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Distribution bias analysis of 
germline and somatic single-
nucleotide variations that impact 
protein functional site and 
neighboring amino acids
Yang Pan1,*, Cheng Yan1,*, Yu Hu1, Yu Fan1, Qing Pan2, Quan Wan1, John Torcivia-Rodriguez1 & 
Raja Mazumder1,3

Single nucleotide variations (SNVs) can result in loss or gain of protein functional sites. We analyzed 
the effects of SNVs on enzyme active sites, ligand binding sites, and various types of post translational 
modification (PTM) sites. We found that, for most types of protein functional sites, the SNV pattern 
differs between germline and somatic mutations as well as between synonymous and non-synonymous 
mutations. From a total of 51,138 protein functional site affecting SNVs (pfsSNVs), a pan-cancer 
analysis revealed 142 somatic pfsSNVs in five or more cancer types. By leveraging patient information 
for somatic pfsSNVs, we identified 17 loss of functional site SNVs and 60 gain of functional site SNVs 
which are significantly enriched in patients with specific cancer types. Of the key pfsSNVs identified in 
our analysis above, we highlight 132 key pfsSNVs within 17 genes that are found in well-established 
cancer associated gene lists. For illustrating how key pfsSNVs can be prioritized further, we provide a 
use case where we performed survival analysis showing that a loss of phosphorylation site pfsSNV at 
position 105 in MEF2A is significantly associated with decreased pancreatic cancer patient survival rate. 
These 132 pfsSNVs can be used in developing genetic testing pipelines.

With the advancement of high-throughput sequencing (HTS) technology, the cost of sequencing the human 
genome has dropped significantly1,2. However, while many biologists expected that genome sequencing could 
solve human health issues in a short period of time, complex diseases, such as cancer, still remain difficult to 
tackle3. In the field of cancer genomics, several international collaborations, such as The Cancer Genome Atlas 
(TCGA) (http://cancergenome.nih.gov/), International Cancer Genome Consortium (ICGC)4, have provided 
useful HTS based genomics data by sequencing a large number of tumor samples across cancer types5–7. The 
availability of large number of samples across different types of cancer enables pan-cancer analysis which explores 
via comparative analysis various cancer genomes originating from different tumor types8,9. By investigating the 
similarities and differences of cancer genomes and cellular characteristics across cancer types, tumor heteroge-
neity has been better understood10,11 and a number of cancer associated pathways and genes have been iden-
tified7,12–14. Furthermore, such analysis can reveal how mutations affect protein function. Our previous study8 
shows the landscape of protein functional site affecting non-synonymous single-nucleotide variations (nsSNVs) 
across cancer types. In the current study we extensively investigate the abundance or depletion of SNV (both syn-
onymous and non-synonymous) occurrence in different protein functional site type and the immediate region of 
the protein functional site. We also perform a comparative study on the SNV occurrence between germline and 
somatic mutations impacting different functional sites. Previous studies show that synonymous mutations are not 
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always silent and they are able to cause changes in protein expression, conformation and function15–19. Therefore, 
we also compare the frequencies of synonymous and non-synonymous mutations on protein functional sites.

Since proteins are the foundational and functional blocks of living organisms, how genomic alterations of 
protein coding genes affect protein functionality is an important question. While many previous publications 
have focused on genes through pan-cancer analysis, our efforts extend the utility of a pan-cancer analysis by 
examining the effect of genomic alterations on protein functional sites. To this end, we have retrieved a com-
prehensive collection of SNVs and protein functional sites, including post-translational modification (PTM), 
ligand binding site, and enzyme active site, from a variety of data sources. Somatic mutations were retrieved 
from COSMIC20, UniProtKB21, TCGA (http://cancergenome.nih.gov/), and ICGC4. Germline mutations were 
retrieved from dbSNP22. All SNVs were unified and mapped to amino acid positions. To facilitate the pan-cancer 
analysis, the original annotated cancer types retrieved from source databases were mapped to Disease Ontology 
(DO) slim terms23. Protein functional sites were retrieved from UniProKB sequence feature (FT) line21, NCBI 
Conserved Domain Database (CDD)24, and dbPTM25. By integrating SNVs and protein functional sites, we can 
identify functional site affecting SNVs (pfsSNVs) for downstream analysis.

In this study, we first obtained a global perspective on how germline and somatic mutations are distributed at 
the proteome level, especially on various protein functional sites through integrating 3,342,377 SNVs (1,501,666 
germline mutations and 1,840,711 somatic mutations) and 268,478 known and curated PTM sites, binding sites 
and enzyme active sites. Then we created a framework to facilitate this SNV prioritization process using observed 
frequency in patients and cancer type information.

Materials and Methods
SNV dataset. As the flowchart in Fig. 1 shows, somatic coding mutations were extracted from ICGC (ver-
sion v0.10a), TCGA (release January 27, 2015), COSMIC (version v73), IntOGen (release 2014.12), and ClinVar 
(release 20150205). All somatic mutations were unified and then annotated using ANNOVAR26. Cancer types 
were mapped to DO Cancer Slim terms23 for cancer term unification. Frequency of a certain mutation was either 
calculated based on patient ID or was directly extracted from the downloaded files. All integrated information 
is stored and can be downloaded from the BioMuta database8. SNVs annotated as the same variation but from 
different sources/patients were collapsed into a single entry, but all relevant source information was maintained.

Germline coding mutations were collected from dbSNP (build 142) database. Minor Allele Frequency (MAF) 
and “Common/Rare SNP” tags were directly extracted from dbSNP. All SNVs were translated and mapped to the 
UniProtKB complete human proteome set (downloaded in January 2015) through a pairwise-alignment based 
pipeline for unification and downstream protein functional site analysis.

Protein functional site dataset. Protein post-translational modification (PTM), binding, and enzyme 
active site annotation were extracted from three different sources: dbPTM 3.025, UniProtKB/Swiss-Prot feature 
(FT) line (January 2015), and CDD features (January 2015). Only experimentally verified data were retrieved 
from dbPTM 3.0 and UniProtKB. Duplicates and conflicted accessions were removed. Variants with the same 
annotation from different sources were collapsed into a single data point while maintaining source information. 
Modification data was extracted using PTMlist, a controlled vocabulary provided by UniProtKB/Swiss-Prot. The 
NCBI CDD-based annotation of functional sites was retrieved using BATCH CD-Search against CDART data-
base27. Entries such as domains, repeats, and motifs with longer than five consecutive amino acids were not 
considered. Filtered sites were categorized manually into various types of PTM sites, active sites, and binding sites 
with original annotations maintained in a separate column. Other PTM records were adopted based on dbPTM 
3.0 which collects PTM data from more than 10 different sources25.

All entries were unified based on the UniProtKB complete human proteome set downloaded from UniProtKB 
on January 2015, which is identical to the proteome used for SNVs dataset unification.

Figure 1. Flowchart of the distribution bias analysis of protein functional site affecting single nucleotide 
variations (pfsSNVs). 
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Mapping SNVs to protein functional sites and the neighboring positions. The general process of 
mapping SNVs to protein functional sites includes loading the SNV file into matrix of “UniProt accession with 
UniProt Position” and match it to the protein functional site matrix. Once the protein accession and position are 
matched, additional steps were used to evaluate if this SNV caused a substitution at the functional site or not. If 
the SNV is a substitution, we also consider the known amino acid tolerance for corresponding PTM type, if the 
substitution replaces the original residue with a residue which cannot be modified as a PTM or function as an 
active site. The output file provides a tab-delimited file containing all SNVs and affected protein functional site 
information. A SNV ratio based on SNV numbers divided by proteome length was calculated for expected SNV 
number as well as the statistical significance using methods described earlier8. The SNV occurrence between 
protein functional site and all other amino acid located within + /−  20 amino acids was compared and the signif-
icance was evaluated through one sample t-test.

SNV-caused gain of protein phosphorylation and glycosylation site prediction. NetNGlyc (v1.0) 
and NetPhosK (v1.0) were used to predict SNV-caused gain of protein phosphorylation and N-glycosylation 
site28,29. 21 mer and 5 mer were set as the effective segment length of input sequences for phosphorylation and 
glycosylation site prediction respectively. For parameters, ESS filter and threshold 0.6 were applied for NetPhosK, 
while a score 0.6 is required for NetNGlyc prediction result. Both protein reference sequence and mutated 
sequence were used as input to the NetNGyc and NetPhos in order to minimize false positives by subtracting 
background predicted sites.

Statistical significance of amino acid based pfsSNV occurrence. To investigate whether the distinct 
frequency of SNV on protein functional sites is caused by different amino acid mutation rate, we conducted 
amino acid based binomial test on pfsSNV occurrence.

First, for each type of amino acid (denote as A), we first calculate the probability of A to be a F type of protein 
functional site, calculated as following:

=p F n F
L
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where LA denotes total number of amino acid A on human proteome, nA(F) denotes the total number of positions 
for a specific functional site with amino acid A. Thus, amino acid based protein functional site rate pA(F) can be 
derived from our protein functional site dataset.

Then, we calculated the expected number of pfsSNVs nA(E) for each type of amino acid:
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where NA is total number of variations with amino acid type A. nA(E) is then used to derive if the given type of 
pfsSNV occurrence on the given amino acid type A is enriched or depleted.

Next, after obtaining from our SNV dataset the value of observed pfsSNV nA(O) for a specific A and F, the 
binomial test was performed according to Mi et al.30, and the p-value was calculated as the total probabilities 
to observe nA the same as or more extreme (larger if nA(O) is larger than expected and smaller otherwise) than 
nA(O), which measures the deviance degree between an expected ratio (nA(E)/NA or pA(F)) and an observed ratio 
(nA(O)/NA):
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Comparing to our previous study where the same expected SNV rate applying to all protein functional site8, 
advantage of this background SNV rate is that this allows each type of protein functional site having different 
expected SNV rates given different components of amino acid as their donor site.

Pan-cancer clustering of pfsSNV profiles. In order to investigate the somatic pfsSNV occurrence pat-
tern in each cancer type, a pan-cancer analysis was performed. The observed and expected somatic mutation 
occurrence among each cancer type among different protein functional site type was calculated following same 
rule described under ‘Mapping SNVs to protein functional sites and the neighboring positions’. Basically the 
observed value is the mutation occurrence on a type of protein functional site while expected value is the average 
of neighboring mutation occurrence. And the fold change was used as a metric to perform hierarchical clustering 
(HC). The heat map was generated via the R package ggplot version 2.17.031.

pfsSNVs prioritization criteria. Two distinct criteria were used to prioritize pfsSNV: a) pfsSNVs that exist 
across 5 or more cancer types, b) pfsSNVs that are enriched in patients with certain cancers. To do this we lever-
aged TCGA patient counts mapped to our mutation dataset to identify key pfsSNVs. We combined pfsSNVs that 
can cause either a loss or gain of functional site. The Binomial test described above (section “Statistical signifi-
cance of amino acid based pfsSNV occurrence”) was applied to identify pfsSNVs that is significantly associated 
with a certain cancer type based on enrichment in patients with that cancer. In this calculation, we calculated the 
expected probability of any type of pfsSNV occurring in a patient in a cancer type C:
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where NC is the total number of patient in cancer type C, and nC(M) is the number of patient harboring a specific 
pfsSNV M in cancer type C. nC(E) is the expected number of patient in cancer type C for a given pfsSNV M for 
any functional types. Then the p-value was calculated as the sum of probabilities of observing number of patients 
the same as or more extreme (larger if the observed number of patients is larger than expected number, E(nC(M)), 
and lower if the observed number is smaller than E(nC(M))) than the observed number of patients nC(O) in the 
sample with the same cancer, NC.
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This approach takes into consideration the differences in cancer’s mutational rate and rank the pfsSNVs 
enriched within cancers despite the sparseness of somatic mutation among patients.

After the log transformation, p-values are visualized in Manhattan plot where horizontal axis represent chro-
mosome from 1 to 23. The cutoff line was calculated as 2E-6 using Bonferroni approach. Lastly, we compared 
our prioritized pfsSNVs with a well-known cancer gene list: significantly mutated gene (SMG)32 and cancer gene 
census (CGC)33 to further annotate the key pfsSNVs list.

Survival analysis. Identified key pfsSNVs were further investigated to see if any of them significantly affect 
patient survival. Patient clinical information was retrieved for TCGA samples from their FTP site (https://
tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/). For each key pfsSNV in a specific 
cancer type that we identified through the prioritization process, based on the presence of the given pfsSNV, 
patients were divided into two groups with clinical factors that may affect patient survival. A log-rank test was 
applied to test the death time distributions between two groups. Then the Cox model was used to adjust factors 
like age at initial diagnosis, pathological stage and gender. SAS 9.3 was used to perform this analysis.

Results and Discussion
Impact of SNVs on protein functional sites. In this study, we expanded the scope of our previous study8 
for better evaluation of mutational profile among various protein PTMs, active and binding sites. Tables 1 and 2 
summarizes our data collection for both the current study and our previous study8. Table 1 shows total number 
of germline mutation, somatic mutation, and protein functional sites collected in both previous and current 

Somatic 
Mutation

Germline 
Mutation

Functional 
Site

Somatic 
pfsSNV 
Mapped

Germline 
pfsSNV 
Mapped

Total 
Mutations 

Mapped

Previous Dataset 994,339 710,946 259,216 25,390 13,159 38,549

Current Dataset 1,840,711 1,501,666 268,478 30,848 18,619 49,467

Table 1.  Position based* summary of comparison between the previous and current datasets. *Statistics 
summarized in Table 1 is amino acid position based where different functional types occupying the amino acid 
position are counted as one.

Previous Version of Dataset Current Version of Dataset %Increase

Somatic 
Mutation

Germline 
Mutation Total

Somatic 
Mutation

Germline 
Mutation Total Increases by

Acetylation 512 351 863 691 432 1,123 30.1%

Ubiquitination 1,214 841 2055 1562 1052 2,614 27.2%

Phosphorylation 5,466 3917 9383 7373 5282 12,655 34.9%

N-linked glycosylation sites 2,375 1,997 4,372 3,217 2,630 5,847 33.7%

O-linked glycosylation 97 108 205 126 115 241 17.6%

Methylation 163 61 224 208 74 282 25.9%

Crotonylation 42 10 52 57 22 79 52.0%

Nitrosylation 32 43 75 51 48 99 32.0%

Active sites 1,574 811 2385 2,084 1,040 3,124 31.0%

Binding sites 12,286 6,395 18,681 16,630 8,444 25,074 34.2%

Total 23,761 14,534 38,295 31,999 19,139 51,138 33.5%

Table 2.  pfsSNVs based* summary of the previous and current datasets. *Statistics summarized in Table 2 is 
pfsSNVs based where different functional types occupying the amino acid position are counted separately.

https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/
https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/
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datasets. In Table 2, somatic and germline pfsSNV from Table 1 are split into major protein functional site types 
and summarized. The number of somatic mutations increased from 994,339 to 1,840,711 (1,272,878 non-synon-
ymous, 476,087 synonymous and 91,746 stop codon). The number of germline mutations increased from 710,946 
to 1,501,666 (937,634 non-synonymous, 541,029 synonymous and 23,003 stop codons). The number of protein 
functional sites increased from 259,216 to 268,478. After mapping both somatic and germline variations to pro-
tein functional site dataset, the number of pfsSNVs increases from 38,549 to 51,138 (31,999 somatic and 19,139 
germline). We divided our pfsSNVs into four groups: non-synonymous germline mutation (non-SG), non-syn-
onymous somatic mutation (non-SS), synonymous germline mutation (SG) and synonymous somatic mutation 
(SS) because each one of these mutation type has its own biological meaning, and therefore should be analyzed 
separately. Additionally, we enlarged the testable SNV dataset by incorporating predicted gain of N-linked gly-
cosylation and phosphorylation site. It is common that SNV caused gain of PTM sites to be ignored in many 
HTS based proteome-wide analysis until recently34–36. We found a total number of 344,239 SNVs that cause gain 
of phosphorylation sites across 18,259 proteins and 17,921 SNVs that cause gain of N-linked glycosylation sites 
across 8,354 proteins.

In Fig. 2, for each protein functional site type, we calculated the percentage of its site impacted by somatic and 
germline SNVs (See Supplementary Table 1). In the scatter plot, X-axis and Y-axis indicate somatic and germline 
mutation percentages respectively while the dot and triangle represents non-synonymous and synonymous var-
iation percentages respectively. Linear reference lines in the matrix show the global expected percentages. We 
can see from Fig. 2, for germline mutations, synonymous (lower reference line on Y axis) and non-synonymous 
(upper reference line on Y axis) SNVs cluster near the average reference lines. For somatic variations, synony-
mous and non-synonymous mutations also cluster near the averages (left reference line on X axis for synony-
mous; right reference line on X axis for non-synonymous). We can see that pfsSNV occurrence is around the 
global average percentages except for crotonylation sites, for which there are much more germline and somatic 
SNVs than the average. Outliers on the plot could be caused due to small sample size, for instance, crotonylation 
sites has higher synonymous and non-synonymous germline mutation occurrence than reference line but this is 
calculated based on just 79 data points.

Instead of just focusing on the exact protein functional sites (such as PTM and active/binding sites) we also 
evaluated the preponderance of SNVs upstream and downstream of the functional site. Figure 3, plots all the SNV 
occurrence of residues with + /− 20 amino acids around the functional site (see Supplementary Table 3a,b,c and d  
for plots of all 25 types). In most of the PTM sites, non-synonymous germline mutation (non-SG) shows either 
relatively low occurrence or similar rates when compared to neighboring regions. This result is consistent with the 
high evolutionary conservation of functional sites15,37. On the other hand, synonymous germline mutation shows 
mixed occurrence across different PTMs types with lower than expected occurrences for in some of the sites. It is 
interesting to note that several studies have shown that synonymous mutation can affect protein function16,38,39.

Out of 8,357 experimental confirmed acetylation sites in the human proteome, 691 lose acetylation site due 
to somatic mutation and 432 lose acetylation site due to germline mutations. In 22,524 ubiquitination sites in the 
human proteome, 1,562 ubiquitination sites are lost due to somatic mutations and 1052 ubiquitination sites are 
lost due to germline mutations. In comparison with our previous paper, the number of loss of acetylation sites 
and ubiquitination sites increased by 48 and 559 respectively. Dysregulation of both acetylation and ubiquitina-
tion processes may cause cancer initiation and it has been observed by others that there are frequent mutations 
in acetylation and ubiquitination sites which potentially can drive cancer40–42. For acetylation, different modified 
sites have distinct regulatory effects, even in the same protein (e.g. malate dehydrogenase 2)41. In another study, 
researchers found that both acetylation and deacetylation of p53 on different amino acids could either promote or 
block tumorigenesis43. Its complexity leads to the disunity of acetylation function in cancers. Our analysis shows 
low non-synonymous somatic (non-SS) mutation occurrence on acetylation sites suggesting that in cancer these 

Figure 2. Synonymous and non-synonymous SNV occurrence ratio among different types of protein 
functional site. The values on each axis show, for each PTM type, the percentage of its site occupied by SNVs. 
X-axis shows the somatic mutation percentage and Y-axis shows germline mutation percentage. Dot and 
triangle markings represent non-synonymous and synonymous mutations respectively. Each protein functional 
site type was shown in different color as per the legend. Linear lines in the figure show global ratio for each 
mutation type.
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sites are still less prone to mutations. In terms of ubiquitination, it can be seen that ubiquitination sites are less 
tolerant to SNVs (relatively conserved) compared with its neighboring region.

In our current dataset, we identified 7,373 somatic mutations and 5,282 germline mutations that cause loss 
of phosphorylation sites. Previous studies found high enrichment of mutations causing gain or loss of phos-
phorylation sites and they may be considered as key features in cancer occurrence34. High activity of kinases is 
essential to maintain the tumor malignant phenotype (oncogene addiction)44. It is consistent with our result that 
non-synonymous mutations (non-SS) show low occurrence at phosphorylation sites. It is also possible that the 
low occurrence on phosphorylation site may be caused by the relatively small number of cancer related genes45.

Figure 3. Occurrence ratio of SNV on the protein functional site neighboring region. Occurrence ratio 
of synonymous somatic (SS), synonymous germline (SG), non-synonymous somatic (non-SS) and non-
synonymous germline (non-SG) mutations + /− 20 amino acid from protein functional sites. Y-axis shows fold 
of change of SNV occurrence on corresponding amino acid position. Different SNV types are represented as 
different colors. Value 0 on X-axis indicates the PTM site. T and P represent one sample t-test of the PTM site 
comparing with its neighboring. P represents the p-value of corresponding one sample t-test.
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We identified 2,084 somatic mutations and 1,040 germline mutations that can cause loss of enzyme active 
site. In Fig. 3, the non-synonymous somatic mutation occurrence at active site is relatively higher than that at its 
surrounding regions. However, when the enzyme active site is considered, its role in cancer is also dependent on 
the feature of the protein (oncogene or tumor suppressor gene). For example, in breast cancer, overexpression 
of BCRP (breast cancer resistance protein) with its intact active site could cause drug resistance, while mutation 
in the active site of α -fetoprotein (AFP) could reduce breast cancer risk46. These mutations can impact enzymes 
to metabolize different substrates47, leading to pathological processes. In Fig. 3, the non-synonymous somatic 
mutation occurrence at active site is relatively higher than at its surrounding regions. Synonymous somatic 
mutation, on the other hand, has a low occurrence rate at active sites. This bias may be caused by the highly 
structure-dependent catalytic activity (stable structure is crucial for function)48. At ligand binding sites, 16,630 
somatic mutations and 25,074 germline mutations were identified. For binding sites, studies have found their 
relationship with disease occurrence in terms of mutations49,50. Binding site analysis shows little SNV occurrence 
difference compared to its neighboring regions for SG, SS and non-SS, but overall low mutation occurrence in the 
entire functional region for non-SG. However, we would like to mention that binding sites can contain multiple 
sites which are not sequentially placed in the sequence. Our analysis focuses on short regions (see materials and 
methods), and counting each residue as one binding sites and the immediate region around it thus providing a 
practical and comparable evaluation of binding sites and other protein functional sites.

For methylation sites, we identified 208 somatic mutations and 74 germline mutations. It is interesting to note 
that the overall occurrence of SG, SS and non-SS is as high as two fold compared to the background occurrence. 
In particular, the non-SS mutation occurrence at the methylation sites is relatively higher than other mutation 
type and also their surrounding regions. Methylation regulates transcription factor binding affinity, and therefore, 
controls the expression level of the downstream target genes51. In consideration of cancer development, previous 
study suggests lysine-to-methionine substitution at methylation sites could cause loss of methylation and func-
tion in a variety of pathologies. And in our results, the relatively high non-SS mutation occurrence of methylation 
may suggest its primary role in either promoting oncogenes or suppressing tumor suppressor genes.

3,217 somatic mutations and 2,630 germline mutations were identified on N-linked glycosylation sites. 
Figure 3 also shows that the SNV occurrence at the N-linked glycosylation site and its surrounding amino acids 
(− 1, + 1 and + 2) are much higher than others. Non-synonymous somatic mutation shows a deep dip at the 
N-linked glycosylation (0.67). In our previous study52, we found slightly lower frequency of all kinds of missense 
mutations in N (position 0) than the non-glycosylated motifs. This is also consistent with the higher conservation 
of glycoslylated asparagines as compared with the non-glycosylated ones53. Such a low mutation occurrence in 
the cancer genome implies its contribution and its role in cancer. In addition, somatic synonymous mutations 
(0.89) also show a similar trend at N-linked glycosylation sites. This also suggests that it is important to maintain 
N-linked glycosylation site undisrupted. Although, it is quite possible the overall functional impact is maintained 
through the heterogeneity of the glycans at the sites in normal vs. cancer tissues54.

The NX(S/T) amino acid sequon (asparagine for N, any amino acid except proline for X, and either serine or 
threonine for S/T) is considered as a requirement for N-glycosylation52. This could explain the low occurrence of 
the two types of synonymous mutations (germline and somatic) at the amino acid of position + 1 (X) but higher 
rates for non-synonymous mutation, and high rate (SS: 1.64, SG: 1.75) at position + 2 (alternation of serine and 
threonine, S/T). Additionally, we found that the amino acid at ‘− 1’ position also has lower synonymous germline 
mutation occurrence, which suggests possible effects of “silent” mutations at this site.

In terms of O-linked glycosylation, 126 somatic mutations and 115 germline mutations were identified 
impacting the PTM site. O-linked glycosylation is known to be important in bearing tumor associated antigens 
and also involved in several physiological and pathological processes55–57. One interesting finding is that O-linked 
glycosylation sites is the only functional site type showing overall low occurrences across the entire functional site 
region in terms of all mutation types (non-SG: 0.60, SG: 0.64, SS: 0.57, non-SS: 0.59).

Pan-cancer view of somatic mutation occurrence on protein functional sites. For pan-cancer 
analysis, cancer Disease Ontology (DO) slim23 was used to unify the cancer types. The observed and expected 
somatic mutation occurrence on each functional type was then calculated. Figure 4 shows the pan-cancer 
heatmap of somatic mutation occurrences across functional sites (Fig. 4A: non-synonymous, Fig. 4B: synony-
mous). The mutation occurrence is indicated by ratio of change compared to the cancer type specific global ratio. 
Color in the figure indicates either the over-representation (red) or under-representation (blue) of pfsSNVs while 
white indicates no SNV occurrence difference between functional sites and neighboring sites. The grey color 
indicates the absence of pfsSNVs for the corresponding cancer type. Our assumption is that, since functional sites 
are generally conserved, the high/low ratio of somatic pfsSNVs occurrence on these sites implies the loss/gain of 
function for them and their possible roles in tumorigenesis.

The pan-cancer view of observed/expected SNVs shown in Fig. 4A displays unique patterns of nsSNV occur-
rence on functional sites (compared to neighboring site) in different cancer types. The variation occurrence at 
ubiquitination and acetylation sites is lower (blue color) at these PTM sites across almost all cancer types. On 
the other hand, the methylation site shows higher nsSNV occurrence (red color) in PTM site for majority of 
the cancer types. Active sites, binding sites, phosphorylation sites, and N-linked glycosylation sites show insig-
nificant fold-change between PTM sites and neighboring sites. Similarly, for synonymous mutations (Fig. 4B), 
ubiquitination and acetylation site show an overall low somatic synonymous mutation occurrence at PTM sites 
across almost all the cancer types. However, unlike in non-synonymous mutation, methylation sites show mixed 
mutation occurrence across cancer types. Phosphorylation sites and N-linked glycosylation shows an increased 
synonymous mutation occurrence in multiple cancer types.
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Identification of key pfsSNVs across multiple cancer types. Out of the 31,999 germline pfsSNVs and 19.139 
somatic pfsSNVs, we found that 142 pfsSNVs exist across more than five cancer types, which we considered as 
key pfsSNVs (see Supplementary Table 6 for pfsSNVs in more than 3 cancer types). Table 3 displays the top 20 
pfsSNVs with respect to number of associated cancer types. In addition, Fig. 5 shows their SNV-functional site 
relationship in the Circos plot58. From both Table 3 and Fig. 5 we can see that TP53, one of the most well-known 
oncogenes, with 79 out of 142 key pfsSNVs on that protein. We also want to emphasize pfsSNVs that exist on 
genes other than TP53. Since TP53 is a well-known oncogene, we emphasize top 20 pfsSNVs associated with mul-
tiple cancer types with TP53 excluded in Table 4: NRAS, CTNNB1, NRAS, GNAS, KRAS, HRAS and PTEN. It is 
clear that some genes harbor more key pfsSNVs than others as shown in Fig. 5. 14 out of 142 key pfsSNVs, includ-
ing two of the top 20 pfsSNVs are found within CTNNB1 which is an important component of the canonical 
Wnt signaling pathway. It is interesting to note that all these key pfsSNVs are affecting protein phosphorylation 
sites between position 29 to 45. This finding confirms previous studies’59 claims that SNVs and overexpression 
of CTNNB1 are associated with many cancers: a large number of SNVs cluster on the N-terminal segment of 
CTNNB1, the β -TrCP binding motif.

Other than TP53 and CTNNB1, many key members of Ras subfamily, such as NRAS, GNAS, KRAS and 
HRAS harbor SNVs across multiple cancer types. Figure 5 shows that virtually all the pfsSNVs on Ras subfamily 
are located on binding site. However, multiple alignment of NRAS, GNAS, KRAS and HRAS shows that most 
of the key pfsSNVs within these four genes occurs at the same position (RASN_HUMAN Q61), a well-known 
position responsible GAP-mediated GTP hydrolysis. SNVs on this residue disturb Ras signaling control and 
eventually trigger tumorigenesis by activate genes involved in cell growth, differentiation and survival60.

Identification of key pfsSNVs that are enriched in patients with specific cancer types. To ensure we do not miss 
any pfsSNVs that occur repetitively among patients within a specific cancer type, we performed Binomial test 

Figure 4. Pan-caner hierarchical clustering of non-synonymous (A) and synonymous (B) somatic mutation 
occurrence on protein functional site region. Figure shows cancer SNV occurrence at PTM site vs somatic SNV 
occurrence at a neighboring region for different cancer types. Color indicates fold of change of somatic SNV 
occurrence. Red color indicates overrepresentation while blue indicates under-representation. Grey color means 
that there is no detected somatic SNV on corresponding PTM type for corresponding cancer.
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using a dataset combining known and predicted gaining/losing pfsSNV sites. This dataset includes 19,337 loss of 
functional site causing pfsSNVs, 10,991 gain of N-glycosylation sites, and 208,507 gain of phosphorylation sites. 
Log p-values for each pfsSNVs were used for visualization in Fig. 6 (See Supplementary Table 5 for all pfsSNVs 
with p-value). Based on our threshold (p-value =  2E-6 using the Bonferroni adjustment), a total number of 77 
pfsSNVs (57 gain of phosphorylation site pfsSNVs, 3 gain of glycosylation site pfsSNVs, 12 loss of binding site 
pfsSNVs, 3 loss of phosphorylation site and 2 loss of active sites) were identified to be significant in specific cancer 
types. Table 5 shows the top 20 pfsSNVs with significant p-value associated with specific cancer types. [L] and 
[G] indicate loss of functional site and gain of functional site, respectively. Supplementary Table 5 shows p-values 

Gene 
Name

UnProtKB 
AC Variation Functional Site

Cancer 
Type Count

TP53 P04637 R273C Binding Site 31

TP53 P04637 R248Q Binding Site 28

TP53 P04637 R248W Binding Site 28

TP53 P04637 R273H Binding Site 27

TP53 P04637 H179Y Binding Site 26

NRAS P01111 Q61K Binding Site 24

TP53 P04637 C176F Binding Site 23

TP53 P04637 C275Y Binding Site 22

NRAS P01111 Q61R Binding Site 21

CTNNB1 P35222 T41A Phosphorylation 21

TP53 P04637 C176Y Binding Site 20

TP53 P04637 H179R Binding Site 20

TP53 P04637 K132N Ubiquitylation 19

TP53 P04637 C238F Binding Site 19

TP53 P04637 C242F Binding Site 19

TP53 P04637 R248L Binding Site 19

TP53 P04637 S241F Binding Site 18

TP53 P04637 C242Y Binding Site 18

CTNNB1 P35222 S33C Phosphorylation 18

TP53 P04637 C238Y Binding Site 17

Table 3.  Top 20 pfsSNVs1 based on the number of associated cancer type count. 1pfsSNV: Protein functional 
site affecting SNV.

Figure 5. Circos plot of gene level summarization of 142 key pfsSNVs across five and more cancer types. 
Bands are colored by genes, and connect between gene and various types of protein functional sites. Note that, 
in 142 key pfsSNVs, all key pfsSNVs on CTNNB1 occur on phosphorylation site and all key pfsSNVs on RAS 
subfamily occur on binding site.
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for all 24,668 pfsSNVs associated with specific cancer type. For example, the gain of phosphorylation site pfsSNV 
PIK3CA-545-E-K is significantly associated with as many as six cancer types (63 patients in breast cancer, 28 
patients in head and neck cancer, 33 patients in cervical cancer, 19 patients in colon cancer, 14 patients in uterine 
cancer, 11 patients in stomach cancer).

Pan-cancer analysis mentioned above identified a total number of 210 key pfsSNVs, among which 142 exist 
across more than five cancer types and 77 pfsSNVs are significantly enriched in patients with specific cancer 
type. All these 210 key pfsSNVs belong to 60 genes. For the purpose of comparison with key cancer genes found 
in other studies, we retrieved the significantly mutated gene (SMG) set found by MutSig suite32 and cancer gene 
census (CGC) from COSMIC33. By mapping SMG (260 genes), CGC (573 genes) and key pfsSNVs (60 genes), we 
found our key pfsSNVs map to 18 and 20 genes from SMG and CGC respectively. Moreover, we found 17 of them 
exist in all three datasets. Table 6 shows the list of these 17 genes with 132 pfsSNVs within them. These 17 genes 

Gene 
Name

UnprotKB 
ID Variation Functional Site

Cancer 
Type Count

NRAS P01111 Q61K Binding Site 24

CTNNB1 P35222 T41A Phosphorylation 21

NRAS P01111 Q61R Binding Site 21

CTNNB1 P35222 S33C Phosphorylation 18

GNAS P63092 R201C Binding Site 16

GNAS Q5JWF2 R844C Binding Site 16

KRAS P01116 Q61H Binding Site 16

HRAS P01112 Q61L Binding Site 15

NRAS P01111 Q61L Binding Site 15

PTEN P60484 R130Q Active Site 15

CTNNB1 P35222 S33F Phosphorylation 14

CTNNB1 P35222 S37C Phosphorylation 14

CTNNB1 P35222 S37F Phosphorylation 14

CTNNB1 P35222 S45F Phosphorylation 14

GNAS P63092 R201H Binding Site 14

GNAS Q5JWF2 R844H Binding Site 14

CTNNB1 P35222 T41I Phosphorylation 13

CTNNB1 P35222 S45P Phosphorylation 13

KRAS P01116 Q61K Binding Site 13

KRAS P01116 Q61L Binding Site 13

Table 4.  Top 20 pfsSNVs based on the number of associated cancer type count (TP53 excluded).

Figure 6. Manhattan plot of pfsSNVs enriched in patients with specific cancer types. X-axis indicates 
chromosome from 1 to 23 and X, Y in different colors. Each dot in the figure represents a pfsSNV with –log10 
(p-value) calculated from a binomial test. Cutoff was set as -log10 (5e-8). A total number of 77 pfsSNVs are 
statistically significant in specific cancer type. [L] and [G] indicate loss of PTM/active/binding site and gain 
of PTM/active/binding site respectively. As marked in the figure, [L]NRAS-61-Binding Site and [G]PIK3CA-
545/542-Phosphorylation significantly associate with multiple cancer type.
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and their key pfsSNVs which are 1) present in the list of 260 SMG set, 2) present in the list of 573 CGC gene set, 
3) have key pfsSNVs which either exist across multiple cancer types or are significantly associated with specific 
cancer type.

Existing knowledge on 132 key pfsSNVs. Many of these 132 pfsSNVs and their genes have been described in the 
previous studies. One study showed BRAF is commonly activated by somatic point mutation in human cancer, 
and may suggest therapeutic potentials particularly in malignant melanoma61. The BRAF L597R missense muta-
tion, which falls in the protein’s kinase domain, has been reported in primary ovarian cancer (OV)61 and lung ade-
nocarcinoma (LUAD), and may become a chemotherapy target for a subset of LUAD patients. CTNNB1 mutation 
are found in the GSK3-beta phosphorylation sites, such as S37, T41, and such mutations have been implicated in 
ovarian tumorigenesis62. It has been also suggested that CTNNB1 has a higher rate of phosphorylation-related 
mutations in skin cancer and performs a critical role in hair matrix cell cancer development63. The EGFR T790M 
alteration is called the “gatekeeper” mutation, which is frequently described in lung cancers; it mediates resist-
ance to maximally tolerated dosing of HKI-272 as well as EGFR kinase inhibitors (gefitinib and erlotinib) in 
about half of cases64–66. One study also indicated that this drug resistance mutation may also be linked with lung 
cancer genetic susceptibility67. HRAS shows high incidence of activating mutations at Q61 in drug-induced skin  
cancer68–70. As for KRAS mutations at Q61 in lung cancer, Q61R is observed in a great portion of urethane-induced 
tumors from wild-type mice, however, Q61L appears in the majority of tumors from KRAS heterozygous mice. 
KRAS Q61 mutations may also play an important role in melanoma photocarcinogenesis71. NRAS Q61 is pre-
dominant in malignant melanoma, being a potential therapeutic target in this cancer72. Mutated NRAS at Q61 
also shares similarities in signaling among various cancer types, and inhibition of both the MAPK and PI3K/
AKT/mTOR pathways reduces cell viability in all cancers harboring this mutation73. IDH1 mutation at R132 is 
demonstrated to be tissue-specific, and may play a special role in high-grade gliomas with prognostic value for 
survival74,75. IDH1 and IDH2 mutations are common in AML (acute myeloid leukemia), and are associated with 
the accumulation of metabolite 2-hydroxyglutarate, which is affected by neomorphic enzyme activity76–78.

Identification of key pfsSNVs that affect patient survival. Although there are many studies that 
attempt to connect mutations to patient survival there are very few attempts to connect loss or gain of protein 
function to mortality. Identifying SNVs that directly lead to gain or loss of functional sites can help biologists 
focus on specific biochemical processes that might be impacted due to the variation. The amount of clinical data 
available from TCGA is limited because of the length of the study and the type of information that has been 
collected so far. Nonetheless, it is possible to showcase how one can filter SNVs for further evaluation which can 
assist in translating genomics efforts to actionable therapeutics and diagnostics. Below is an example of how such 
analysis can be performed.

We started from the pool of above identified 77 key pfsSNVs that are significantly enriched in a specific can-
cer type after adjusting multiple testing. Then we grouped patients based on ‘having’ or ‘not having’ a pfsSNV. 
From Cox regressions adjusting for age at initial pathological diagnosis, gender and clinical stage 27 out of the 
77 mutations increase the risk of cancer (Hazard Ratio > 1). Most of the candidate pfsSNVs occur in very small 

PfsSNVs Cancer Type

PfsSNVs 
Associated 

Sample
Total 

Sample P-Value

[G]2PIK3CA-E545K-Phosphorylation DOID:1612/breast cancer 63 973 9.62E-85

[L]NRAS-Q61R-Binding Site DOID:4159/skin cancer 44 370 9.94E-51

[G]PIK3CA-E542K-Phosphorylation DOID:1612/breast cancer 41 973 4.43E-48

[G]CDC27-A274D-Phosphorylation DOID:1793/pancreatic cancer 44 210 1.59E-41

[G]PIK3CA-E545K-Phosphorylation DOID:4362/cervical cancer 33 198 5.25E-36

[G]KRTAP4-L161V-Phosphorylation DOID:1793/pancreatic cancer 39 210 7.70E-35

[L]NRAS-Q61K-Binding Site DOID:4159/skin cancer 33 370 2.91E-34

[G]ANKRD36-T998S-Phosphorylation DOID:1793/pancreatic cancer 37 210 2.94E-32

[G]EVPL-R336S-Phosphorylation DOID:1793/pancreatic cancer 36 210 5.47E-31

[G]PIK3CA-E545K-Phosphorylation DOID:11934/head and neck cancer 28 508 1.92E-29

[L]PTEN-R130G-Active Site DOID:363/uterine cancer 28 305 4.59E-29

[G]NCOR1-Y20S-Phosphorylation DOID:1793/pancreatic cancer 34 210 1.72E-28

[L]TP53-R273C-Binding Site DOID:1319/brain cancer 31 287 8.97E-27

[L]NRAS-Q61R-Binding Site DOID:1781/thyroid cancer 27 390 3.68E-26

[G]UPF3A-V70L-Phosphorylation DOID:1793/pancreatic cancer 31 210 7.35E-25

[G]KRT8-R23C-Phosphorylation DOID:1793/pancreatic cancer 29 210 1.61E-22

[L]MEF2A-Y105C-Phosphorylation DOID:1793/pancreatic cancer 27 210 3.02E-20

[G]ZNF814-A337V-Phosphorylation DOID:1793/pancreatic cancer 27 210 3.02E-20

[G]SALL1-S159G-Phosphorylation DOID:1793/pancreatic cancer 26 210 3.88E-19

Table 5.  Top 20 pfsSNVs enriched in patients with specific cancer type (full list in Supplementary Table 5). 
[L]1: Loss of protein functional site. [G]2: Gain of protein functional site.
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Gene Name UniProtAC Variation Functional site
Gene 
Name UniProtAC Variation Functional site

BCOR Q6W2J9 N1459S [G]Phosphorylation TP53 P04637 N239D [L]Binding Site

BRAF P15056 L597R [L]Binding Site TP53 P04637 C242S [L]Binding Site

CTNNB1 P35222 T41A [L]Phosphorylation TP53 P04637 R273L [L]Binding Site

CTNNB1 P35222 S33C [L]Phosphorylation TP53 P04637 R280T [L]Binding Site

CTNNB1 P35222 S33F [L]Phosphorylation TP53 P04637 N239S [L]Binding Site

CTNNB1 P35222 S37C [L]Phosphorylation TP53 P04637 C275F [L]Binding Site

CTNNB1 P35222 S37F [L]Phosphorylation TP53 P04637 C176S [L]Binding Site

CTNNB1 P35222 S45F [L]Phosphorylation TP53 P04637 H179L [L]Binding Site

CTNNB1 P35222 T41I [L]Phosphorylation TP53 P04637 R273S [L]Binding Site

CTNNB1 P35222 S45P [L]Phosphorylation TP53 P04637 C238S [L]Binding Site

CTNNB1 P35222 S33Y [L]Phosphorylation TP53 P04637 R273P [L]Binding Site

CTNNB1 P35222 S37Y [L]Phosphorylation TP53 P04637 A276P [L]Binding Site

CTNNB1 P35222 S33P [L]Phosphorylation TP53 P04637 R280G [L]Binding Site

CTNNB1 P35222 S37A [L]Phosphorylation TP53 P04637 C238R [L]Binding Site

CTNNB1 P35222 S37P [L]Phosphorylation TP53 P04637 S241Y [L]Binding Site

CTNNB1 P35222 S33A [L]Phosphorylation TP53 P04637 R280S [L]Binding Site

CTNNB1 P35222 S45C [L]Phosphorylation TP53 P04637 H179Q [L]Binding Site

CTNNB1 P35222 S45Y [L]Phosphorylation TP53 P04637 S241C [L]Binding Site

EGFR P00533 T790M [L]Binding Site TP53 P04637 C242R [L]Binding Site

HRAS P01112 Q61L [L]Binding Site TP53 P04637 C277F [L]Binding Site

HRAS P01112 Q61K [L]Binding Site TP53 P04637 H179D [L]Binding Site

HRAS P01112 Q61R [L]Binding Site TP53 P04637 H179N [L]Binding Site

HRAS P01112 Q61H [L]Binding Site TP53 P04637 R273G [L]Binding Site

IDH1 O75874 R132H [L]Binding Site TP53 P04637 C277Y [L]Binding Site

IDH1 O75874 R132C [L]Binding Site TP53 P04637 S241A [L]Binding Site

IDH1 O75874 R132G [L]Binding Site TP53 P04637 C242W [L]Binding Site

IDH1 O75874 R132L [L]Binding Site TP53 P04637 R248G [L]Binding Site

IDH1 O75874 R132S [L]Binding Site TP53 P04637 R248P [L]Binding Site

IDH2 P48735 R172K [L]Binding Site TP53 P04637 R280I [L]Binding Site

IDH2 P48735 R172S [L]Binding Site TP53 P04637 C176R [L]Binding Site

KRAS P01116 Q61H [L]Binding Site TP53 P04637 C275W [L]Binding Site

KRAS P01116 Q61K [L]Binding Site TP53 P04637 C176W [L]Binding Site

KRAS P01116 Q61L [L]Binding Site TP53 P04637 C275R [L]Binding Site

KRAS P01116 Q61R [L]Binding Site TP53 P04637 A276D [L]Binding Site

NCOR1 O75376 Y20S [G]Phosphorylation TP53 P04637 A276T [L]Binding Site

NRAS P01111 Q61R [L]Binding Site TP53 P04637 R337C [L]Methylation

NRAS P01111 Q61K [L]Binding Site TP53 P04637 R213L [L]Methylation

NRAS P01111 Q61L [L]Binding Site TP53 P04637 R110L [L]Methylation

NRAS P01111 Q61H [L]Binding Site TP53 P04637 R213Q [L]Methylation

NRAS P01111 Q61E [L]Binding Site TP53 P04637 R110P [L]Methylation

PIK3CA P42336 E545K [G]Phosphorylation TP53 P04637 R213P [L]Methylation

PIK3CA P42336 E542K [G]Phosphorylation TP53 P04637 R337L [L]Methylation

PIK3CA P42336 N345K [G]Phosphorylation TP53 P04637 R110C [L]Methylation

PIK3R1 P27986 N564D [L]Binding Site TP53 P04637 R209K [L]Methylation

PTEN P60484 R130G [L]Active Site TP53 P04637 R337H [L]Methylation

PTEN P60484 R130Q [L]Active Site TP53 P04637 S215R [L]Phosphorylation

PTEN P60484 D92E [L]Active Site TP53 P04637 T155N [L]Phosphorylation

PTEN P60484 Y155C [L]Phosphorylation TP53 P04637 T155I [L]Phosphorylation

PTEN P60484 Y68H [L]Phosphorylation TP53 P04637 S215I [L]Phosphorylation

RB1 P06400 R661W [L]Binding Site TP53 P04637 T211I [L]Phosphorylation

SF3B1 O75533 K700E [L]Ubiquitylation TP53 P04637 T155P [L]Phosphorylation

SMAD4 Q13485 R361H [L]Binding Site TP53 P04637 S215G [L]Phosphorylation

SMAD4 Q13485 R361C [L]Binding Site TP53 P04637 S215N [L]Phosphorylation

TP53 P04637 R273H [L]Binding Site TP53 P04637 T155A [L]Phosphorylation

TP53 P04637 H179Y [L]Binding Site TP53 P04637 T284P [L]Phosphorylation

TP53 P04637 C176F [L]Binding Site TP53 P04637 K132N [L]Ubiquitylation

Continued
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number of patients, and sometimes no death case has been observed in the small number of patients with the 
candidate pftSNVs, in which cases data cannot provide a valid hazard ratio estimate. We identified 3 pfsSNVs 
causing significant higher or lower mortality risks (See Fig. 7, Supplementary Figures 1 and 2). One example 
found in pancreatic cancer patients with and without the MEF2A-Y105C-Phosphorylation site was found to have 
statistically significant different mortality risk (p-value =  0.0012) from a log-rank test. Even after adjusting for 
age at initial diagnosis, pathological stage and gender using a Cox model, the mortality risks in the presence of 
MEF2A-Y105C is 2.348 times higher than those without MEF2A -Y105C (adjusted p-value =  0.0255). Figure 7 
shows that the Kaplan-Meier estimates in the survival probabilities over days since diagnosis of the two groups are 
well separated. MEF2A is a transcriptional factor which binds to MEF2 element and activates numerous growth 
factors. It plays diverse roles in the control of cell growth, survival and apoptosis79–81. Although many studies have 
been performed on MEF2’s role in muscle and neuron, its role in pancreatic cancer remains unclear.

Although we found few pfsSNVs which appear to be associated with survival, we would like to point out 
the limitation of the survival analysis as our sample size is quite small among ‘having mutation’ group and ‘no 
mutation’ groups. When no death has been observed in the small group of participants with a specific mutation, 
the impact of the pftSNV on mortality are not estimable. Because no studies can enroll an infinite sample size or 
follow participants indefinitely, this analysis has no intention to overcome this inherent limitation of data, while 
just as we stated in the beginning of this section, it serves a showcase of potential impact of pfsSNVs to evoke 
more interest for follow-up studies.

Gene Name UniProtAC Variation Functional site
Gene 
Name UniProtAC Variation Functional site

TP53 P04637 C275Y [L]Binding Site TP53 P04637 K132R [L]Ubiquitylation

TP53 P04637 C176Y [L]Binding Site TP53 P04637 K132E [L]Ubiquitylation

TP53 P04637 H179R [L]Binding Site TP53 P04637 K132M [L]Ubiquitylation

TP53 P04637 C238F [L]Binding Site TP53 P04637 K132Q [L]Ubiquitylation

TP53 P04637 C242F [L]Binding Site TP53 P04637 K139N [L]Ubiquitylation

TP53 P04637 R248L [L]Binding Site TP53 P04637 K132T [L]Ubiquitylation

TP53 P04637 S241F [L]Binding Site TP53 P04637 K164E [L]Acetylation

TP53 P04637 C242Y [L]Binding Site TP53 P04637 R273C [L]Binding Site

TP53 P04637 C238Y [L]Binding Site TP53 P04637 R248Q [L]Binding Site

TP53 P04637 R280K [L]Binding Site TP53 P04637 R248W [L]Binding Site

Table 6.  132 pfsSNVs that satisfy key pfsSNVs identification criteria. Key pfsSNVs identification criteria: 
gene present in the list of 260 significantly mutated gene (SMG) set; gene present in the list of 573 cancer gene 
consensus (CGC) gene set; pfsSNV either exists across multiple cancer types or significantly associates with 
specific cancer type.

Figure 7. Kaplan-Meier plot of pancreatic cancer patient survival based on the existence of MEF2A-105-
Y-C-Phosphorylation. X-axis indicate days of survival and Y-axis indicates survival probability. Red and blue 
lines indicate survival time of pancreatic cancer patients with and without such mutation respectively. Log-rank 
test shows that, comparing with patients with MEF2A-105-Y-C-Phosphorylation, patients without this pfsSNV 
survive significantly longer with adjusted p-value of 0.0255. The hazard ratio is 2.348.
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Conclusion
We have comprehensively investigated the interplay between protein functional sites and SNVs. Each type of 
protein functional site shows a distinct SNV frequency in synonymous somatic mutations, synonymous germline 
mutations, non-synonymous somatic mutations, and non-synonymous germline mutations. Our experiments 
show that, at least for the majority of protein functional site types, non-synonymous germline mutations occur 
less frequently. We believe that these sites are, as expected, more evolutionarily conserved because of their func-
tionality. Except for acetylation and ubiquitination sites, other protein functional site types show diverse variation 
frequencies between synonymous germline SNVs, synonymous somatic SNVs and non-synonymous somatic 
SNVs. Investigation of whether the protein functional sites of tumor tissue tends to accumulate or reject SNVs at 
functional sites provides insights on the effect of SNVs impacting each type of protein functional sites. For syn-
onymous variations, although previous studies show that such variations can affect protein function by changing 
expression level, current understanding of the effects of synonymous mutations is still limited. However, some 
protein functional site types show significant synonymous variation frequency changes, for example, O-linked 
glycosylation site contains significantly high frequency of both germline (t statistic =  − 19.35, p-value =  6.5E-22) 
and somatic mutation (t statistic =  − 16.54, p-value =  1.80E-19).

Although a number of studies have been conducted to discover significant mutated genes in cancer82–84, our 
study takes steps forward by targeting the impact of key SNVs on amino acids which can be further evaluated 
through wet-laboratory experimentations. The top pfsSNVs exist among well-known oncogenes, such as DNA 
binding sites and zinc binding sites within TP53, and GEF interaction sites within NRAS. This study identified 
several highly mutated regions such as position 29–45 in CTNNB1. To make the key pfsSNVs comprehensive, we 
conducted a binomial test using both loss and gain of functional site causing pfsSNVs. This approach identified 
77 pfsSNVs enriched in patients with specific cancer types which are good candidates for further investigation 
in terms of their biological function and effect in tumor growth. The identification of key pfsSNVs has its value 
not only in facilitating the investigation of tumorigenesis mechanism, but also in evaluating the risk of develop-
ing cancer. Identified pfsSNVs can be further evaluated using resources such as MutationAligner85,86, and other 
mutation analysis services87–89.
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