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Objective: Tangent Space Mapping (TSM) using the geometric structure of the
covariance matrices is an effective method to recognize multiclass motor imagery (MI).
Compared with the traditional CSP method, the Riemann geometric method based on
TSM takes into account the nonlinear information contained in the covariance matrix,
and can extract more abundant and effective features. Moreover, the method is an
unsupervised operation, which can reduce the time of feature extraction. However,
EEG features induced by MI mental activities of different subjects are not the same,
so selection of subject-specific discriminative EEG frequency components play a vital
role in the recognition of multiclass MI. In order to solve the problem, a discriminative
and multi-scale filter bank tangent space mapping (DMFBTSM) algorithm is proposed in
this article to design the subject-specific Filter Bank (FB) so as to effectively recognize
multiclass MI tasks.

Methods: On the 4-class BCI competition IV-2a dataset, first, a non-parametric method
of multivariate analysis of variance (MANOVA) based on the sum of squared distances
is used to select discriminative frequency bands for a subject; next, a multi-scale FB
is generated according to the range of these frequency bands, and then decompose
multi-channel EEG of the subject into multiple sub-bands combined with several
time windows. Then TSM algorithm is used to estimate Riemannian tangent space
features in each sub-band and finally a liner Support Vector Machines (SVM) is used
for classification.

Main Results: The analysis results show that the proposed discriminative FB enhances
the multi-scale TSM algorithm, improves the classification accuracy and reduces the
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execution time during training and testing. On the 4-class BCI competition IV-2a
dataset, the average session to session classification accuracy of nine subjects reached
77.33 ± 12.3%. When the training time and the test time are similar, the average
classification accuracy is 2.56% higher than the latest TSM method based on multi-scale
filter bank analysis technology. When the classification accuracy is similar, the training
speed is increased by more than three times, and the test speed is increased two
times more. Compared with Supervised Fisher Geodesic Minimum Distance to the Mean
(Supervised FGMDRM), another new variant based on Riemann geometry classifier, the
average accuracy is 3.36% higher, we also compared with the latest Deep Learning
method, and the average accuracy of 10-fold cross validation improved by 2.58%.

Conclusion: Research shows that the proposed DMFBTSM algorithm can improve the
classification accuracy of MI tasks.

Significance: Compared with the MFBTSM algorithm, the algorithm proposed in this
article is expected to select frequency bands with good separability for specific subject
to improve the classification accuracy of multiclass MI tasks and reduce the feature
dimension to reduce training time and testing time.

Keywords: tangent space mapping, discriminative and multiscale filter bank, multiclass motor-imagery,
Riemannian geometry based classifier, electroencephalogram

INTRODUCTION

Brain-computer interface (BCI) is a revolutionizing human-
computer interaction (Graimann et al., 2010), and BCI
based on motor imagery (MI-BCI) is an important type
of BCI which is expected to provide communication and
control with the outside world for patients with severe
motor disabilities (Wolpaw and Wolpaw, 2012), especially
in motor dysfunction rehabilitation training (Soares et al.,
2013). However, at present, MI-BCI can classify few MI
tasks, and it can provide few effective instructions, which
limits the communication capability and control freedom
of this type of BCI, making it difficult to enter practical
applications. In order to add instructions, it is necessary to
study the recognition of multiclass MI tasks. At present, the
recognition accuracy of multi-class MI needs to be improved,
which is a challenging work. This article intends to explore
effective methods to improve the recognition accuracy of multi-
class MI.

Neuroscience research has shown that brain activities related
to MI and motor execution (ME) can cause similar sensorimotor
rhythm changes (Pfurtscheller and Neuper, 1997), and the
EEG amplitude of certain frequency bands will decrease event-
related desynchronization (ERD) or increase event related
synchronization (ERS). This ERD/ERS phenomenon or pattern
is most prominent in mu rhythm (8–12 Hz) and beta rhythm
(13–30 Hz), and can also be observed in gamma rhythm close
to 40 Hz (Rao, 2013). In MI-BCI, these patterns are mainly
extracted. However, due to the non-stationarity of EEG, low
signal-to-noise ratio and limited available calibration data, it is
difficult to extract MI feature patterns with good separability
(Lotte et al., 2018). In MI-BCI, the classical processing method

is to extract sources from the pre-processed EEG data using
a spatial filter such as CSP, then extract the feature vectors
from the source signal, and finally classify the feature vectors
using a vector-based classifier (such as LDA) (Yger et al., 2017).
Studies have shown that Common Spatial Pattern (CSP) has
significant advantages in extracting MI features (Lotte et al.,
2018)CSP maximizes the variance of the EEG signal of one
class of MI while minimizing the variance of the other class.
After band-pass filtering, the variance of the EEG signal is
the power of the corresponding frequency band. Therefore,
CSP is a more suitable method to extract the features of the
two classes of MI (Ramoser et al., 2000). Deep Learning is a
specific machine learning algorithm in which features and the
classifier are jointly learned directly from data (Lotte et al., 2018).
Advantages of Deep Learning include that they are well suited
for end-to-end learning, that is, learning from the raw data
without any a priori feature selection, that they scale well to
large datasets, and that they can exploit hierarchical structure
in natural signals (Schirrmeister et al., 2017). Disadvantages
of Deep Learning methods include that they may output false
predictions with high confidence may require a large amount
of training data, may take longer to train than simpler models,
and involve a large number of hyperparameters such as the
number of layers or the type of activation function (Nguyen
et al., 2015). Convolutional neural networks (ConvNets) are the
most popular Deep Learning approaches for BCI (Lotte et al.,
2018). In order to adapt the existing ConvNets architectures
from the field of computer vision to EEG input, the authors
created three ConvNets with different architectures, with the
number of convolutional layers ranging from 2 layers in a
“shallow” ConvNet over a 5-layer deep ConvNet up to a 31-
layer residual network (ResNet) (Schirrmeister et al., 2017). In
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Sakhavi et al. (2018), according to the features generated by filter
bank CSP (FBCSP), the authors design and optimize a ConvNet
for classification.

In addition to CSP and its various improvement methods
(Ang et al., 2008, 2012; Zhang et al., 2015, 2016), the
researchers used the Riemannian method based on the covariance
matrix in the Riemannian manifold in MI-BCI and achieved
better performance, and this new processing method does not
require source extraction. At present, Riemannian manifold
of symmetric positive definite (SPD) matrices has attracted
more and more attention due to their rich framework for
manipulating the covariance structure of the data. The concept
of the covariance matrices in the manifold has been successfully
used in radar signal processing (Barbaresco, 2008), diffusion
tensor Imaging (Fletcher and Joshi, 2004) and computer vision
(Tuzel et al., 2008). A similar method is combined with K
nearest neighbors and recognizes different sleep states based
on EEG (Li et al., 2009). Barachant et al. (2010) first used
the Riemannian method to classify two-class MI-EEG data
and achieved an average classification accuracy of 85.2%. The
Minimum Distance to Riemannian Mean (MDRM) introduced
in their works is the most basic Riemannian method (Congedo
et al., 2017). In this method, the Riemannian mean of each
class is calculated first based on the training data, and then
classify incoming trials by comparing the Riemannian distances
between the covariance matrices corresponding to the incoming
trials and the Riemannian mean of each class during the test
session (Barachant et al., 2010). Another more sophisticated
and effective Riemannian classifiers is based on tangent space
mapping (TSM), and its classification performance is significantly
better than CSP and other methods (Congedo et al., 2017).
Barachant et al. mapped the covariance matrices onto the tangent
space, and then selected features in it and used LDA, the
results showed that compared with MDRM, it can significantly
improve the accuracy of multi-class (4-class) MI recognition
(Barachant et al., 2012). Barachant et al. (2013) derived a
new kernel by establishing a connection with the Riemannian
geometry of symmetric positive definite matrices, and combined
with a support vector machine to test different kernels, and
demonstrated that this new approach outperformed significantly
state of the art results, effectively replacing the traditional spatial
filtering approach.

In order to further improve the classification performance
of MI-BCI, Ang et al. (2008) proposed the filter bank CSP
(FBCSP) method, a four-stage procedure in which CSP is applied
at several fixed frequency bands, and where the most relevant
sub-band CSP features are automatically pair-wise selected based
upon mutual information criteria. Recently, Zhang et al. (2015)
proposed the sparse filter bank CSP (SFBCSP) in which a small
number of sub-band CSP features are automatically selected
based on LASSO (least absolute shrinkage and selection operator)
regression. According to some recent achievements, we know
that a breakthrough has been made in the research of MI task
recognition based on Deep Learning (Li et al., 2019; Olivas
Padilla and Chacon Murguia, 2019; Xu et al., 2020). In Xu
et al. (2020), a new deep multi-view feature learning method for
the classification task of motor imagery electroencephalogram

(EEG) signals is proposed in order to obtain more representative
motor imagery features in EEG signals. In Li et al. (2019), the
researchers proposes a variant of Discriminative Filter Bank
Common Spatial Pattern (DFBCSP) for extracting MI features,
and then sets the resulting samples into a matrix, which
is then fed to one or many ConvNets previously optimized
by using a Bayesian optimization for classification. In Olivas
Padilla and Chacon Murguia (2019), a densely feature fusion
convolutional neural networks (DFFN) is proposed. DFFN takes
into account the correlation between adjacent layers and cross-
layer features, thus reducing information loss in the process
of convolutional operation. It also takes into account the local
and global characteristics of the network, and improves the
identification accuracy of the ordinary ConvNets framework in
multi-class MI. In the improvement of the method based on
Riemannian geometry, Barachant et al. proposed Fisher Geodesic
Discriminant Analysis for performing Geodesic filtering to make
the classes more separable along the geodesics, which improves
the drawback of MDRM not taking into account intra-class
distribution (Barachant et al., 2010). More recently, Satyam et al.,
combined the two adaptive strategies of RETRAIN and REBIAS
(Shenoy et al., 2006) with MRDM and Fisher Geodesic Minimum
Distance to Riemannian Mean (FgMDRM), and the result
achieved an average classification accuracy of approximately 74%
on the test set (Session 2) of the 2a data set of BCI Competition
IV (Kumar et al., 2019). Islam et al. (2017) proposed a multi-
band TSM method, which takes into account multiple frequency
bands and helps to extract effective noise robust features for
narrow-band signals, but the study did not consider the question
of the subject-specific frequency band. However, MI-BCI is an
active BCI. The EEG features induced by MI mental activity of
different subjects are often different. It is necessary to customize
the feature extraction method for specific subjects. Islam et al.
proposed a multiband tangent space mapping with sub-band
selection (MTSMS). The sub-band selection method adopted can
be based on the mutual information between features and class
labels, thereby effectively extract the frequency band of a specific
subject, and further improve the performance of MI-BCI (Islam
et al., 2018). In addition, in order to overcome the limitation
of using fixed band window analysis in MI-BCI, Hersche et al.
(2018) proposed a multi-scale filter bank TSM (MFBTSM), in
which FB contains the frequency bands are multi-scale and
overlapping. At the same time, multi-scale and overlapping time
windows are divided, so that multiple time windows are used
to analyze EEG trials and perform FB analysis in each time
window. This greatly increases the number of tangent spatial
features, but induce redundant information. The disadvantages
of MFBTSM is that the filter bank used by each subject is the
same, and the test time and training time increase due to the large
feature dimension.

In order to make up for the disadvantages of MFBTSM, this
article intends to use a non-parametric method of multivariate
analysis of variance based on the sum of squared distances
to select the subject-specific discriminative EEG frequency
components, and these component is vital for identifying
multiple types of MI tasks. It is important to use multi-scale filter
bank TSM at the same time, and finally use SVM for classification.
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MATERIALS AND METHODS

Riemann Geometry Associated With the
Proposed Method
EEG Signals Are Represented as Covariance
Matrices
To use Riemannian geometry to process EEG signals, it is
necessary to represent the EEG signals as covariance matrices,
which are SPD matrices. Let Xi ∈ RNc × Ns be the MI EEG signal
of the i-th trial, where Nc is the number of channels and Ns is the
number of samples. The sample covariance matrix (SCM) of the
i-th trial is denoted by Pi ∈ RNc × Nc , which is estimated by eq. (1)
(Barachant et al., 2012):

Pi = 1/(Ns − 1)XiXT
i (1)

Let S(n) denote the set of n × n symmetric matrices, and P(n)
denote the set of n × n SPD matrices.

Riemannian Manifold and Tangent Space
The space of SPD matrices P(n) is a differentiable Riemannian
manifold M (Förstner and Moonen, 2003). The derivatives at
a matrix P on the manifold lies in a vector space TP, which
is the tangent space at that point. The tangent space is lying
in the space S(n). The manifold and the tangent space are
m = n(n++1)/2 dimensional.

Each tangent space has an inner product 〈, 〉P that varies
smoothly from point to point over the manifold. The natural
metric on the manifold of SPD matrices is defined by the local
inner product:

〈S1, S2〉P = Tr(S1P−1S2P−1) (2)

The inner product induces a norm for the tangent vectors on the
tangent space, such that, ‖ S ‖2

P = 〈S, S〉P = Tr(SP−1SP−1).
We note that, at Identity matrix, such norm simplifies into the
Frobenius norm, i.e., 〈S, S〉I = ‖ S ‖ 2

F .

Riemannian Geodesic Distance and Riemannian
Distance
Let 0 (t) : [0, 1]→ P (n) be any (differentiable) path from
0(0) = P1 to 0(1) = P2. The length of 0 (t) is given by:

L(0(t)) =
∫ 1

0
‖ 0̇(t) ‖0(t) dt (3)

With the norm defined previously. The minimum length curve
connecting two points on the manifold is called the geodesic, and
the Riemannian distance between the two points is given by the
length of this curve. The natural metric (2) induces the geodesic
distance (Moakher, 2005):

δR(P1, P2) =‖ log(P−1
1 P2) ‖F = [

n∑
i = 1

log2λi]
1/2 (4)

Where, λi, i = 1...n are the real eigenvalues of P−1
1 P2 .

Exponential Map
For each point P ∈ P(n), we can thus define a tangent space
composed by the set of tangent vectors at P. Each tangent vector
Si can be seen as the derivative at t = 0 of the geodesic 0i(t)
between P and the exponential mapping Pi = ExpP(Si), defined
as:

ExpP(Si) = Pi = P
1
2 exp(P−

1
2 SiP−

1
2 )P

1
2 (5)

The inverse mapping is given by the logarithmic mapping defined
as:

logP(Pi) = Si = P
1
2 log(P−

1
2 PiP−

1
2 )P

1
2 (6)

Euclidean Mean
Using the Euclidean distance on M(n), δE(P1, P2) =
‖ P1 − P2 ‖F , it is possible to define the Euclidean mean of
I ≥ 1 SPD matrices by:

A (P1, ..., PI) = argmin
P∈P(n)

I∑
i = 1

δ2
E (P, Pi) =

1
I

I∑
i = 1

Pi (7)

Riemannian Mean
Similar to Euclidean mean, Karcher/Fréchet means extends the
notion of mean/center of mass to P (n) by estimating the SPD
matrix which minimizes the sum of squared AIRM distances to
all the SPD matrices in the set. Mathematically the Riemannian
mean of I ≥ 1 SPD matrices is given by:

G(P1, ..., PI) = argmin
P∈P(n)

I∑
i = 1

δ2
R(P, Pi) (8)

Eq. (8) has a unique minimum, and there is no closed solution for
I > 2, but many iterative algorithms solve this problem through
numerical analysis (Moakher, 2005).

Discriminative and Multi-Scale Filter
Bank Tangent Space Mapping
The structure of Discriminative and Multi-scale Filter Bank
Tangent Space Mapping (DMFBTSM) proposed in this article is
shown in Figure 1. First, a set of filters is used to decompose
the multi-channel EEG signal into multiple frequency band
components. These filters are called the parent filter bank (Filter
Bank, FB), and the parent FB covers all frequency components
in the range of 2–40 Hz. Then use the one-way multivariate
analysis of variance (MANOVA) based on the sum of squared
distances to calculate the F statistic for each sub-band component
decomposed. According to the F statistic, select EEG frequency
bands that are separable for MI of the specific subject, and then
generate discriminative and multi-scale filter bank (DMFB).

The One-Way MANOVA Based on the Sum of
Squared Distances
In this article, a non-parametric method of MANOVA based
on the sum of squared distances (Anderson, 2001) is used to
select the EEG frequency bands that are separable for MI of
the specific subject. The test statistic is a multivariate analog to
Fisher’s F-ratio and is calculated directly from any symmetric
distance or dissimilarity matrix.
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FIGURE 1 | DMFBTSM structure diagram. After generating DMFB, first decompose the multi-channel EEG signal into T temporal windows (tb1, ..., tbt, ..., tbT ), then
use DMFB to decompose the t-th temporal window into F (fb1, ..., fbf ..., fbF ) frequency bands, estimate the SCM in each time band, and then use the TSM
algorithm to map all SCMs onto the tangent space to extract TSM features, and finally use linear SVM for classification.

First, the EEG signals of a specific subject’s frequency range
of 2–40 Hz are decomposed into 2 Hz width, a total of 19 sub-
bands. Then estimate the SCMs of all trials in each sub-band
and calculate the distance matrix between each pair of SCMs,
as shown in Figure 2. Finally, the F statistic of each sub-band is
calculated by MANOVA based on the square of the distance. The
calculation process is as follows.

Assuming that the test data of the subject has a classes, each
class has n trials, the total number of trials is N = a∗n, and the
total sum of squares is:

SST =
1
N

N−1∑
i = 1

N∑
j = i+1

d2
ij (9)

where, dij is the distance between the SCM of the i-th trial and
the SCM of the j-th trial. In a similar fashion, the within-group or
residual sum of squares is:

SSW =
1
n

N−1∑
i = 1

N∑
j = i+1

d2
ijεij (10)

where, if the i-th trial and the j-th trial are in the same class, the
value of εij is 1, otherwise it is 0, as shown in Figure 2B. The sum
of squares between classes, SSA and F statistics are calculated by
eqs. (11, 12):

SSA = SST − SSW (11)

F =
SSA/(a− 1)

SSW/(N − a)
(12)

In this article, the aforementioned Riemannian distance and
Euclidean distance are applied to eqs. (9–12), respectively. If the
sample points of different classes have different center positions

in the multivariate space (centroid in the case of Euclidean
distance), the ratio of the inter-class distance to the intra-
class distance will be large, and the generated F-statistic will
be relatively large. After calculating the F statistics of all sub-
bands, arrange the sub-bands in descending order of F scores,
take the first several separable sub-bands, and merge the adjacent
separable sub-bands to obtain the EEG frequency bands that are
separable for MI of the specific subject.

Divide Multi-Channel EEG Using Multi-Scale Time
and Frequency Windows
First, the multi-channel EEG of a trial is divided according to the
multi-scale time window shown in Figure 3A, and then according
to the multi-scale frequency band window division shown in
Figure 3B, the frequency bands that are separable for MI of the
specific subject are divided according to the multi-scale frequency
band windows shown in Figure 3B to generate DMFB, and then
the DMFB band-pass filters the signal of each time window.

Tangent Space Mapping
This article uses the TSM algorithm proposed by Barachant
et al. (2010), as shown in Figure 4. The algorithm first needs
to find a reference point PG, which is the Riemann average of
all EEG trials on manifold M: PG = G(Pi, i 1...I). Then map
the SCM corresponding to each trial onto the tangent space TP
to generate a set of m = NC(NC + 1)/2-dimensional tangent
vectors S [s1...sI] ∈ Rm × I , The tangent vector si is calculated
as eq. (13):

si = upper(P
−

1
2

G logPG
(Pi)P

−
1
2

G ) (13)

where, Pi is the SCM corresponding to the i-th trial, upper means
to vectorize the upper triangular part of a SPD matrix, with
appropriate weighting.
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FIGURE 2 | (A) From the raw data to the distance matrix and (B) a non-parametric MANOVA statistic for a one-way design (two groups) directly from the distance
matrix. Sum of squared distances in the half matrix ( ) divided by N (the total number of SCMs in all classes) is the total sum of squares (SST ), and the sum of
squared distances within classes ( ) divided by n (number of SCMs in each class) is within-group sum of squares (SSW ).
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FIGURE 3 | Divide multi-channel EEG using multi-scale time (temporal) and frequency windows. (A) The multi-channel EEG of a trial is divided according to the
multi-scale time window. (B) The frequency bands that are separable for MI of the specific subject are divided according to the multi-scale frequency band windows.

RESULTS

Description of Data
First, analyze the justifiability of selecting frequency bands for
specific subjects based on F statistics, using BCI Competition III
dataset IVa and BCI competition IV dataset 2a1, and finally using

1http://bbci.de/competition/

BCI Competition IV 2a data set evaluation the performance of
the proposed method.

BCI Competition IV Dataset 2a
Dataset 2a (Naeem et al., 2006) contains EEG data from 9 subjects
who perform four kinds of motor imagery (right hand, left hand,
foot, and tongue imagined movements). This dataset is provided
by the Knowledge Discovery Institute (BCI Laboratory) of Graz
University of Technology, Austria. EEG signals are recorded
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FIGURE 4 | Schematic diagram of TSM on Riemannian manifold M.

using 22 electrodes. For each subject, a training set (session 1) and
a test set (session 2) are available. The same number of trials for
all the MI tasks were provided for testing and training session.
Each of the session had 72 trials for each of the four motor
imagery classes.

BCI Competition III Dataset IVa
Dataset IVa (Dornhege et al., 2004) contains 2-class of MI EEG.
This dataset is provided by the Knowledge Discovery Institute
(BCI Laboratory) of Graz University of Technology, Austria. It
records the EEG of 5 healthy subjects who perform two classes
of MI (right hand and foot), Each subject recorded 280 trials,
of which the first 168, 224, 84, 56, and 28 trials constituted the
training set of subjects A1, A2, A3, A4, and A5, and the remaining
trials constituted their test set.

Experimental Results
F Statistic Selects the Frequency Bands That Are
Separable for MI of the Specific Subject
Using the parent FB in the frequency range of 2 to 40 Hz,
the EEG signal of each subject was decomposed into 19 sub-
bands, and then the Riemannian distance was selected as the
distance metric to calculate the F score of each sub-band. In
order to show the justifiability of using the F score of each sub-
band as the criterion for selecting a separable frequency band,
the classification accuracy of different sub-bands of the test data
of different subjects on the BCI competition public data set is
calculated, as shown in Figure 5, where the sub-band width for
calculating the classification accuracy is 4 Hz, and the range
is from 4 to 36 Hz. It can be seen from Figure 5 that the
classification accuracy of the sub-band with a higher F score is
better than that of the sub-band with a lower F score. Therefore,
it is justified to use one-way MANOVA based on the square of
the distance to select the separable sub-bands. Then, the sub-
bands are sorted in descending order of F score, and the top G
sub-bands are used for MI classification.

Multi-Class MI (4-Class) Classification Results
In this study, nine subjects in the BCI competition IV data set 2a
(four types of MI) were selected for separable frequency bands,
and multi-scale time-frequency TSM features were extracted
and classified. In order to better evaluate the performance

FIGURE 5 | Continued
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of DMFBTSM, first compare with MFBTSM, the results are
shown in Table 1, and then test other three related methods
on the same data set. The first method is the combination of
FgMDRM and RETAIN Adaptive strategy, called Supervised
Adaptive FgMDRM (Supervised FgMDRM). In this method, the

FIGURE 5 | Continued

FIGURE 5 | The F score and classification accuracy vary with the subjects
and different frequency bands. (A–H) The F scores and classification accuracy
of subjects A01T, A03T, A05T, A08T, A09T, aa, al, and ay vary with different
frequency bands. The first five subjects are from data set IV- 2a, the last 3
subjects are from data set III-IVa.

FgMDRM classifier is first trained on training/calibration session
data, then during the testing session, the classifier is retrained
after each prediction (Kumar et al., 2019). The second method
is the combination of TSM and adaptive Riemannian kernel
SVM, known as adaptive Riemannian kernel SVM (ARK-SVM)
(Barachant et al., 2013), and the third method is FBCSP (Ang
et al., 2012). Comparison results of these three methods with
DMFBTSM are shown in Table 2.

In addition, this article is compared with the latest three Deep
Learning-based methods. In Deep Multi-view feature learning
method (Xu et al., 2020), the author uses the improved, the deep
restricted Boltzmann machine (RBM) network to learn to learn
the multi-view features of EEG signals, and finally uses SVM
to classify deep multi-view features. The DFFN algorithm is a
dense feature fusion convolutional neural network using CSP and
ConvNet technology (Li et al., 2019). In the Monolithic Network
method (Olivas Padilla and Chacon Murguia, 2019), the authors
used a variant of discriminative FBCSP to extract signal features,
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TABLE 1 | Under different distance measures [N/A (no distance metric), Euclidian distance and Riemannian distance], multi-scale time-frequency TSM features were
extracted, and average classification accuracy (%) and standard deviation (std), average training time and average test time were obtained from the 4 MI classes on the
test data (session 2) of 9 subjects in BCI Competition IV data-set 2a.

Method MFBTSM DMFBTSM

Distance metric N/A N/A Euclidian distance Euclidian distance Riemannian distance Riemannian distance

Time window selection T1 T1, T2, T5 T1 T1, T2, T5 T1 T1, T2, T5

A1 91.81 90.04 91.81 92.53 92.53 93.24

A2 51.59 55.48 56.54 61.13 55.48 60.78

A3 83.52 81.32 82.42 83.15 87.18 87.18

A4 73.25 71.92 69.74 70.18 70.18 71.49

A5 63.41 69.57 67.75 68.12 68.12 66.67

A6 58.60 56.74 61.4 59.53 60.0 61.4

A7 86.64 85.56 83.03 85.92 87.0 86.28

A8 81.55 83.76 80.81 83.39 83.39 85.61

A9 82.58 84.85 82.2 84.85 85.23 83.33

Mean 74.77 75.47 75.08 76.53 76.57 77.33

Std 13.9 12.8 11.7 12.0 13.4 12.3

Avg. training time [s] 34.32 55.39 10.43 29.78 11.04 32.68

Avg. testing time [s] 10.91 20.92 4.47 12.56 4.70 12.24

TABLE 2 | Mean classification accuracy (%) and standard deviation (std) obtained across nine subjects in data-set 2a.

Method DMFBTSM Supervised FgMDRM FgMDRM ARK-SVM FBCSP

Mean 77.33 73.97 68.31 65.29 67.21

Std 12.3 13.1 14.2 14.4 19.2

and then developed a Bayes-optimized ConvNet network for
classification. The Shallow-ConvNet algorithm inspired by the
FBCSP pipeline, specifically tailored to decode band power
features (Schirrmeister et al., 2017). After extracting the FBCSP
features, the CW-ConvNets algorithm inputs them into the
ConvNets for classification (Sakhavi et al., 2018). Comparison
results of the method proposed in this article and the three Deep
Learning methods are shown in Table 3.

Tables 1, 2 present the mean and standard deviation of the
classification accuracy (averaged across all the subjects) on a
session to session transfer evaluation for these methods. The
results presented in Table 3 are obtained by combining and
randomly arranging the training data (Session 1) and test data
(Session 2) of each subject’s data set according to the data
organization method in Xu et al. (2020), and then performing 10
fold cross-validation.

In order to calculate the sub-band F score, Riemannian
distance and Euclidean distance are selected and compared in
this study. In addition, due to the differences in MI of different
subjects, in order to ensure the accuracy of MI classification, the
number of sub-bands G selected by each specific subject may
not be the same. In addition, in order to ensure the accuracy of
MI classification, the number of sub-bands G selected by each
specific subject may not be the same. At the same time, in order
to reduce the number of features to reduce training time and test
time, the value of G ranges from 11 to 14. Specifically, subject 1
and 9 chose G as 13, subject 2, subject 3, subject 6, and subject 8
chose G as 11, subject 4 and 7 chose G as 14, and subject 5 chose
G as 12. Choose one (T1) or three (T1, T2, and T3) time windows

for decomposing EEG signals for comparison. In the case of one
time window, the feature dimension of the subjects is 10879, and
the feature dimension varies from 5060 to 7840 after frequency
band selection. In addition, 10-fold cross-validation was used for
the selection of time window and frequency band, as well as the
determination of the SVM’s hyperparameter C.

In order to evaluate the computational cost of the proposed
method, the average training and testing time of all trials
for each subject is measured. The training time includes the
preprocessing and training time of the classifier, and the testing
time includes the feature extraction and classification time. The
experiments were conducted on an Intel Core i5-7200U 2.71 GHz
processor with 8 GB RAM.

Table 1 shows that the proposed discriminative FB enhances
the multi-scale TSM algorithm. The best classification accuracy
obtained by using Euclidean distance as the distance metric
is 76.53 ± 12.0%, the shortest training time is 10.43 s, and
the shortest test time is 4.47 s; The best classification accuracy
obtained by using Riemannian distance as the distance metric
is 77.33 ± 12.3%, the shortest training time is 11.04 s, and the
shortest test time is 4.70 s.

DISCUSSION

Existing studies have shown that, compared with the
conventional CSP method, Riemannian geometry based
methods can bypass the spatial filtering of electrodes to make
the calibration phase easier, and significantly improve the
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TABLE 3 | Mean classification accuracy (%) and standard deviation (std) on test data by 10 fold cross-validation achieved by DMFBTSM, Deep Multi-View Feature
Learning, Shallow-ConvNet, CW-ConvNet, Monolithic Network, and DFFN, for dataset 2a.

Method DMFBTSM Deep Multi-View Feature Learning Shallow-ConvNet CW-ConvNet Monolithic Network DFFN

Mean 81.0876 78.5074 71.86 73.07 78.41 76.44

Std 11.2 12.0 12.4 15.1 6.3 11.6

recognition accuracy of MI tasks (Barachant et al., 2012, 2013).
In fact, the improvement brought by Riemannian geometry is
due to the consideration of the non-linear information contained
in the covariance matrices, thus better extracting features, which
are usually discarded by the linear space filtering methods. On
the basis, the multi-band Riemannian method can use a small
amount of calibration data to extract the noise robust features,
and achieve better results (Islam et al., 2017, 2018; Hersche et al.,
2018). In order to further improve the multi-band Riemannian
method, this article uses a non-parametric method of MANOVA
based on the sum of squared distances (Anderson, 2001) to
select frequency bands that are separable for specific subjects,
and multi-scale division is performed on the multi-channel EEG
signals in these frequency bands. Finally, use TSM to extract
tangent space features.

It can be seen from Table 1 that when a time window (T1) is
used, the classification accuracy of DMFBTSM using Euclidean
distance is 0.31% higher than that of MFBTSM, the training
time is shortened by more than three times, and the test time
is shortened by more than two times; the classification accuracy
of DMFBTSM using Riemannian distance is 1.8% higher than
that of MFBTSM, the training time is shortened by more than
three times, and the test time is shortened by more than two
times. In the case of using three time windows (T1, T2, and
T3), the classification accuracy of DMFBTSM using Euclidean
distance is 1.06% higher than that of MFBTSM, training time is
shortened by 1.9 times, and test time is shortened by 1.7 times; the
classification accuracy of DMFBTSM using Riemannian distance
is 1.1% higher than that of MFBTSM, the training time is
shortened by 1.7 times, and the test time is shortened by 1.7
times. The test time and training time of DMFBTSM with three
time windows are approximately equal to those of MFBTSM with
one time window, but the classification accuracy is improved by
2.56%. The performance is improved, mainly because DMFBTSM
eliminates the poorly separable frequency bands in the MI task
of the subject, making the extracted features more effective
and reducing the dimensionality of the feature vector. As a
result, the probability of overfitting of the classifier due to much
high dimension of the feature vectors in the case of limited
samples will decrease.

In addition, the average classification accuracy of DMFBTSM
using Riemannian distance is higher than that of DMFBTSM
using Euclidean distance, and the test time is close to the training
time. In the case of three time windows (T1, T2, and T3) and
one time window (T1), the classification accuracy of DMFBTSM
using Riemannian distance is 0.8 and 1.49% higher than that of
DMFBTSM using Euclidean distance. It should be noted that not
every subject’s MI classification accuracy will be improved due to
the choice of frequency band. For subject A4, the classification

accuracy of DMFBTSM is lower than that of MFBTSM. The
performance is improved, mainly because DMFBTSM eliminates
the poorly separable frequency bands in the MI task of the subject,
making the extracted features more effective and reducing the
dimensionality of the feature vectors, so that the classifier would
not overfit due to the too high dimension of the feature vectors in
the case of limited samples.

It can be seen from Table 2 that the average classification
accuracy of Supervised FgMDRM is 5.66% higher than that of
FgMDRM. This is because the combination of FgMDRM and
the RETRAIN adaptive strategy allows the classifier to add new
samples during the testing session and continuously retrain.
However, the retraining process is supervised and requires the
real labels of the new samples. In addition, the role of this
adaptive technology is related to the subjects’ proficiency in
BCI, because the more proficient the subjects, the more stable
EEG patterns are produced., So that more effective samples
can be used for retraining. The average accuracy of DMFBTSM
is approximately 12% higher than that of ARK-SVM, which
shows that DMFBTSM can extract more sufficient, more robust
and more robust Riemann covariance features than single-time
band TSM. The average classification accuracy of DMFBTSM
with the best result is 3.36% higher than that of the supervised
FgMDRM with the second best result, and it can be seen from
Figure 6 that except for the two subjects A8 and A9, PMFBTSM
achieved the best results among other subjects. This result is also
reasonable. The TSM-based Riemann method can use techniques
such as filter bank analysis and band selection to extract more
effective features and combine the advantages of the chosen
classifier to generate more complex decision functions. Although
TSM-based Riemann methods have better overall function than
MDRM methods, they are not suitable for online operation
because of the increased algorithmic complexity and possible
need of intense learning inherited by the classifier. The average
accuracy of DMFBTSM is approximately 10% higher than that
of FBCSP, which is the classical method of frequency domain
feature extraction using filter bank analysis and spatial filtering.
The results are compared to better evaluate the proposed method.

As can be seen from Table 3, the average accuracy of
the proposed method through 10-fold cross-validation on the
test set is 9.23% and 8.02% higher than the two classical
deep learning methods Shallow-ConvNet and CW-ConvNet,
respectively, 2.58% higher than the latest deep learning method
the Deep multi-view feature learning, and 2.68 and 4.65% higher
than that of the Monolithic Network and DFFN methods,
respectively. The first Deep Learning method proposes a new
deep multi-view feature learning method in order to obtain
more representative moving image features from EEG signals.
The last three Deep Learning algorithms adopted ConvNet to
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FIGURE 6 | According to different related methods, classification accuracy is
compared on the test set (Session 2) of 9 subjects in data-set 2a.

learn the spatial characteristics extracted by CSP (Xu et al.,
2020). Compared with the traditional CSP method, the Riemann
geometric method based on TSM takes into account the
nonlinear information contained in the covariance matrix, and
can extract more abundant and effective features. Moreover, the
method is an unsupervised operation, which can reduce the
time of feature extraction (Congedo et al., 2017). These Deep
Learning-based methods mentioned above are very useful, and
have their own advantages and disadvantages and their respective
suitable occasions compared with the methods mentioned in
this article. As highlighted in Yger et al. (2017), the processing
procedures of Riemannian approaches such as MDRM is simpler
and involves fewer stages than more classic approaches. Also,
Riemannian classifiers apply equally well to all BCI paradigms
(e.g., BCIs based on mental imagery, ERPs and SSVEP); only
the manner in which data points are mapped in the SPD
manifold differs (Congedo et al., 2017). Another disadvantage
of the Riemann method is that the TSM-based method seems
to increase the number of sensors (so the greater the dimension
of the covariance matrix), the worse the classification accuracy
will become (Yger et al., 2017). This may be due to the fact
that the increase in the transformation dimension requires
more attention. When almost singular covariance matrices are
generated, they cannot be effectively processed by Riemannian
geometry (Yger et al., 2015).

In our future work, we will try to combine some new Deep
Learning classifiers with DMFBTSM method to further improve
the classification accuracy of multi-class MI-BCI. In addition,
the methods proposed in this article will extract a large number
of real-valued Riemannian covariance features, thus increasing
the number of weights and the complexity of classifiers, which
makes them unsuitable for real-time execution on devices
with limited resources. Therefore, it is considered to combine
regularization, sparse feature selection and other techniques with
linear classification to deal with a large number of Riemannian

covariance features, so that the model obtained by training will
have less memory footprint and better classification performance.

CONCLUSION

A Discriminative and multi-scale Filter Bank Tangent Space
Mapping (DMFBTSM) algorithm is proposed in this article to
design the FB of a specific subject. On the 4-class BCI competition
IV-2a data set, the average classification accuracy of nine subjects
reached 77.33 ± 12.3%. When the training time and the test
time are similar, the classification accuracy is increased by 2.56%
compared to MFBTSM. When the classification accuracy is
similar, the training speed is increased by more than three times,
and the test speed is increased two times more. Compared with
Supervised Fisher Geodesic Minimum Distance to the Mean
(Supervised FGMDRM), another new variant based on Riemann
geometry classifier, the average accuracy is 3.36% higher. The
results show that the proposed DMFBTSM algorithm can be
expected to select a frequency band with good separability
for specific subjects to improve the classification accuracy of
multiclass MI tasks.

Our future work is to apply the proposed method to
neurofeedback to further improve the classification accuracy of
multi-class MI-BCI.
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