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Inflammatory responses in hypoxic ischemic 
encephalopathy
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Inflammation plays a critical role in mediating brain injury induced by neonatal hypoxic ischemic encephalopathy (HIE).  The mecha-
nisms underlying inflammatory responses to ischemia may be shared by neonatal and adult brains; however, HIE exhibits a unique 
inflammation phenotype that results from the immaturity of the neonatal immune system.  This review will discuss the current knowl-
edge concerning systemic and local inflammatory responses in the acute and subacute stages of HIE.  The key components of inflam-
mation, including immune cells, adhesion molecules, cytokines, chemokines and oxidative stress, will be reviewed, and the differences 
between neonatal and adult inflammatory responses to cerebral ischemic injury will also be discussed.  
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Introduction
Perinatal hypoxic-ischemic encephalopathy (HIE) is a major 
cause of neonatal death and long-term disability.  Approxi-
mately 15% to 25% of affected newborns die in the postnatal 
period and 25% develop severe and permanent neuropsycho-
logical sequelae[1], including cerebral palsy, seizures, visual 
impairment, mental retardation, learning impairment and 
epilepsy[2].  Two phases of HIE-induced neuronal death have 
been identified in both clinical and experimental studies[3–5].  
The immediate phase, primary neuronal death, is related to 
cellular hypoxia with exhaustion of the cell’s high-energy 
stores (primary energy failure).  The second phase, delayed 
neuronal death[6], occurs after a latent period of at least six 
hours, and is associated with encephalopathy and increased 
seizure activity.  Delayed neuronal death accounts for a signif-
icant proportion of final cell loss even after very severe insults.  
The mechanisms involved in delayed neuronal death include 
excitotoxicity, apoptosis and microglial activation[7].  Micro-
glia are the resident immune cells in the brain, and microglial 
activation is the initial step in inflammatory responses of the 
central nervous system (CNS) to various stimuli, including 
stroke[8].  This initial step is followed by the infiltration of cir-
culating monocytes, neutrophils and T-cells[9], which amplifies 
the inflammatory response in a stimulated brain.  

Cerebral ischemia induces an inflammatory response in both 
the parenchyma and the systemic circulation.  Within hours 
after an insult to the brain of an adult, cytokines are produced 
in large amounts, and leukocytes are activated and migrate 
into the injured brain[10–14].  In neonates, however, cerebral 
ischemia initiates an immediate innate immune response even 
minutes after the insult[15].  Age differences in the mechanisms 
of stroke, some of them very striking, stem from immaturity of 
the CNS, including differences in the cross-talk between exci-
totoxic, oxidative and inflammatory injury mechanisms, creat-
ing “windows of susceptibility” to hypoxic-ischemic injury 
during embryonic and early postnatal brain development[16].  
Here, we review the data on specific aspects of neuroinflam-
mation in the acute and subacute stages of HIE, and will also 
introduce known similarities and differences in adult and neo-
natal cerebral ischemic injury.  Because the chronic inflamma-
tory response to HIE may last for years and varies according 
to the developmental stage of the brain, this topic is beyond 
the scope of this review and will not be discussed.  

Immune cells
Microglia/macrophages
Microglia are a major glial component of the CNS and pro-
vide immuno-surveillance in the brain[17].  Resting micro-
glia in a healthy brain, known as surveying microglia, are 
constantly extending and retracting their thin ramified pro-
cesses to inspect the CNS microenvironment[18, 19].  When an 
ischemic event occurs, microglia are activated and develop 
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macrophage-like abilities including phagocytosis, the pro-
duction of inflammatory and anti-inflammatory cytokines, 
antigen presentation and the release of matrix metalloprotei-
nases (MMPs), which lead to blood-brain barrier (BBB) break-
down[20].  As a result, peripheral leukocytes infiltrate the brain, 
and the normally immune-privileged brain environment is 
exposed to systemic responses that further exacerbate inflam-
mation and brain damage (Figure 1).  The innate immune 
response is characterized by the classical activation (M1) of 
microglia and the subsequent production of specific cytokines, 
chemokines and reactive intermediates, followed by resolution 
and alternative activation (M2) that leads to anti-inflammatory 
signaling (M2a), the clearance of reactive oxygen (ROS) and 
nitrogen (RNS) species (M2b), and wound healing (M2c)[21].  
During disease progression, microglial activation phenotypes 
switch from M1 to M2 or vice versa depending on inflamma-
tory signaling[22].  The M1 phenotype of microglia can lead to 
increased neuronal death compared to the alternatively acti-
vated M2 microglial phenotype[23]; therefore, there is a grow-
ing interest in controlling the classical activation phenotype of 
microglia.  

In addition to microglia, macrophages also inhabit various 
regions (choroid plexus, peri-vasculature and meninges) of the 
CNS[24].  The heterogeneous population of tissue macrophages 
can be continuously replenished by circulating monocytes, 
unlike microglia, which are thought to reside in the adult CNS 
from early development[25–27].  The theory that a second wave 
of microglia is established in the brain during the postembry-
onic period and is derived from peripheral monocytic precur-
sors that last into adulthood is a subject of ongoing debate[25, 28].  
However, one recent study suggested that a population of 

dying microglia in the ischemic brain could be replenished by 
peripheral monocytes or macrophages infiltrating the injured 
region and then acquiring microglial phenotypes[29].  

Microglial activation and aggregation are pathological mark-
ers for HIE in human infants[30].  Retrospective clinical studies 
on the postmortem examinations of 178 brains from neonates 
found that patients who died from HIE had a dense infiltrate 
of microglia in the hippocampal dentate gyrus, whereas those 
neonates who died of other acute causes (trauma or sepsis) 
had significantly fewer microglia[30].  Emerging experimen-
tal data from disease models also outline the importance of 
microglial activation in hypoxia-induced neuroinflammation.  
HIE in preterm sheep resulted in profound activation and pro-
liferation of microglia in the hippocampus and the periven-
tricular and subcortical white matter, followed by a significant 
influx of neutrophils into the brain[31].  Ameboid microglia 
in the developing brain respond vigorously to hypoxia and 
accumulate in injured tissue[32–35], producing excess amounts 
of inflammatory cytokines (TNF-α, IL-1β, etc) along with glu-
tamate, nitric oxide (NO) and ROS, which collectively cause 
oligodendrocyte death, axonal degeneration and disruption 
of the immature BBB[32, 33, 36].  Compared to adults, microglial 
activation in neonates is much more rapid following tran-
sient ischemia[37, 38] and excitotoxic injury[39] and continues for 
weeks[39–41].  

Astrocytes
Both astrocytes and microglia are activated within minutes 
after injury by pro-inflammatory mediators, cytokines, and 
ROS that are secreted by injured neurons and glial cells[42].  
The activation of astrocytes has both detrimental and benefi-
cial roles in brain ischemia.  Astrocyte support of neurons after 
a stroke can be achieved by several mechanisms, including the 
release of glutathione and superoxide dismutase (SOD)[43–45], 
enhanced extra-synaptic glutamate uptake[46–48], and the main-
tenance of ion gradients, such as that for potassium[49, 50].  How-
ever, activated astrocytes can also produce pro-inflammatory 
cytokines, including IL-6, TNF-α, IL-1α, and β and interferon 
γ[42, 51, 52].  Rapid increases in the levels of these cytokines exac-
erbate an ischemic injury by directly inducing the apoptosis 
of neuronal cells[53], increasing toxic NO levels and inhibiting 
neurogenesis[54].  Apart from cytokines, reactive astrocytes also 
secrete chemokines after ischemia, which results in the attrac-
tion of immune cells to the ischemic site and worsening of the 
brain injury[55, 56].  

In the brains of human neonates, astrocytes do not readily 
become reactive and responsive to injury signals until 20 to 23 
weeks of gestation[57].  Experimental studies regarding astro-
cytic responses to HIE or systemic LPS stimulation performed 
in fetuses from various species, eg, lamb[58–60], baboon[61], and 
kitten[62], found astrocyte hypertrophy and hyperplasia.  These 
studies concluded that astrocytes generally are resistant to 
damage during the neonatal period and that the astrocytes 
adjacent to regions of necrosis are ready to proliferate.  Simi-
lar to the findings in adult ischemic models, astrocytes in P7 
rat neonates are rarely observed within the ischemic core but 

Figure 1.  Schematic diagram of inflammatory responses in ischemic 
stroke.  When stroke occurs, microglia are activated and develop macro-
phage-like capabilities including phagocytosis, cytokine and chemokine 
production, antigen presentation and the release of MMPs that weaken 
the BBB.  As a result, peripheral leukocytes infiltrate into the brain, leading 
to exacerbation of inflammation and neuronal injury. MG, microglia; MP, 
macrophage; NE, neuron; NP, neutrophil; LC, lymphocyte; MN, monocyte; 
EC, erythrocyte. 
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are abundant in the penumbra area 24 h after HIE[37].  One 
unique role of neonatal astrocytes in HIE-induced inflamma-
tory responses is that, in addition to the self-release of cytok-
ines and chemokines, reactive astrocytes in neonatal brains 
have the ability to up-regulate the expression of inflammatory 
mediators in neuroblasts and angioblasts, which are chemot-
actic for bone marrow-derived immune cells[63].

Neutrophils
During ischemia, neutrophils can exacerbate brain injury 
through multiple mechanisms, including ROS production[35], 
decreased microvascular flow resulting from capillary plug-
ging by neutrophils[64], the enhanced release of cytoxic agents 
into the vasculature and brain parenchyma[65, 66], and MMP-9 
secretion[67].  The accumulation of neutrophils in ischemic 
brain tissue occurs as early as 4 h to 6 h after the onset of 
ischemia in adult animals[65, 68–70] and lasts to 48 h post insult, 
during the period while the brain injury is evolving[71–73].  In 
contrast to the exacerbated neutrophil infiltration observed in 
adults, neonates have a diminished ability to mount a neutro-
phil response to ischemia.  Neonatal neutrophils show reduced 
extravasation from blood vessels[74, 75].  A previous study has 
shown that neutrophils did not transmigrate into the brains of 
P7 rats following HI injury within 42 h and were almost exclu-
sively intravascular at all time periods examined[76].  Similarly, 
it has been reported that neutrophils were most often found 
within vessels and only transiently invaded brain tissue in the 
infarct region after induction by HI in P7 rats[35].  These studies 
indicated that neutrophils do not accumulate in ischemic brain 
parenchyma in neonatal rodents to the extent that they do in 
adults.  Interestingly this concept translated well into the neu-
roprotection achieved with anti-neutrophil strategies; treat-
ment with neutrophil inhibitory factor initiated after HI insult 
was neuroprotective in adult animals[77–79] but was less effica-
cious in neonatal rats.  Beneficial effects were only observed 
when neutropenia was induced before the HI insult[80], making 
this a less clinically relevant target for treating neonatal injury.  

Lymphocytes
Generally, lymphocytes are thought to play a negative role 
in acute ischemic brain pathogenesis.  Yilmaz et al[81] reported 
that Rag1–/– mice, deficient in both T cells and B cells, had sig-
nificantly smaller infarcts and neurologic damage compared to 
WT mice when subjected to middle cerebral artery occlusion 
(MCAO).  In the same study, Rag1–/– mice reconstituted with 
splenocytes from WT mice were no longer protected from 
stroke, suggesting that the peripheral lymphocytic response 
plays an important role in mediating post-stroke injury.  
Infiltration of T cells and B cells into the ischemic brain can 
be observed as early as a few hours[82, 83], and lasts days after 
injury in adult rodents[84, 85].  However, in neonates the infiltra-
tion of these cells following HIE and focal stroke may be less 
profound[35, 86] or only briefly present in the parenchyma[87].  
The minimal involvement of lymphocytes in ischemia-induced 
inflammatory responses in the neonatal brain may reflect 
the immaturity of lymphoid progenitor cells.  Recent clinical 

studies showed that peripheral blood mononuclear cells of 
newborns are relatively undifferentiated and have a very low 
expression level of surface markers[88].  There are few stud-
ies investigating the role of lymphocytes in HIE.  It is likely 
that a lymphocytic response is involved in the more chronic 
immunoinflammatory activation following HIE; the Hagberg 
group[35] found that CD4 lymphocytes invaded the infarct 
region quite late after injury (7 d after HIE) and persisted in 
damaged areas for 14 d to 35 d.  Whether this lymphocytic 
response enhances damage or, conversely, enhances post-
stroke repair is not yet clear.  It is also unknown whether the 
presence of lymphocytes can lead to the development of later 
CNS autoimmunity, as has been observed in adult injury mod-
els[89].

Adhesion molecules
The recruitment of leukocytes in the cerebral vasculature 
and the subsequent migration to the ischemic brain tissue 
are initially mediated by three main groups of cell adhesion 
molecules: selectins, the immunoglobulin superfamily and 
integrins[90].  The recruitment process involves two stepwise 
stages, ie, an initial low affinity binding that is manifested 
as rolling and a later high affinity interaction that results in 
firm adhesion.  Adhesion molecules may represent important 
therapeutic targets because inhibiting leukocyte adhesion with 
antibodies or inhibitors has improved histological and neuro-
logical outcomes in experimental stroke studies, whereas over-
expression of adhesion molecules resulted in the exacerbation 
of infarcts[91].  Very few neonatal studies have reported the role 
of and changes in adhesion molecules in HIE; we have sum-
marized the available data from studies in both HIE and other 
inflammatory diseases in Table 1.  

Selectins
Selectins play a key role in the early (rolling) stages of leuko-
cyte/endothelial interactions in the ischemic cerebral micro-
vasculature.  Although all three selectins, L-, P-, and E-selectin, 
have been implicated in neutrophil rolling, P-selectin is the 
most important during the initial induction of neutrophil roll-
ing after endothelial cell stimulation[92].  Compared to adults, 
decreased P-selectin expression in neonates has been found 
in activated platelets[93] and endothelial cells[94].  Similarly, 
L-selectin expression in term infant neutrophils is significantly 
lower than that in adult neutrophils either stimulated or 
unstimulated[95].  This may explain why the decreased adhe-
sion of neutrophils to endothelial cells and delayed transen-
dothelial cell migration of neutrophils have been consistently 
reported in neonatal animals and humans and may also 
contribute to susceptibility of neonates to infection[96, 97].  In 
immature animal brains during acute inflammation, E-selectin 
seems less important than other selectins because the blockade 
of E-selectin has no effect on neutrophil recruitment to the 
brain parenchyma, whereas the administration of P-selectin 
blocking monoclonal antibody inhibited neutrophil recruit-
ment by 85% compared with controls[98].  
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Integrins and the immunoglobulin superfamily
The firm adhesion of leukocytes to the endothelium after roll-
ing requires the activation and binding of leukocyte-expressed 
integrins to endothelial adhesion molecules[99].  Integrins are 
heterodimers consisting of a common β subunit and a variable 
α subunit[100].  The major integrins expressed on neutrophils 
are the β2 integrins LFA-1 (αLβ2, CD11a/CD18) and Mac-1 
(αMβ2, CD11b/CD18).  Monocytes adhere through the β1 
integrins VLA-4 (α4β1, CD49d/CD29).  To form a firm adhe-
sion, integrins must bind to counter-receptors of the immuno-
globulin superfamily expressed on inflamed endothelial cells, 
including ICAM-1, ICAM-2, VCAM-1, the mucosal vascular 
addressin cell adhesion molecule 1 (MAdCAM-1), platelet-
endothelial cell adhesion molecule-1 (PECAM-1), and the 
receptor for advanced glycation end products (RAGE)[101–103].  
Although no age-related differences in basal and stimulated 
LFA-1 surface expression were found in human neonatal and 
adult neutrophils[104–108], Mac-1 expression remains low during 
the prenatal and postnatal periods and reaches adult levels 
by 11 months[108, 109].  The lower surface expression of Mac-1 
on neonatal neutrophils has been directly linked to impaired 
transendothelial migration under chemotactic stimulation[75, 110] 
(Table 1).  

Thus far, no data are available in neonates regarding the 
roles of integrins and the immunoglobulin superfamily in HIE.  
Experimental studies with adult stroke models have shown 
that blockade of LFA-1/Mac-1[111–115] and ICAM-1[116, 117] had 
beneficial effects on stroke outcomes.  However, clinical trials 
of stroke patients given humanized antibodies against these 
adhesion molecules showed no effect[118, 119] or a worse out-
come[120].  There are several reasons (see review[121]) for the fail-
ure of antibodies against these adhesion molecules to translate 
into a clinically relevant treatment strategy.  For example, the 
study designs in the clinical trials did not mirror the laboratory 
models (such as late treatment or the absence of documented 

recanalization to the occluded vessel).  Another possibility 
is that changes in neutrophil integrins are different between 
humans and rodents.  Indeed, recent work has highlighted the 
differences in the immune system between species[122].  These 
differences emphasize the importance of clinical biomarkers 
and early phase studies to confirm the targets in both adult 
stroke and neonatal HIE, particularly using accessible sources 
such as peripheral blood.  Although intervention strategies 
targeting adhesion molecules appeared to be effective in 
preclinical studies, moving this work into humans remains a 
tremendous challenge.  It is encouraging that natalizumab, a 
humanized monoclonal antibody against α4-integrin, has been 
used to treat multiple sclerosis for more than 5 years[123] and 
has been reported to decrease the risk of disability progression 
by 42% to 54% and to reduce the annualized rate of relapse 
by 68%[124].  Natalizumab treatment is associated with a risk 
of progressive multifocal leukoencephalopathy (PML), an 
opportunistic brain infection caused by the JC virus[125].  How-
ever, because its clinical benefits outweigh the risks involved, 
natalizumab remains on the market in the US under a special 
prescription program using risk stratification algorithms and 
PML management strategies[123].

Cytokines
Cytokines are important inflammatory mediators, and cere-
bral ischemic injury can trigger a cascade of cytokine induc-
tion that acts to orchestrate an in situ inflammatory reaction[133] 
and maintains brain tissue homeostasis[134].  In general, the 
roles of cytokines are pleiotropic, and whether the overall 
effects are pro- or anti-inflammatory in the context of ischemic 
insults remains controversial even in adult models, for which 
there are more data than for HIE.  The most studied cytokines 
related to the inflammatory responses to stroke are IL-1, IL-6, 
IL-10, tumor necrosis factor-α (TNF-α), and transforming 
growth factor-β (TGF-β)[135].  

Table 1.  Roles of adhesion molecules in pediatric inflammation. 

  
Mediators

        Investigated                               
Stimulation

                                Effects of                                Compared              
References                                               objects                                                                                                 stimulation                               to adults 

 
 L-selectin New born infants Acute bacterial infection Down-regulation N/A [126]
  New born infants LPS Up-regulation Lower [127]
 P-selectin 3–4 weeks rats IL-1β Up-regulation No difference [98]
  P1 rats Thioglycollate Up-regulation Lower [94]
 E-selectin 3–4 weeks rats IL-1β Up-regulation No difference [98]
 LFA-1 New born infants IL-1 Up-regulation Lower [75]
 MAC-1 New born infants LPS Up-regulation Lower [127]
 VLA-4 P7 rats Microglial activation Up-regulation N/A [128]
 ICAM-1 P7 rats HIE Up-regulation N/A [129]
  P2–3 mice Pneumocystis carinii Trend in increase Lower [130]
  P2–3 mice TNF-α Up-regulation N/A [130]
 ICAM-2 P4–10 mice Antigen-specific Up-regulation N/A [131]
 VCAM-1 P2–3 mice Pneumocystis carinii Trend in increase Lower [130]
  P2–3 mice TNF-α Up-regulation N/A [130]
 PECAM-1 P1 piglets HIE Up-regulation N/A [132]
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IL-1β and TNF-α are among the best-characterized early 
response cytokines and are often expressed concurrently[136].  
Several types of CNS cells secrete IL-1β and TNF-α, including 
microglia, astrocytes, and neurons, and these cytokines share 
potent pro-inflammatory actions.  Human newborns with HIE 
have higher levels of IL-1β and TNF-α in peripheral blood 
samples at P1, P3, and P7 compared to controls, and the IL-1β 
levels correlate positively with HIE severity[137].  The neu-
rotoxic consequences of IL-1 activation have been shown in 
experimental studies with HIE[138–140] and other inflammatory 
disease models[141–143].  The most convincing evidence that IL-1 
is functionally detrimental in the pathogenesis of HIE is pro-
vided by the neuroprotective potential of IL-1 receptor antago-
nist administration in HIE models in rodents[144, 145] (Table 2).

Chemokines
Chemokines, or chemoattractant cytokines, also play a pivotal 
role in cerebral damage in ischemic stroke, HIE and excito-
toxic brain injury models[146].  Chemokines are classified based 
on the positions of key cysteine residues (C): C, CC, CXC, and 
CX3C, and act through specific and shared receptors belong-
ing to the superfamily of G-protein-coupled receptors[147].  As 
their name indicates, chemokines play a central role in leuko-
cyte physiology by controlling inflammatory cell trafficking.  
HIE modeled in P7 rats induces the up-regulation of alpha-
chemokines [growth related gene and macrophage inflamma-
tory protein-2 (MIP-2)] and beta-chemokines (MIP-1α, MIP-1β, 
CCL-5) preceding the expression of markers for lymphocytes 
in the infarcted area[35].  In the neonatal brain, acute excitotoxic 
injury stimulates the expression of both monocyte chemotac-
tic protein-1 [MCP-1, also called chemokine ligand 2 (CCL2)] 
and its receptor CCR2, suggesting that MCP-1 regulates the 

microglial/monocyte response to acute brain injury and con-
tributes to the pathogenesis of acute neonatal brain injury[148, 

149].  This has been confirmed by another study using the 
same model in which anti-MCP-1 antibody attenuated tissue 
injury in neonatal rats[150] (Table 2).  Few data are available on 
the potential role of CXC chemokines in perinatal stroke.  In 
experimental adult stroke models, stromal cell-derived factor 
1 (SDF-1 or CXCL12) is expressed perivascularly in the injured 
region up to 30 d after the injury, suggesting that it could be 
a therapeutic target for tissue repair strategies[151].  However, 
in P7 mice, stroke induced up-regulation of CXCL12 was 
only observed up to 7 d after the injury but not at a later time 
point[63], indicating a significantly smaller temporal window 
for CXCL12-mediated repair after a perinatal stroke.  

Oxidative stress
Oxidative stress has recently been recognized as a common 
pathway in which different inflammatory cells mediate post-
ischemic injury[159, 160].  After ischemic insults, the inflamma-
tory cells in the brain are activated and then generate ROS 
via several enzyme systems to induce the expression of pro-
inflammatory mediators including cytokines and adhesion 
molecules[160].  Superoxide is generated via cyclo-oxygenase 
(COX), xanthine dehydrogenase, xanthine oxidase, and 
NADPH oxidase, whereas myeloperoxidase (MPO) and 
monoamine oxidase (MAO) generate hypochlorous acid and 
H2O2

[121].  Compared to adult mice, P7 pups show the increased 
accumulation of H2O2 in the brain after a HI injury, suggest-
ing that the neonatal brain may be more damaged even after 
a milder degree of acute hypoxic-ischemic injury[161] (Table 3).  
Glutathione peroxidase (GPX) is a key enzyme responsible for 
the degradation of H2O2

[162].  The neonatal brain has limited 

Table 2.  Roles of cytokines and chemokines in HIE.

    
Mediators                     Investigated objects        Stimulation

               Expression                               Effects                 
References

                                                                                                                                                          
after stimulation                          on HIE

 
 IL-1α P7 rats HIE Up-regulation Detrimental [144]
 IL-1β P7 rats HIE Up-regulation Detrimental [144]
  P7 rats HIE Up-regulation Detrimental [152]
 TNF-α P7 rats HIE Up-regulation Detrimental [152]
 IL-18 P7 rats HIE Up-regulation Detrimental [153]
  P9 IL-18–/– mice HIE N/A Beneficial in KO [154]
 IL-2 Children 4.5 years (average age) Perinatal stroke Chronic up-regulation N/A [155]
 IL-6 P7 rats HIE Up-regulation Detrimental [152]
 IL-8 Children 4.5 years (average age) Perinatal stroke Chronic up-regulation N/A [155]
 IL-9 P5 mice Ibotenate+IL-9 N/A Detrimental [156]
 IL-10 P5 mice Ibotenate+IL-10 N/A Beneficial [157]
 IL-4 P5 mice Ibotenate+IL-4 N/A Beneficial [156]
 IFN-γ P1-3 rats IFN-γ treated  N/A Detrimental [158]
 CCL3/MIP-1α P7 rats HIE Up-regulation Detrimental [35]
 CCL4/MIP-1β P7 rats HIE Up-regulation Detrimental [35]
 CCL5/RANTES P7 rats HIE Up-regulation Detrimental [35]
 CCL2/MCP-1 P7 rats HIE Up-regulation Detrimental [150]
 CXCL12/SDF1 P7 mice HIE Up-regulation Detrimental [63]

Data compared to the adults are not available.
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GPX activity and is more susceptible to oxidative damage, as 
described in a study showing that H2O2 rapidly accumulates 
in human-superoxide dismutase-1 (hSOD1) transgenic P7 
mice, thus resulting in exacerbated HI brain injury, which is 
reversed in hGPX1-Tg mice[163].  However, the role of ROS in 
neonatal inflammatory responses following HIE is controver-
sial.  Inhibition of NADPH oxidase, the most important source 
of ROS[164], increases HI injury and the level of IL-1β in P9 
mice[165].  In contrast, it has been well established that NADPH 
oxidase can exacerbate inflammatory responses and stroke 
outcomes in adult animal models (see review[166]).  There-
fore, the results obtained in adult animals are not completely 
relevant to newborns and the role of oxidative stress in HIE 
remains to be fully investigated.  

Fetal inflammatory response syndrome (FIRS)
Originally defined in fetuses who experienced preterm labor 
and preterm premature rupture of the membranes (PROM), 
FIRS is a unique condition characterized by the systemic 
activation of the fetal innate immune system and by an eleva-
tion in fetal plasma IL-6 concentrations[171].  Currently, FIRS 
is characterized by a rapid increase in pro-inflammatory sig-
naling (cytokines, chemokines, etc) and the mobilization of 
immune effector cells into the fetal circulation[172].  These pro-
inflammatory mediators readily cross the BBB and induce the 
activation of microglia, which initiates a detrimental cerebral 
inflammatory response.  The unique circumstances of the 
“patient” (fetus) and the environment (uterus) in FIRS make 
it distinguishable from other diseases; however, by definition, 
FIRS and inflammatory responses after HIE partly overlap in 
pathophysiology, and they share similar inflammatory mecha-
nisms in the brain.  There are multiple putative mechanisms 
by which the neonatal brain can sense FIRS signals in the sys-
temic circulation, which will then lead to neuroinflammation.  
These mechanisms include the interface of macrophages in 
the circumventricular brain area, without a BBB, with circulat-
ing inflammatory molecules[173], and the direct access of FIRS 
signals into the CNS through leakage of the BBB in the setting 
of peripheral inflammatory pain signaling through the vagal 
nerve[174].  The manner in which FIRS influences the response 
to HIE and whether HIE can induce FIRS and subsequent 
peripheral immune activation is an area of active study.  

Summary
HIE triggers a robust inflammatory response and accumulat-
ing data have linked post-ischemic inflammation to the exac-
erbation of brain damage.  Many inflammatory mechanisms 
and pathways after cerebral ischemia have been assessed in 
various studies performed in adult subjects; however, cau-
tion should be exercised when attempting to extrapolate these 
findings to neonates.  The mechanisms underlying cerebral 
ischemic injury and the following immune response are likely 
very different between the neonates and the adults.  
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