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Abstract
Neonates spend most of their life sleeping. During sleep, their brain experiences fast changes in its functional organization. 
Microstate analysis permits to capture the rapid dynamical changes occurring in the functional organization of the brain by 
representing the changing spatio-temporal features of the electroencephalogram (EEG) as a sequence of short-lasting scalp 
topographies—the microstates. In this study, we modeled the ongoing neonatal EEG into sequences of a limited number of 
microstates and investigated whether the extracted microstate features are altered in REM and NREM sleep (usually known 
as active and quiet sleep states—AS and QS—in the newborn) and depend on the EEG frequency band. 19-channel EEG 
recordings from 60 full-term healthy infants were analyzed using a modified version of the k-means clustering algorithm. 
The results show that ~ 70% of the variance in the datasets can be described using 7 dominant microstate templates. The mean 
duration and mean occurrence of the dominant microstates were significantly different in the two sleep states. Microstate 
syntax analysis demonstrated that the microstate sequences characterizing AS and QS had specific non-casual structures 
that differed in the two sleep states. Microstate analysis of the neonatal EEG in specific frequency bands showed a clear 
dependence of the explained variance on frequency. Overall, our findings demonstrate that (1) the spatio-temporal dynamics 
of the neonatal EEG can be described by non-casual sequences of a limited number of microstate templates; (2) the brain 
dynamics described by these microstate templates depends on frequency; (3) the features of the microstate sequences can 
well differentiate the physiological conditions characterizing AS and QS.
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Introduction

Sleep plays a crucial role in the development of cortical path-
ways and brain networks in the neonate. These phenomena, 
which set up the foundation of future behavior and memory, 
are formed by endogenous driven brain activity during neo-
natal sleep (Koolen et al. 2014; Lubsen et al. 2011; Omid-
varnia et al. 2014). Falling asleep and sleep state transitions 
are events that involve the reorganization of functional inter-
actions between remote brain regions (Tokariev et al. 2019a; 
b). Such long-range neural connections are a key component 
in early brain functional development. Hence, understanding 
the brain networks underpinning the different sleep states 
in neonates is of great importance to achieve insights into 
neurological well-being (Bennet et al. 2018). However, little 
is known about the mechanisms underlying the functional 
communication within the neonatal brain and advancing our 
knowledge of the dynamic reorganization of the functional 
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networks underpinning sleep states in the neonatal brain can 
contribute to assess the normal neurodevelopment and to 
improve the early diagnosis and prediction of neurodevel-
opmental disorders.

Electroencephalography (EEG) is a non-invasive and 
accurate tool that has been widely used for detecting and 
evaluating large-scale spatial coordination in the electrical 
activity of the neonatal brain (Pedersen et al. 2017; Tokariev 
et al. 2012, 2019a). The functional interaction between dif-
ferent brain areas can be assessed through different meth-
ods, the most common one being pairwise connectivity 
analysis of EEG signals in a specific time window and for 
specific frequency bands. Several studies on the adult EEG 
have demonstrated that brain dynamics can be modeled by 
means of a sequence of transient, non-overlapping patterns 
of quasi-stable electrical potentials named “microstates” 
(Khanna et al. 2015; Michel and Koenig 2018). Microstates 
capture the broad-band brain dynamics that result from the 
functional interactions of widespread ensembles of neural 
sub-units organized in a hierarchical architecture (Michel 
and Koenig 2018). Cluster analysis of microstates can parse 
the EEG data to a non-casual sequence of short-lasting 
classes of brain electrical states during which distributed 
neural sources are synchronously active and generate sta-
ble potential topographies on the scalp. A low number of 
microstates was demonstrated to comprise a high propor-
tion of the ongoing broad-band EEG activity in the adult 
brain, hence enabling to represent the global brain dynam-
ics associated with a given condition, such as resting state, 
with a specific sequence of microstates (Michel and Koenig 
2018; Pascual-Marqui et al. 1995). Differently from other 
EEG analysis techniques, that evaluate brain activity at spe-
cific electrode locations, during specific time intervals and 
within given frequency bands, microstate analysis of EEG 
signals provides a global perspective on the activity of the 
whole cortex and an informative framework that permits 
to characterize the global brain activity and brain dynam-
ics associated with sleep states in neonates through specific 
microstate sequences without any a priori hypothesis (Mur-
ray et al. 2008; Michel and Koenig 2018).

EEG microstates have already been used to analyze the 
brain dynamics during sleep in adults. Cantero et al. (1999) 
showed that transitions between different arousal states 
are associated with changes of the microstates in the alpha 
activity of the brain. Brodbeck et al. (2012) analyzed the 
microstate templates during different phases of the non-
rapid-eye-movement (NREM) sleep state and showed that 
they had a relatively high degree of spatial correlation with 
those extracted during wakefulness. In another study, Xu 
et al. (2020) investigated the relationship between fMRI 
fluctuations and microstates during slow wave sleep, reveal-
ing a correlation between EEG microstates and brain func-
tional networks. Recently, Bréchet et al. (2020) compared 

microstates during NREM sleep with microstates in wake-
fulness, showing that two microstates dominated sleep, with 
a different spectral content with respect to the microstates 
dominating wakefulness. Bréchet and colleagues also high-
lighted the possibility to characterize functional states of the 
sleeping brain, such as dreaming experiences, by means of 
specific dominant microstates.

However, in our knowledge the investigation of the brain 
dynamics during neonatal sleep using microstate analysis 
has not been performed so far. Neonatal sleep is character-
ized by the occurrence of two vigilance states: REM sleep 
(usually known as “active sleep” (AS) in the newborn) 
and NREM sleep (usually known as “quiet sleep” (QS) in 
the newborn) (Grigg-Damberger 2016). These states dif-
fer for the electrophysiological activity of the brain and 
for other physiological signs (André et al. 2010). Studies 
on the functional organization of the neonatal brain dur-
ing sleep have focused on the functional interactions across 
brain areas that characterize the transitions from QS to AS 
on long time scales (typically several seconds) (Tokariev 
et al. 2012, 2016, 2019a; b; González et al. 2011; Tóth et al. 
2017) and for specific frequency bands (Vanhatalo and Kaila 
2006; Tokariev et al. 2012, 2016). With this approach, the 
rapid changes occurring in the global brain activity on much 
smaller time scales (typically milliseconds) are disregarded. 
Conversely, microstate analysis could be an effective method 
to detect and model the rapid dynamical changes occurring 
in the functional organization of the neonatal brain during 
AS and QS.

Based on these premises, the aims of this study were: (1) 
to demonstrate that the spatio-temporal dynamics of the co-
activated brain areas arising in full-term neonates during QS 
and AS could be modeled by non-casual sequences of a lim-
ited number of microstates; (2) to verify whether the features 
of the neonatal microstates depend on specific frequency 
bands; (3) to characterize the unique microstate sequences 
describing the neonatal brain activity and brain dynamics 
during AS and QS by means of global microstate metrics.

Materials and Methods

Subjects and Recordings

A datasets of 60 full-term healthy newborn infants was col-
lated from cohorts that were published earlier for other pur-
poses (Tokariev et al. 2019a,b). In short, average gestational 
age (GA) at birth was 40.4 ± 1.8 weeks, and the EEG record-
ings were performed at an average GA of 41.3 ± 2 weeks at 
the Helsinki University Central Hospital.

The study design and procedures have been approved by 
the Ethics Committee of the Helsinki University Central 
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Hospital (Finland). Informed written consent was received 
from a guardian before inclusion of an infant into the study.

The EEG was recorded using the NicOne EEG amplifier 
(Cardinal Healthcare/Natus, USA) and EEG caps mount-
ing either 19 or 28 channels (sintered Ag/AgCl electrodes; 
Waveguard, ANT-Neuro, Germany) in a layout based on the 
international 10–20 system for electrode placement (Jurcak 
et al. 2007). The sampling frequency was not uniform for all 
recordings: the EEG signals were registered with a sampling 
frequency of 250, 256, or 500 Hz.

During the recording session, each neonate underwent 
both AS and QS, which were assessed by an expert using a 
combination of electrophysiological and behavioral meas-
ures derived from polygraphic channels, which included the 
electrocardiogram (ECG), the electrooculogram (EOG), the 
respiratory signal, and the chin electromyogram (EMG). For 
each neonate, the EEG recordings were split into epochs 
containing either AS or QS states, and then grouped accord-
ing to the sleep state. The duration of the final retained 
epochs ranged from 120 to 300 s among all neonates. The 
same 19 EEG channels (Fp1, Fp2, F3, F4, F7, F8, Fz, T7, 
T8, C3, C4, Cz, P3, P4, P7, P8, Pz, O1, O2) were selected 
from all recordings for further analysis.

Data Preprocessing

The EEG epochs were band-pass filtered with cut-off fre-
quencies at 0.15 and 45 Hz. For this purpose, we applied a 
combination of seventh-order low-pass and high-pass non-
causal Butterworth filters in both forward and backward 
directions. Then, all EEG epochs were down-sampled to 
100 Hz and re-referenced to the common-average montage. 
The segments showing more than half of the electrodes 
affected by excessive noise were visually identified and 
clipped from the epochs. Independent Component Analysis 
(ICA) was applied to the EEG epochs to remove the signal 
components containing cardiac, ocular, myographic and res-
piratory artifacts (Jung et al. 2000); the retained independent 
components were then re-projected onto the scalp to recon-
struct artefact-free EEG signals.

Microstate Analysis

Microstate analysis aims at identifying quasi-stable distri-
butions of scalp electric potentials originating from brain 
activity (Fig. 1). This analysis is broken-down in three steps: 
(1) identification of the dominant microstate templates from 
the different distributions of the electric scalp potential; 
(2) representation of the EEG time course by a sequence 
of dominant microstates; (3) characterization of the micro-
state sequences—hence the represented brain dynamics—by 
means of global microstate metrics. The EEGLAB plugin 
was used to extract microstate templates and to compute 

the microstate metrics (www.​thoma​skoen​ig.​ch/​index.​php/​
softw​are/).

Identification of the Dominant Microstate Templates

A two-step clustering analysis was performed using a modi-
fied version of the k-means clustering algorithm (Pascual-
Marqui et al. 1995). This procedure was used to identify the 
dominant microstate templates of AS and QS; therefore, it 
was separately applied to the groups of artefact-free AS or 
QS epochs. The first clustering step was applied to indi-
vidual EEG epochs. The global field power (GFP), defined 
as the standard deviation of the EEG signals across all 
electrodes (Lehmann and Skrandies 1980), was calculated 
according to Eq. (1):

where C is the number of channels, vj is the voltage in the 
jth channel, and 

−
v is the average voltage across all channels 

at each time sample. Then, the local GFP peaks, which cor-
respond to the time samples with the highest topographic 

(1)GFP =

�

∑C

j=1

�

vj − v̄
�2

C

Fig. 1   Schematic illustration of microstate analysis for the identifi-
cation of the global microstates. a Ten seconds of spontaneous EEG 
recordings during QS state  (neonate ID:1) against average reference 
(black traces) and GFP (red trace). b Two seconds of GFP and topog-
raphies related to the peaks of it. c The grand average global micro-
state templates labeled A to G. d Two seconds of microstate sequence 
derived by backfitting the global microstates to the GFP peaks. The 
color-coded areas under the curve indicate the assignment of the 
microstate map with the same color to the spontaneous EEG

http://www.thomaskoenig.ch/index.php/software/
http://www.thomaskoenig.ch/index.php/software/


558	 Brain Topography (2021) 34:555–567

1 3

signal to noise ratio (SNR) (Khanna et al. 2015), were iden-
tified. The scalp potential distributions corresponding to 
the extracted peaks were fed to the clustering algorithm, 
ignoring polarity inversion, to identify the dominant micro-
state templates (Fig. 1b). The number of possible microstate 
templates in the clustering algorithm was varied between 3 
and 15 and the optimal number of microstate templates was 
chosen based on the Krzanowski-Lai (KL) criterion as the 
number of microstate templates corresponding to the second 
KL maximum value (Murray et al. 2008). To find the most 
representative microstate templates across all subjects within 
a group (i.e., the global microstate templates across all EEG 
epochs of the AS or QS groups), the dominant microstate 
templates extracted at the individual level were fed into the 
group-clustering spatial k-means algorithm and the sleep 
state-specific global microstate templates for the AS and QS 
states were identified.

Reconstruction of the Dominant Microstate 
Sequences

To represent the brain dynamics by sequences of global 
microstates, the dominant microstate templates were back-
fitted to the EEG signals. This was done by calculating the 
spatial correlation between each global template and the 
scalp potential distributions at each GFP peak, ignoring 
polarity inversion. A specific global microstate template was 
then assigned to each GFP peak based on the highest spatial 
correlation value. The time points between GFP peaks were 
labeled by means of linear interpolation.

Calculation of Microstate Metrics

Individual sequences of dominant microstates can be typified 
by means of coded global metrics (Lehmann et al. 1987):

•	 Mean microstate duration (ms): the average time during 
which a microstate remains stable; this metric is an index 
of stability of the underlying brain dynamics.

•	 Mean microstate occurrence (Hz): average number of 
times per second that this microstate becomes dominant 
during the EEG time course; this metric indicates the 
tendency of underlying neural generators to be activated 
and become dominant.

•	 Mean microstate coverage (%): the percentage of the total 
time covered by a specific global microstate; this metric 
indicates the relative predominance of the activation of 
the neural network underlying a given microstate tem-
plate with respect to the others.

In addition to the above-mentioned metrics, we evaluated 
whether the sequence of dominant microstates followed a 
specific pattern that could characterize the underlying brain 

dynamics. For this purpose, we estimated the microstate syn-
tax, i.e. the rules governing the transition from one micro-
state to another during the EEG time course (Lehmann et al. 
2005). Briefly, the null hypothesis states that the transition 
from the current global microstate to another one is inde-
pendent of the current state and the transition occurs ran-
domly. To test this hypothesis, for each pair of microstates 
X and Y, the transition probability ( PX→Y ), i.e. the number 
of observed transitions from microstate X to Y divided by 
the total number of transitions among all microstates, was 
calculated. Under the null hypothesis (i.e., the casual transi-
tion from X to Y), the transition probability is proportional 
to the relative occurrence of microstates X and Y. In this 
case, the expected probability of transition from microstate 
X to Y is defined as:

where PX ( PY ) is the relative occurrence of microstate X 
( Y  ) which indicates the ratio of the number of occurrences 
of microstate X (Y) to the total number of microstates 
observed. To test the differences between expected and 
observed transition probabilities, these probabilities were 
computed for each epoch. Then the differences between 
the mean observed transition percentage ( PX→Y ) and the 
expected transition probability ( P∗

X→Y
 ) between two given 

dominant microstates were quantified by means of the chi-
square distance (D):

where the summation is taken over all possible pairs of 
dominant microstates. If the transition between two domi-
nant microstates does not depend on the current state, the 
expected transition does not differ from the observed transi-
tion, and the chi-square distance is equal to zero. In this case, 
the transition probability depends only on the occurrence 
of microstates and not on their sequence, as assessed by 
the expected probability calculated in Eq. (2). On the other 
hand, if the transition between two global microstate tem-
plates is driven by a law (i.e., in the case the null hypothesis 
is not verified), there is a structure in the microstate transi-
tions and the chi-square distance is greater than zero. To test 
the statistical significance of the chi-square distance (effect 
size), a randomization test with 5000 repetitions was used. 
In this test, it was assumed that the effect size is obtained 
by chance (null hypothesis). First, the labels expected and 
observed were randomly assigned to the transition prob-
abilities which were calculated for each group (AS and 
QS). Afterwards, the chi-square distance between observed 
and expected transition probabilities was computed. Using 
this procedure, the distribution of randomly generated chi-
square distances was obtained. To estimate the probability 

(2)P∗
X→Y

= PXPY∕
(

1 − PX

)

(3)DX,Y =
∑

X,Y

(

PX→Y − P∗
X→Y

)2
∕P∗

X→Y
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associated with an effect size obtained by chance, we com-
puted the ratio between the number of random effect sizes 
greater than the observed effect sizes and the total number of 
random effect sizes (5000). This led to a final p value stating 
the probability of the observed difference to be in the same 
distribution of the random distances.

Finally, we calculated the directional predominance 
(Lehmann et al. 2005), that quantifies, for all possible pairs 
of dominant microstates, the directional asymmetries in the 
transitions between two microstates. The directional pre-
dominance of X ↔ Y  is calculated as the difference between 
the observed transition probability to transit from X to Y and 
the probability to transit from Y to X. A significant positive 
value of X ↔ Y shows a higher tendency to transit from X to 
Y  , while a significant negative value indicates the opposite.

Topographical Analysis

Separately for AS and QS, we quantified the global EEG 
signal variance explained by the obtained sets of dominant 
microstate templates (Global Explained Variance—GEV). 
This metric quantifies the ability of the dominant microstate 
templates to describe the dataset (Murray et al. 2008).

Then, we evaluated the similarity of the global microstate 
templates of the same type in the two groups (AS and QS) by 
means of the topographical analysis of variance (TANOVA 
(Michel et al. 2009)). TANOVA is based on the evaluation 
of effect size between groups. We quantified the effect size 
by computing the global dissimilarity (GD) between pairs 
of global microstate templates as:

where ui and vi are the electric potentials of the ith electrode 
in the microstate templates u and v respectively; GFPu and 
GFPv are the global field powers of the microstate templates 
(u and v); N is the number of electrodes. GDu,v has an indi-
rect relationship with the spatial correlation between two 
maps. In other words, the lower global dissimilarity is, the 
higher spatial correlation is.

Narrow‑Band Analysis

Based on the knowledge that the infant broadband EEG 
activity derives from several functional mechanisms char-
acterized by different frequency components, we tested 
whether the results of microstate analysis depended on 
frequency. Although the power spectral density (PSD) of 
the neonatal EEG has a 1/f shape (see Fig. S1 in Online 
Resource 1 and Table S1 in Online Resource 2), we then 
performed microstate analysis of the EEG signals filtered 

(4)GDu,v =

√

√

√

√
1

N

N
∑

i=1

(

ui

GFPu

−
vi

GFPv

)2

into five different frequency bands: delta (0.5–4 Hz), theta 
(4–8 Hz), alpha (8–13 Hz), beta (13–25 Hz), and gamma 
(25–45 Hz). To filter the EEG signals, a combination of 
seventh-order low-pass and high-pass non-causal Butter-
worth filters in both forward and backward directions was 
applied. For each filtered dataset, the clustering procedure 
described above was applied to extract the dominant micro-
state templates. The microstate templates were back-fitted 
to the band-passed EEG signals and the GEV and other 
microstate metrics (duration, occurrence, and coverage) 
were calculated. To verify a possible linear relationship 
between microstate metrics and frequency, the regression 
line was fitted between the log-transformed values of micro-
state metrics (averaged across the seven dominant microstate 
templates) and the log-transformed median frequency of the 
considered five frequency bands (i.e., the frequencies 2.25, 
6, 10.5, 19 and 35 Hz respectively for delta, theta, alpha, 
beta, and gamma bands).

Statistical Analysis

The statistical differences between microstate metrics 
(duration, occurrence, and coverage) in the two sleep states 
(AS, QS) were assessed with a two-way repeated-measure 
ANOVA design with sleep states and microstate templates as 
within-subject factors. When the sphericity assumption was 
not met, the Greenhouse–Geisser correction was applied. 
When an interaction between sleep states and microstate 
templates was identified, a Bonferroni corrected post-hoc 
paired t-test was performed to compare the microstate met-
rics obtained for the two sleep states.

Similarly, the repeated-measure ANOVA was used to test 
the statistical significance of differences in the directional 
predominance between sleep states. In this case, sleep states 
and directional predominance were considered as within-
subject factors. Post-hoc false discovery rate (FDR) (Ben-
jamini and Hochberg 1995) corrected comparisons were 
performed between sleep states. To test if a significant direc-
tional predominance in the transition between two microstate 
templates occurred, for AS and QS separately the directional 
predominance values were compared with the null value 
employing the FDR corrected one-sample t-test.

Results

Optimal Number of Microstate Templates and their 
Spatial Configuration

We observed that the GEV increased with the num-
ber of microstate templates for both AS and QS (Fig. 2, 
black lines). However, GEV did not increase more than 
1% when the number of microstate templates varied 
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from 7 to 15. According to the KL criterion, the optimal 
number of microstate templates was then equal to 7 for 
both sleep states. By using seven microstate templates, 
we obtained GEV = 69.06% ± 3.12% for the AS group 
and GEV = 70.45% ± 3.01% for the QS group. We also 
observed that GEV depended on frequency for both sleep 
states (Fig. 2). The GEV of the 7 global microstate tem-
plates calculated for the EEG data filtered in delta band 
was higher than the broad-band GEV values for both AS 
and QS (paired sample t test, p > 0.001 for both AS and 
QS), whereas the GEV of the 7 global microstate tem-
plates calculated for the alpha, beta and gamma frequency 
bands were always lower than the broad-band GEV values 
for both AS and QS (Fig. 2, p > 0.001).

The topographic comparison of the dominant micro-
state templates (A-G) obtained for AS and QS in broad-
band data showed no significant differences between the 
individual templates in the two groups (p > 0.5) (Fig. 3). 
Therefore, subsequent analyses were performed using 
dominant microstate templates extracted from EEG sig-
nals pooled from both the AS and QS groups to create 
dominant microstate templates that were independent 
of the sleep state. These sleep-state-independent domi-
nant maps were calculated by means of a cluster analy-
sis across the AS and QS groups of all individual tem-
plates. This allowed us to directly compare the results of 
microstate analysis obtained for AS and QS. The GEV of 
these new dominant broad-band microstate templates was 
68.94% ± 3.01% (Fig. 3c).

Microstate Metrics

The ANOVA on mean microstate duration and occurrence 
showed a significant main effect of sleep states (p < 0.001, 
Table 1). In particular, the dominant microstate templates 
had a significantly longer duration in QS than in AS and 
occurred less frequently during QS than during AS (Fig. 4). 
A significant main effect of microstate templates was also 
found for all metrics (p < 0.001, Fig. 4), showing different 
duration, occurrence and coverage for the seven dominant 
microstate templates (Fig. 4, Table S2 in Online Resource 
3), as well as a significant sleep states × microstate tem-
plates interaction (p < 0.001). The post hoc t-test showed 
significant differences (p < 0.001, Fig. 4, Table S2 in Online 
Resource 3) for the mean microstate duration (all dominant 
microstate templates), the mean microstate occurrence (all 
dominant microstate templates), and the mean microstate 
coverage (only dominant microstate templates A, D, F and 
G). Finally, significant differences were detected for the 
coverage of dominant microstate templates in QS and AS: 
microstate templates A and G had a higher coverage in QS 
than in AS, whereas microstate templates D and F had a 
higher coverage in AS than in QS. No significant differences 
were found for the coverage of the remaining microstate 
templates (Fig. 4). 

When considering the microstates extracted from the 
band filtered EEG data, a clear dependence of the micro-
state duration on frequency was found, so that microstates 
extracted from lower frequencies had a much longer duration 

Fig. 2   Mean values of the GEV 
as a function of the number of 
microstate templates in different 
frequency bands. (Broad-Band: 
black, Delta: magenta, Theta: 
green, Alpha: blue, Beta: yel-
low, Gamma: gray) for AS and 
QS. The shaded area shows the 
GEV standard deviation for the 
broad-band analysis
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(Fig. 5, Fig. S2 in Online Resource 4). In particular, the 
log–log plot of duration over frequency showed a nega-
tive linear relationship (slope of regression line -0.876 and 
-0.878 and R-squared value 0.986 and 0.968 for AS and QS 
respectively). Similarly, microstate occurrence changed with 
frequency, with an increase of occurrence values with higher 
frequencies (Fig. 5, Fig. S2 in Online Resource 4, slope of 
regression line 0.875 and 0.879 and R-squared value 0.986 
and 0.989 for AS and QS respectively). A clear depend-
ence of microstate coverage on frequency was not observed 
(Fig. S2 in Online Resource 4). A positive linear relation-
ship between the log-transformed microstate duration and 
the log-transformed spectral power within each frequency 
band was found (Fig. S3 in Online Resource 5).

Transitions between Microstates

The randomization test on the chi-squared distance between 
the observed and the expected transition probabilities in 
pairs of microstate templates showed, for both AS and 
QS, that the observed transitions followed a structure (AS: 
p = 0.0072; QS: p = 0.0084). In other words, the transitions 

Fig. 3   a The seven dominant microstate templates for AS and QS. b The dissimilarity matrix showing the dissimilarity index between all pos-
sible pairs of templates. c The grand average dominant microstate templates

Table 1   Results of Greenhouse–Geisser corrected repeated-measure 
ANOVA for mean microstate duration, occurrence and coverage

NA computation for group effect of coverage is not applicable 
because total coverage is 100%
*Statistically significant

df F p �2
p

Duration
 Sleep States 1.00, 59.00 254.03 *4.8E−23 0.812
 Microstate templates 4.32, 254.99 27.54 *4.3E−20 0.318
 Interaction 4.07, 239.96 15.17 *3.3E−11 0.205

Occurrence
 Sleep states 1.00, 59.00 218.37 *1.7E−21 0.787
 Microstate templates 4.87, 287.35 71.43 *1.3E−47 0.548
 Interaction 4.68, 276.07 24.64 *1.5E−19 0.295

Coverage
 Sleep states NA NA NA 0
 Microstate templates 4.64, 273.78 51.07 *1.8E−35 0.464
 Interaction 4.58, 270.70 26.73 *1.2E−20 0.312
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from one microstate template to another during AS and 
QS were not determined by the occurrence frequencies of 
the microstate templates. For both AS and QS, the FDR 
corrected one-sample t-test showed significant positive 

and negative values of the directional predominance. This 
result indicates that significant preferential transitions 
between pairs of dominant microstate templates occurred 
in both sleep states (see Fig.  6a,b). The results of the 

Fig. 4   The average of micro-
state duration, occurrence, 
and coverage for all global 
microstate templates (A to G) 
extracted from broad-band EEG 
signals across AS (in blue) and 
QS (in red) epochs. Significant 
differences (p < 0.001) identified 
using post-hoc paired t-test are 
marked by an asterisk

Fig. 5   Log–log plot of mean values of duration and occurrence (aver-
aged across all the seven templates) over the mean values of the delta, 
theta, alpha, beta and gamma frequency bands (natural logarithm 

of 2.25, 6, 10.5, 19, 35 Hz respectively) for both AS (blue) and QS 
(red). Vertical bars represent standard deviations
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repeated-measure ANOVA (2 sleep states × 21 directional 
predominance as within-subjects factors) showed a signifi-
cant interaction between sleep states and directional pre-
dominance [F(10.36,611.67) = 6.080, p < 0.001,�2

p
= 0.093 ] 

and a significant main effect of directional predominance 
[F(9.97,588.71) = 4.98, p < 0.001,�2

p
= 0.078 ], whereas 

no significant main effect of sleep states (p > 0.300) was 
observed. The FDR corrected post hoc t-test between all 
possible pairs of directional predominance showed signifi-
cant differences between specific microstate pairs in AS and 
QS states (Fig. 6c,d).

Discussion

In this study, we identified seven microstates that charac-
terize approximately 70% of the neonatal cortical activity 
during AS and QS states. This result is in agreement with 

adult studies in terms of the percentage of EEG variance 
that can be explained by the extracted microstate templates 
(Michel and Koenig 2018), although it must be observed 
that the optimal number of microstate templates for neonatal 
EEG—as determined with the Krzanowski-Lai (KL) crite-
rion—was higher than in the case of adult EEG. The higher 
number of microstate templates required to reach high GEV 
in neonates as compared to adults could be due to the fact 
that newborn EEG is typically recorded and analyzed during 
sleep, whereas adult studies are typically performed during 
awake state. To our knowledge, only two microstate studies 
in adults reported data during non-REM sleep (no microstate 
studies on adult REM sleep exist), indicating lower GEV 
values in comparison with those obtained for newborns: 
Brodbeck et al. (2012) reported GEV between 60 and 67%, 
whereas Xu et al. (2020) reported GEV values around 65%.

When comparing the GEV values obtained in newborns 
with those obtained in adults, particular attention should 

Fig. 6   Microstate syntax in AS and QS states. a, b The directional 
predominance of transitions differed significantly from zero in AS 
and QS states (black and gray arrows). The directional transitions 
A → F, F → B, C → F and C → E were significant in AS and not sig-
nificant in QS; the directional transition F → E was significant in 
QS and absent in AS; the transition loop A → F → B → A was sig-

nificant in AS and absent in QS. c Transitions including A ↔ B, 
B ↔ F, D ↔ F, D ↔ G, F ↔ G showed significant differences in direc-
tional predominance. d Reversed transitions between microstates 
in AS and QS are given. The transition B → A was dominant in AS, 
whereas it was reversed in QS (A → B). Similarly, the transition loop 
D → G → F → D present in AS was reversed in QS (D → F → G → D)
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be paid to the frequency content of EEG signals. In adult 
EEG, microstate analysis has been traditionally used to 
detect broad-band brain activity and dynamics (Michel and 
Koenig 2018) independently from the temporally overlap-
ping sub-processes occurring at different frequencies that 
may contribute to the dynamics of the observable EEG 
signals. In most adult studies, EEG signals are bandpass-
filtered between 1 (or 2) Hz and 30 (or 40) Hz, and it is well 
known that scalp EEG at rest in adults is dominated by alpha 
rhythm. Indeed, spatial fluctuations and temporal modula-
tions of alpha power have been linked to the emergence and 
persistence of specific microstates (Milz et al. 2017; Croce 
et al. 2020). Nevertheless, recent studies raised the question 
about whether the broad-band activity should be spectrally 
differentiated in order to identify and describe spatio-tempo-
rally overlapping spectral patterns (Javed et al. 2019, 2020). 
A recent study in adults found that during NREM sleep low 
frequencies dominated in all microstates, whereas the EEG 
power for high frequencies was higher during wakefulness 
(Brechet et al. 2020). Our results confirmed that microstate 
analysis may be frequency-dependent, and the GEV is higher 
for lower oscillatory frequencies. This is compatible with the 
idea that neonatal EEG is dominated by lower frequencies 
(Vanhatalo et al. 2005) and that the spatial topography is 
more complex at higher frequencies, both in infants (Oda-
baee et al. 2013) and in adults (Freeman et al. 2003).

Our results showed that the global microstate templates 
are comparable between the two neonatal sleep states. Con-
versely, the EEG dynamics, described by the sequences of 
rapid transitions between microstate templates, is signifi-
cantly different in AS and QS (Tokariev et al. 2016). In par-
ticular, we observed longer mean microstate duration and 
a reduced mean microstate occurrence during QS, which 
may relate to higher power associated with lower frequen-
cies during QS vs. AS (Tokariev et al. 2016). The reduced 
microstate occurrence during QS can also be related to the 
increased microstate duration: the values of these two micro-
state metrics may indicate a generally lower information pro-
cessing during QS, in agreement with adult findings on the 
underpinnings of deeper sleep states (Tononi and Massimini 
2008).

The average microstate duration obtained from our 
cohort of neonatal EEG datasets was about 110–150 ms, 
much longer than the values found in adult microstate stud-
ies during different sleep states (Brodbeck et al. 2012), 
where an average microstate duration of about 40–100 ms 
was reported. These results seem to be in agreement with 
normative data on rest EEG in awake state that report a gen-
eral dependence of microstate metrics on age. Koenig et al. 
reported that the average microstate duration was reduced 
from 6-years old children to 30-years old adults (children: 
94.4 ± 3.4 ms; adults: 80.8 ± 3.4 ms), whereas the average 
microstate occurrence was increased (children:10.5 ± 0.4 Hz; 

adults: 12.4 ± 0.8 Hz) (Koenig et al. 2002). The prolonged 
average microstate duration observed in neonates could be 
related to the predominant lower frequency content of the 
infant EEG with respect to the adult EEG. Moreover, our 
data showed that microstate metrics depended on frequency. 
The log–log plot of duration over frequency showed a nega-
tive linear trend, suggesting a scale-invariant behavior of 
microstate dynamics in the neonatal EEG. Scale-invariant 
features of neonatal brain dynamics have been previously 
described (Iyer et al. 2015; Matic et al. 2015; Namazi and 
Jafari 2018), and, recently, Jannesari et al. (2020) observed, 
in the EEG of 6–12 month infants during sensory process-
ing, suprathreshold events arranged in spatio-temporal 
clusters, whose size and duration follow a power-law (Jan-
nesari et al. 2020). These events have been interpreted as 
hallmarks of neuronal avalanches, previously described in 
adults (Allegrini et al. 2010; Benayoun et al. 2010; Meisel 
et al. 2013; Palva et al. 2013; Priesemann et al. 2013; Shriki 
et al. 2013; Arviv et al. 2019). The stable topographies 
(microstates) whose duration follows a power-law, such as 
what we found for neonatal EEG during AS and QS, could 
be considered similar to the small-short local and wide-long 
global functional organization typical of avalanches (Peter-
mann et al. 2009).

Our results also indicated that microstate sequences 
representing the EEG time course are non-casual. In other 
words, the co-activation of specific brain regions, resulting 
in a specific topographic map, facilitates the co-activation 
of another group of brain regions, in a sequential way that 
is compatible with time-parceled microstate sequences. We 
detected different non-casual directional transitions and tran-
sitional loops that were specific of QS and AS. This find-
ing sides well with results of adult studies demonstrating 
that the transition probabilities between microstates are not 
casual, and that transition preferences occur (Lehmann et al., 
2005) and are altered in pathological conditions (Nishida 
et al. 2013; Tomescu et al. 2015; Vellante et al. 2020). In 
adult studies, the sequences of microstates have been inter-
preted as an “evolutionary determined, brain-intrinsic biases 
toward particular patterns of co-activation particularly suited 
to represent environmental relevant information” (Michel 
and Koenig 2018). This interpretation can be adapted to 
EEG microstates in neonates. Our results showed quasi-
stable patterns of spatio-temporal activity in the neonatal 
brain that were different in AS and QS. This phenomenologi-
cal observation should be explained in terms of functional 
relevance and significance of microstate dynamics for the 
development of the neonatal brain. Future ad-hoc studies are 
needed to clarify this issue and to associate microstate fea-
tures, dynamics and transitions with function and behavior.

In an attempt to understand the functional significance 
of microstates, combined EEG-fMRI studies in adults at 
rest associated each microstate with a specific resting-state 
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network or an ensemble of resting-state networks (Britz 
et al. 2010; Michel and Koenig 2017; Rajkumar et al. 
2020; Xu et al. 2020). These studies demonstrated that 
different microstate templates mirror distinct neuronal 
synchronized networks and that the microstate dynamics 
reflects the dynamic synchronization of such networks. 
The immaturity of the neurovascular coupling in neonates 
makes such direct interpolations across age groups prob-
lematic (Kozberg and Hillman 2016). However, recent 
EEG studies detected large-scale coupling in the neonatal 
neural activity, which seems to depend on the sleep state 
(Tokariev et al. 2016, 2019b; Tóth et al. 2017). Given that 
microstate templates represent the co-activation of neu-
ral pools in distinct brain areas and that their dynamics 
may characterize brain functions, an interesting question 
regards the relationship between functional connectivity 
features and EEG microstates in neonates. Future studies 
should investigate whether specific microstate templates 
may be associated with patterns of functional connectivity 
also in neonates, and whether the microstate features and 
sequences observed in AS and QS can be related to dif-
ferent developmental functions and behavior, as partially 
done in adults (Milz et al. 2016; Seitzman et al. 2017).

In conclusion, our results showed that: (1) the spatio-
temporal dynamics contained in the neonatal EEG can be 
described by non-casual sequences of a limited number 
of dominant microstate templates; (2) the brain dynam-
ics described by these microstate templates depends on 
frequency; (3) the features of the microstate sequences 
can capture and model the rapid changes occurring in the 
activity of the neonatal brain during different sleep states 
and can differentiate the different physiological condi-
tions of AS and QS. Although further studies are needed 
to characterize the functional and developmental signifi-
cance of microstate sequences, our study demonstrated 
that microstate analysis can contribute to advancing our 
knowledge of the mechanisms underpinning the onset and 
development of neural activity in the neonatal brain.
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