but their probes were not

uniquely assigned to the mouse genome (Supplemental Table S6).

Significant eQTLs
We repeated the eQTL analysis using a significant LOD threshold

of 4.3, yielding a nominal p value of 561025 [16]. Permutation

analysis revealed that the LOD 4.3 threshold yielded a genome

wide p-value of 0.02 in both males and females. In the females,

2,177 eQTLs met this LOD threshold, with 1,321 cis eQTLs,

representing 61% of the total eQTLs, and 526 trans eQTLs,

representing 24% of the total eQTLs (Table 1). There were also

330 ambiguous eQTLs (15% of the total eQTLs) that had a very

high average LOD score of 10.13. Again, this indicates that the

majority of these ambiguous eQTLs were actually due to strongly

associated cis eQTLs, but their probes were not uniquely assigned

to the mouse genome. Of the suggestive female cis eQTLs that met

the LOD.3.0 threshold, 71% met the LOD 4.3 threshold cutoff,

while only 8.6% of the female suggestive trans eQTLs were

maintained at this LOD stringency, again indicating the relative

strength of the cis eQTLs compared to the trans eQTLs.

In the males, 2,988 eQTLs met the LOD 4.3 threshold that

mapped to the autosomes and the X chromosome, with 1,445 cis

eQTLs, representing 48% of the total eQTLs, and 1,086 trans

eQTLs, representing 36% of the total eQTLs (Table 1). There

were also 457 ambiguous eQTLs (15% of the total eQTLs) that

had a very high average LOD score of 9.6. Of the suggestive male

cis eQTLs that met the LOD.3.0 threshold, 73% met the LOD

4.3 threshold cutoff, while only 13% of the trans eQTLs were

maintained at this LOD stringency. There were also 334 male

eQTLs that mapped to the Y chromosome that met the LOD 4.3

threshold, with 30% of the LOD 3.0 threshold trans eQTLs

Table 2. Correlations of expression data for chromosome 1 hotspot cis eQTLs with 308 trans eQTLs in males.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Probe
Probe mega-
base

Marker mega-
base LOD

Average
Correlation (R) Gene Name Description

1435475_at 36.37 46.54 10.71 0.30 Lman2l lectin, mannose-binding 2-like

1417293_at 36.01 48.59 6.36 0.29 Hs6st1 heparan sulfate 6-O-sulfotransferase 1

1416931_at 58.39 52.97 8.43 0.26 Nif3l1 Ngg1 interacting factor 3-like 1 (S. pombe)

1459679_s_at 51.69 51.87 7.60 20.24 Myo1b myosin IB

1436984_at 60.42 58.35 14.01 20.24 Abi2 abl-interactor 2

1434422_at 57.33 58.35 8.18 0.23 Unknown Unknown

1434303_at 60.43 48.59 9.90 20.21 Raph1 Ras association (RalGDS/AF-6) and pleckstrin homology domains 1

1428425_at 42.99 48.59 7.60 0.21 Tgfbrap1 transforming growth factor, beta receptor associated protein 1

1421982_a_at 37.37 55.71 6.60 20.21 Unc50 unc-50 homolog (C. elegans)

(Only probes with average expression value greater than 150 used in correlations)
doi:10.1371/journal.pone.0001435.t002..
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Table 3. Correlations of expression data for chromosome 16 hotspot cis eQTLs with 379 trans eQTLs in males.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Probe Probe mega-base Marker mega- base LOD Average Correlation (R) Gene Name Description

1435969_at 3.89 7.64 6.09 0.34 Btbd12 BTB (POZ) domain containing 12

1435439_at 18.17 7.64 5.55 0.31 Dgcr8 DiGeorge syndrome critical region gene 8

1437524_x_at 4.54 5.27 8.92 20.22 Coro7 coronin 7

doi:10.1371/journal.pone.0001435.t003..
..

..
..

..
..

..
..

..
..

..
..

..
..

Table 4. eQTLs shared by male and female F2 mice.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Count Ave. LOD female Ave. LOD male % female shared % male shared

LOD 3.0

Total shared eQTLs 1,599 10.31 13.17 17.2 13.0

Cis shared eQTLs 1,285 (80.2%) 10.47 11.90 69.1 64.6

Trans shared eQTLs 71 (4.6%) 4.07 4.13 1.2 0.82

Ambiguous shared eQTLs 243 (15.2%) 11.35 12.70 18.2 13.9

LOD 4.3

Total shared eQTLs 1,151 12.65 14.36 52.9 38.5

Cis shared eQTLs 965 (83.8%) 12.45 14.09 73.1 66.8

Trans shared eQTLs 9 (0.8%) 5.97 6.82 1.7 0.83

Ambiguous shared eQTLs 177 (15.4%) 14.05 16.21 53.6 38.6

doi:10.1371/journal.pone.0001435.t004..
..
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maintained at the LOD 4.3 stringency, a higher retention rate

than observed for the autosomal and X chromosome trans eQTLs.

Thus in both male and female mice, this more stringent LOD

threshold eliminated most of the trans eQTLs but retained most of

the cis eQTLs.

Significant eQTL Sharing Between the Sexes
We examined the LOD 4.3 threshold eQTLs on the autosomes and

the X chromosome to determine how many were shared between

the female and male cohorts (Table 4). 965 cis eQTLs were shared,

representing 73% of the female and 67% of the male cis eQTLs at

this stringency. Only nine trans eQTLs at this LOD threshold in

both sexes were shared in females and males, representing 1.7% and

0.8% of the female and male trans eQTLs, respectively. These nine

shared trans eQTLs had mean LOD scores of 5.97 and 6.82 in the

female and male cohorts, respectively.

This very low level of sharing could be due to most of the trans

eQTLs being sex-specific, or alternatively, most of the trans

eQTLs could be false positives. In order to examine this further,

we assembled a new set of transcripts that were called present in

.1/3 of the pooled male and female expression data, thus

enabling new analyses on a single set of transcripts for both sexes.

We repeated the eQTL analysis six more times, once using the

correct sex assignment, and five times with permuted sex

assignments while preserving the number of males and females.

At the LOD 4.3 threshold there were 414 and 1132 trans eQTLs

in the females and males, respectively, using the correct sex

assignments, with a total of 1546 trans eQTLs and 40 shared in

both sexes (Table 5). If the trans eQTLs are primarily sex-specific,

we would expect a large decrease in their numbers in the

permuted datasets. There were on average 642 and 677 trans

eQTLs in the permuted female and male datasets, respectively,

with an average total of 1319 trans eQTLs and of 40 shared trans

eQTLs in both sexes. Since the number of total trans eQTLs was

only decreased by an average of 15% in the permuted datasets

compared to the correct sex assignments, it is possible that many of

the trans eQTLs are false positives. However, for the male cohort,

there was an average 40% decrease in the number of trans eQTLs

in the permuted datasets, suggesting that many of the male trans

eQTLs may be authentic. As in the prior analysis, the majority of

the cis eQTLs were shared in two new analyses (Table 5)

Sex Effects on Gene Expression
We next examined differences in gene expression levels between

the male and female F2 macrophages. We pooled the male and

female expression data, and set an arbitrary cutoff for expressed

genes, in that the transcript must have been called expressed in 1/

3 of the pooled samples. Altogether, there were 22,056 transcripts

that met this criterion. We then performed non-parametric Mann

Whitney tests to determine which of these were expressed

differently in the male and female macrophages. Remarkably

6,719 transcripts (31%) were expressed differently with p-

values,2.2761026, meeting the conservative Bonferroni correct-

ed p-value of ,0.05. Since the RNA under study was derived from

cells cultured two weeks ex vivo, these sex effects on gene expression

are likely attributable to X and Y chromosome dosage effects,

rather than to endogenous and variable sex steroids in the F2 mice.

About half of these (3,304) were expressed higher in female

macrophages (female bias), and the other half (3,415) were

expressed higher in male macrophages (male bias). These sex

biased genes had a large range of fold differences between the

sexes, with most having only modest effects of 1.2 to 1.5 fold, but

also included 233 transcripts with 2 to 3-fold effects, 40 transcripts

with 3 to 10-fold effects, and 10 transcripts with .10-fold effects

(Table 6). Supplemental Table S7 gives the details for each of these

sex biased transcripts ranked by fold-difference. All three female

bias probes with .10-fold effects were not expressed in males and

represented the same gene on the X chromosome, Xist. The Xist

gene encodes a non coding but functional RNA known to play an

important role in X-chromosome inactivation in females [17];

and, it has been previously identified as transcript expressed in

female, but not male, mouse blastocyts [18]. Likewise, all seven

male bias transcripts with .10-fold effects were not expressed in

females and mapped to the Y chromosome. These seven probes

represent 4 distinct genes: Ddx3y, encoding a DEAD box RNA

helicase; Eif2s3y, encoding a translation initiation factor subunit;

Uty, encoding a ubiquitously expressed tetratricopeptide repeat;

and Jarid1d, encoding jumonji. In contrast, most of the genes

regulated ,10-fold effects mapped the autosomes.

Gene ontology analysis for the 3304 female biased transcripts

compared to all expressed transcripts revealed many over

represented classes (including regulation of metabolism, transcrip-

tion, and zinc binding proteins) a few under represented classes

(including the extracellular space). Supplemental Table S8 gives a

full listing and P-values for the gene ontology findings of the female

biased transcripts. Gene ontology analysis for the 3415 transcripts

with male biased expression found over representation in the

cytoplasm cellular component (p = 0.001), and the biological

processes of protein transport, localization, and establishment of

protein localization (all p,0.05).

3,974 (59%) of the 6,719 probes that exhibited sexually

dimorphic expression were also associated with 2265 female

and/or 2852 male eQTLs on the autosomes and X chromosome

with LOD scores .3.0, with 74% and 78% of these classified as

trans eQTLs in females and males, respectively (Supplemental

Table S9). An additional 299 probes exhibited sexually dimorphic

expression and had eQTLs on the Y chromosome, with 90%

classified as trans eQTLs (Supplemental Table S10). Interestingly,

Table 5. Cis and Trans eQTLs$LOD 4.3 in male and female
mice with and without 5 gender permutations#

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Female Males Shared
Female
permuted

Male
permuted

Shared
permuted

Cis eQTLs 1,328 1,442 1,005 1,154618 1,34169 992637

Trans eQTLs 414 1,132 40 6426128 677665 4066

#based upon a pool of transcripts using the combined male and female
expression data. Values for permuted data are mean+S.D. for 5 separate
gender permutations.

doi:10.1371/journal.pone.0001435.t005..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

Table 6. Number and fold-effects of transcripts with sex
biased expression with p,2.2761026.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fold effect Female bias Male bias Total

1.0–1.2 1071 770 1841

1.2–1.5 1846 1579 3425

1.5–2.0 229 664 893

2–3 18 215 233

3–10 1 39 40

.10 3 7 10

Total 3304 3415 6719

doi:10.1371/journal.pone.0001435.t006..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
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more of these Y chromosome eQTLs exhibited female bias (166)

than male bias (133), indicating a Y chromosome effect on

decreasing expression of specific transcripts in males. We mapped

the genomic distribution of these sex- biased eQTLs, and they

basically shared the hotspot distribution that we observed for the

overall female and male eQTLs distribution (Fig 1C, D).

DISCUSSION
In the current work, we have identified eQTLs separately from male

and female bone marrow derived macrophages derived from F2

mice from an AKR x DBA/2 strain intercross. These studies are

subject to methodological considerations for both the microarray

and QTL analyses. We chose to use Microarray Suite 5.0

(Affymetrix) for array normalization and expression levels, as this

method has been shown to yield results similar to those obtained

using the more conservative RMA normalization procedure [19–

21]. We also chose not to log transform the gene expression data.

Although this will give relatively more weight to the data with large

gene expression values, we prefer this over giving equal weight to a

doubling of gene expression at the low end of the scale (e.g. 50 vs.

100 arbitrary MAS5 units), where the precision of the measure is

expected to be lower and the signal approaches the background

level, versus the high end of the scale (e.g. 5,000 vs. 10,000 arbitrary

MAS5 units), where the precision of the measure is expected to be

higher and the signal is far above the background level.

Furthermore, we did not screen the Affymetrix probe sets for SNPs

polymorphic between the AKR and DBA/2 strains, but based on a

prior screen for polymorphic SNPs between the C57BL/6 and

DBA/2 strains [19], only a small fraction of the cis eQTLs identified

may be artefactual due SNPs in the probe sequence that could alter

hybridization to the array. Nevertheless, some of our cis eQTLs

could be due to either a polymorphic SNP overlapping the probe

sequence, or a polymorphic copy number variation for the probe

target sequence; and either of these would be expected to give rise to

strong and highly heritable cis eQTLs. For our QTL analysis, we

used the suggestive and significant LOD thresholds of 3.0 and 4.3

[16], as used in prior eQTL studies of mouse strain intercrosses

[2,12]; in addition, we performed permutation analysis to directly

calculate genome wide p-values of 0.25 and 0.02, respectively, for

these LOD thresholds. These genome wide p-values were the same

for cis and trans eQTLs at any given LOD threshold. However, it

may be argued that we are underestimating the strength of the cis

eQTLs, since the genome wide permutations utilized all markers

and all probesets, while only one linked marker needs to be used to

test the strength of cis eQTLs. We analyzed all eQTLs in single sex

cohorts, as sex has been shown be markedly affect gene expression

and eQTLs in various mouse tissues [12,13], and this strategy

proved particularly important for trans eQTLs which were

overwhelmingly sex-specific.

At the suggestive LOD threshold of 3.0, there were ,3 to 4 times

more trans eQTLs than cis eQTLs in both sexes. However, the

average LOD score for the cis eQTLs was much higher than for

trans eQTLs, as previously observed [2], presumably due to the

direct effect of cis regulation being stronger than the indirect effect of

trans regulation. At the significant LOD threshold of 4.3, there were

instead more cis eQTLs than trans eQTLs. At this threshold, the vast

majority of the cis eQTLs were retained from the suggestive

threshold in both sexes, while only ,10% of the trans eQTLs were

retained from the suggestive threshold. This shift from predomi-

nantly trans eQTLs at the suggestive threshold to predominantly cis

eQTLs at the significant threshold was also observed in an eQTL

study of adipose tissue from a mouse strain intercross [12].

The occurrence of eQTLs hotspots resembled prior studies in

which eQTL hotspots were found [1,2]. Interestingly, the genes

responsible for two trans eQTL hotspots have been identified in

yeast, and both are signal transduction proteins rather than

transcription factors, one is a G-protein subunit of a pheromone

receptor, and the other is a protein that inactivates a transcription

factor activator [22]. We found two autosomal eQTL super hotspots

in the male F2 cohort on chromosomes 1 and 16. We identified nine

candidate genes at the chromosome 1 hotspot, each with a strong cis

eQTLs and whose expression is well correlated with the expression

of the trans eQTLs mapped to the same locus (Table 2). Five of these

nine genes have activities which suggest they could be responsible for

the trans regulation of many genes. Nif3l1 encodes a highly

conserved protein that has been shown to bind to other nuclear

proteins and alter their transcription factor activity [23,24]. Abi2

encodes an SH3 domain containing protein that binds to and

modulates c-abl activity with effects on cell morphogenesis and

motility [25,26]. Little is known about Raph1, but it encodes a protein

that contains both Ras association and plekstrin homology domains,

thus it could play a role in signal transduction. Tgfbrap1 encodes a

protein that binds to TGFb receptor 1 and plays a role in Smad-

mediated signal transduction [27,28]. Unc50, the homologue of the

C. elegans unc-50 gene, encodes a nuclear protein with RNA binding

activity that has been shown to alter specific gene expression [29].

We identified three candidate genes at the chromosome 16 hotspot,

each with a strong cis eQTL and whose expression is well correlated

with the expression of the trans eQTLs mapped to the same locus

(Table 3). One of these genes, Dgcr8, has an activity which suggests

that it could be responsible for the trans regulation of many genes.

Dgcr8 encodes an RNA binding protein that associates with Drosha,

and which is required for microRNA processing with potentially

global effects on gene expression [30–32]. Further work would be

required to confirm whether any of these candidates are in fact

responsible for these eQTL super hotspots.

The third eQTL super hotspot in the males was on the Y

chromosome. This is the first report, of which we are aware, of Y

chromosome eQTLs. We were able to identify these due to the

reciprocal nature of the strain intercross. At the LOD 4.3 threshold

there were 334 Y chromosome eQTLs in the male cohort (almost all

trans eQTLs), greatly outnumbering the 31 eQTLs on the X

chromosome in the males. This indicates that the Y chromosome

strain difference had a larger effect on gene expression in male bone

marrow derived macrophages than the X chromosome strain

difference. There were 171 female eQTLs mapped to the X

chromosome at the LOD 4.3 threshold, also outnumbering the 31

male eQTLs mapped to the X chromosome, indicating that strain

differences on the X chromosome were more important in regulating

gene expression in female than in male macrophages.

Although the majority of the cis eQTLs at either LOD

threshold were conserved between the male and female cohorts,

we were surprised by the low level of sharing for the trans eQTLs,

with only ,1 to 2% of female or male trans eQTLs common to

both sexes. We considered two possible interpretations of this

finding: 1) the sex chromosomes play an enormous role in trans

regulation of gene expression; or 2) the majority of trans eQTLs

are false positives and therefore not conserved between the sexes.

The evidence that supports the first interpretation is: a) the trans

eQTLs were identified by the same methods that found the cis

eQTLs, which are robustly conserved; and b) our genome wide p-

values are based upon permutation analysis which takes into

account the data structure, and thus these are likely to be good

estimates. However, there is also evidence to support the second

interpretation: permuting the sexes did not greatly reduce the

number of total trans eQTLs, although it did reduce the trans

eQTLs in males by 40%. Another group has also found that trans

eQTLs are not reproducible, in this case comparing trans eQTLs
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discovered using an F2 cohort and a panel of recombinant inbred

strains derived from the same two parental strains [33]. Thus, we

cannot convincingly conclude at this time that the sex chromo-

somes are crucial in mediating trans regulation of gene expression,

although our data support this concept. Our finding that 31% of

the expressed genes (.6700 transcripts) had a male or female

expression bias (confirmed by permutation analysis) lends support

for the role of the sex chromosomes in global gene regulation.

The large degree of sex bias in gene expression that we detected in

macrophages can partly be attributed to the large power we had to

detect highly significant sex effects on gene expression even when the

absolute effect was small (,20% difference) due to the large sample

size (93 female and 114 male samples). This magnitude of sex biased

gene expression was previously observed in mouse liver, adipose,

muscle, and brain in a similar microarray study using a large F2

cohort [13]. In a study of three pools each of male and female mouse

blastocyts using 6 two-dye microarrays, only 600 sex biased genes

were detected [18], and we suspect this lower level of detection of sex

biased gene expression is primarily due to the small sample size and

lower power to detect small effects as significant. It may be argued

that some of the sex bias in gene expression in the prior study of

mouse liver, adipose, muscle, and brain could be environmental

rather than genetic, due to the different hormonal and metabolic

environment in male and female mice [12,13]. In contrast, the

current study used cells that were grown and differentiated for

2 weeks ex vivo prior to RNA preparation, which should increase the

genetic component of the sex bias on gene expression by eliminating

the differential and fluctuating hormonal environment of the donor

mouse. However, we cannot exclude the possibility of long lasting

effects of hormones that may alter cell development and thus gene

expression profiles.

MATERIALS AND METHODS

Mice
ApoE-deficient mice [34] on the C57BL/6 genetic background

were bred $10 generations onto the AKR/J and DBA/2J genetic

backgrounds. A strain intercross was performed using males and

females from both parental strains as previously described [35].

The F2 generation mice were sacrificed at 16 weeks of age and

bone marrow cells were isolated by lavage of the excised femurs,

washed in phosphate buffered saline, plated in Dulbecco’s

modified Eagle’s medium (DMEM) with 0.2% BSA into two

100 mm tissue culture dishes and allowed to adhere for 2 hrs at

37uC. Adherent cells were cultured in DMEM with 10% fetal

bovine serum and 20% L-cell conditioned media (as a source of

MCSF) for 2 weeks at which point they were confluent bone

marrow derived macrophages that expressed macrophage specific

transcripts [35].

Gene Expression Profiling
Total RNA was prepared from macrophages of each mouse using

RNAeasy minikits (Qiagen), converted into labeled cRNA, and

hybridized to Affymetrix mouse 430v2 oligonucleotide arrays as

previously described [35]. MicroArray Suite 5.0 (MAS5.0)

software (Affymetrix) was used to compare the 11 perfect matched

probes for each element with the mismatched probes and a call of

present or absent was made using p,0.05 criteria. The luminosity

of each element was normalized to the luminosity of the entire

chip. Male and female F2 mice were analyzed separately, since sex

is know to play a large role in gene expression levels in mouse

tissues [12,13]. Since we were using tissue from a strain intercross,

and some transcripts might be absent or low in one of the parental

strains, we limited our analysis to transcripts that were called

present for at least 1/3 of the mice for each sex. The sex effect on

the level of expression of each probe was compared in the

combined female and male cohorts by use of the non-parametric

Mann-Whitney U test, and unadjusted and Bonferroni corrected

p-values were determined.

Genome Scan and eQTL Analysis
DNA was prepared from frozen spleen of each F2 mouse and used

for SNP genotyping on a 5K mouse SNP chip, as previously

described [15], yielding 1967 SNPs on the 19 autosomes and the x

chromosome. A polymorphic marker on the Y chromosome, Zfy2,

was also genotyped to confirm the grandparental strain of each F2

mouse. Gene expression (not log transformed) and genotype data

for each mouse were assembled and analyzed using the r/qtl

software package [36], as previously described [15]. To calculate

genome wide p-values of the LOD 3.0 and 4.3 thresholds,

permutation analysis was performed within r/qtl. Y chromosome

LOD scores were derived from the residual sum of squares for the

null model (rss0) and the residual sum of squares for the Y

chromosome effect (rss1), and calculated from the equation

LOD = (n/2)6log10 (rss0/rss1), where n = the sample size.

Expressed Affymetrix probes on the 430v2 chip were batch

queried to NetAffx raw data (release 21) using a custom software

application (J. Bhasin, manuscript in preparation) to determine the

chromosome and Mb position as well as the % identity for each

BLAT alignment of the target sequence for each probe. Probes

were scored uniquely mapped to the mouse genome if the %

identity of the best match was $75% and the best match had

.5% better identity than the second best match. The majority of

the uniquely mapped probes had .95% identity with the best

match. Probes that failed this test were assigned as ambiguous. Cis

and trans eQTLs assignments were restricted to probes that were

mapped uniquely. Cis eQTLs were assigned by the same custom

software application if a probe’s eQTL was within 20 Mb on the

same chromosome as the map position of that probe. All other

eQTLs for uniquely mapped probes that did not meet this criteria

were assigned as trans eQTLs. eQTLs for ambiguously mapped

probes were called ambiguous eQTLs. We observed very high

LOD values for several trans eQTLs and did further manual

curation that determined these were in fact ambiguous eQTLs due

to probe mapping ambiguity. Gene ontology classifications and

statistics were performed using GoStat (http://gostat.wehi.edu.

au/L) [37].

Data Access
Expression and genotype data for each mouse is available in a

MIAME compliant format in the Gene Expression Omnibus

(NCBI) website, accession # GSE8512.
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