Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

7-(5-Methylsulfanyl- β-D-erythrofuran-osyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine monohydrate (MT-tubercidin $\cdot \mathrm{H}_{2} \mathrm{O}$)

Graeme J. Gainsford,* Richard F. G. Fröhlich and Gary B. Evans

Carbohydrate Chemistry Group, Industrial Research Limited, PO Box 31-310, Lower Hutt 5040, New Zealand
Correspondence e-mail: g.gainsford@irl.cri.nz
Received 21 April 2010; accepted 28 May 2010
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.039 ; w R$ factor $=0.091$; data-to-parameter ratio $=12.4$.

The title compound, $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$, which has potential as a possible antimalarial drug, was studied when small deviations in melting points, for two differently aged preparations, were observed. The unexpected existence of a water molecule of crystallization is considered to be the cause of this variation. The $7 H$-pyrrolo $2,3-d]$ pyrimidine unit is very slightly puckered with a total puckering amplitude of 0.035 (2) \AA; its mean plane makes an angle of $88.40(12)^{\circ}$ with the mean plane through the ribofuranosyl unit. In the crystal, the molecules are bound by strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, utilizing all available protons and linking mainly through the water of crystallization.

Related literature

For details of the synthesis of and for background to the title compound, see: Riegelhaupt et al. (2010). For related structures, see: Seela et al. (2007); Abola \& Sundaralingam (1973). For ring conformations, see: Cremer \& Pople (1975). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$
$V=1433.7(5) \AA^{3}$
$M_{r}=314.36$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$b=16.610(3) \AA \quad T=100 \mathrm{~K}$
$\mu=2.22 \mathrm{~mm}^{-1}$
$c=18.020$ (4) \AA
$0.50 \times 0.02 \times 0.02 \mathrm{~mm}$
Data collection
Rigaku Spider diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.712, T_{\text {max }}=1.0$
8013 measured reflections 2582 independent reflections 2422 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.045$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.091$
$S=1.08$
2582 reflections
209 parameters
2 restraints

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.29 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.33 \mathrm{e} \mathrm{A}^{-3}$
Absolute structure: Flack (1983),
986 Friedel pairs
Flack parameter: 0.02 (2)

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{\prime}-\mathrm{H}^{\prime} O \cdots \mathrm{~N}^{\text {i }}$	$0.79(3)$	$1.99(3)$	$2.776(3)$	$173(3)$
$\mathrm{O}^{\mathrm{i}} W-\mathrm{H} 1 A \cdots 3^{\prime}$	$0.82(3)$	$1.96(3)$	$2.748(3)$	$162(3)$
$\mathrm{O}^{\prime} W-\mathrm{H} 1 B \cdots \mathrm{O}^{\prime \text { iii }}$	$0.80(3)$	$2.07(3)$	$2.848(3)$	$162(3)$
$\mathrm{O}^{\prime}-\mathrm{H}^{\prime} O \cdots \mathrm{~N} 1^{\text {iii }}$	$0.84(3)$	$1.94(3)$	$2.766(3)$	$166(3)$
${\mathrm{N} 6-\mathrm{H} 6 A \cdots \mathrm{O} W^{\text {iv }}}$	$0.90(3)$	$2.12(3)$	$2.998(3)$	$166(3)$
$\mathrm{N} 6-\mathrm{H} 6 B \cdots \mathrm{O} 1 W^{v}$	$0.82(3)$	$2.13(3)$	$2.928(3)$	$164(3)$

Symmetry codes: (i) $x+1, y, z$; (ii) $x-1, y, z$; (iii) $-x+\frac{1}{2},-y+1, z-\frac{1}{2}$; (iv) $-x+\frac{1}{2},-y+1, z+\frac{1}{2} ;(\mathrm{v})-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.

Data collection: CrystalClear (Rigaku Americas, 2005); cell refinement: FSProcess in PROCESS-AUTO (Rigaku, 1998); data reduction: FSProcess in PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

We thank the MacDiarmid Institute for Advanced Materials and Nanotechnology for funding of the diffractometer equipment.

[^0]
organic compounds

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Riegelhaupt, P. M., Cassera, M. B., Froehlich, R. F. G., Hazelton, K. Z., Hefter, J. J., Schramm, V. L. \& Akabas, M. H. (2010). Mol. Biochem. Parasitol. 169, 40-49.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku Americas (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.
Seela, F., Peng, X., Eickmeier, H. \& Reuter, H. (2007). Acta Cryst. C63, o96o98.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

7-(5-Methylsulfanyl- $\beta_{\text {-D-erythrofuranosyl)-7H-pyrrolo }[2,3-d] \text { pyrimidin-4-amine }}$ (MT-tubercidin $\cdot \mathrm{H}_{2} \mathrm{O}$)

G. J. Gainsford, R. F. G. Fröhlich and G. B. Evans

Comment

The title compound was prepared as part of a study of purine transport or purine salvage pathway inhibitors with potential as alternative anti-malarial drugs (Riegelhaupt et al., 2010). Its common name is 7-(5'Methylthio- β-D-erythrofuranosyl)$7 H$-pyrrolo[2,3- d] pyrimidin-2-amine monohydrate usually shortened to MT-tubercidin. $\mathrm{H}_{2} \mathrm{O}$ while the conventional name is 2-(4-Amino-pyrrolo[2,3- d]pyrimidin-7-yl)-5-methylsulfanylmethyl -tetrahydrofuran-3,4-diol monohydrate. The structural solution showed that in both batches there was an unexpected water molecule of crystallization, a likely cause of the variation in melting points with differently aged samples. The results for the better crystals are presented here. The asymmetric unit contents are shown in Figure 1.

The absolute configuration is defined as $\mathrm{C}^{\prime}(R), \mathrm{C} 2^{\prime}(R), \mathrm{C} 3^{\prime}(\mathrm{S})$ and $\mathrm{C} 4^{\prime}(\mathrm{S})$ with the ribofuranosyl unit adopting an (C2'-)endo-envelope Δ conformation ($\mathrm{Q}(2) 0.434$ (3) \AA, $\varphi(2) 76.3$ (3) ${ }^{\circ}$, Cremer \& Pople (1975)). The 7H-pyrrolo[2,3$d]$ pyrimidine unit is very slightly puckered with total puckering amplitude of 0.035 (2) \AA : its mean plane makes an angle of $88.40(12)^{\circ}$ with the mean plane through the ribofuranosyl unit. The orientation of the $\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$ bond is slightly different (with $\mathrm{O} 4{ }^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{N} 9-\mathrm{C} 4$ torsion angle of $-126.6(2)^{\circ}$) to that found in the related compounds 2'-Deoxy-2-fluorotubercidin $\left(-110.2(3)^{\circ}\right.$, Seela et al., 2007) and tubercidin (-112.8 (4) ${ }^{\circ}$, Abola \& Sundaralingam, 1973). Other dimensions are normal.

The molecules are packed in three dimensions using 6 strong hydrogen bonds of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ types (Table 1). The graph set motifs (Etter et al., 1990; Bernstein et al., 1995) are extensive at the binary level: $\mathrm{C}^{2}{ }_{2}(7), \mathrm{C}_{2}^{2}(9), \mathrm{C}^{2}{ }_{2}(11)$, $\mathrm{C}^{2}{ }_{2}(12), \mathrm{C}^{2}{ }_{2}(17), \mathrm{D}^{3}{ }_{3}(10), \mathrm{D}^{3}{ }_{3}(13), \mathrm{D}^{3}{ }_{3}(14), \mathrm{D}^{3}{ }_{3}(15), \mathrm{D}^{3}{ }_{3}(17)$ and $\mathrm{D}^{3}{ }_{3}(18)$ types are found being based mainly on linked chains through the included water molecule (the latter feature is shown in Figure 2). The $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction involving the methyl hydrogen H6'A and the 5-membered pyrrolo ring (at $2.80 \AA$) is considered fortuitous but noted here for completeness.

Experimental

The title compound was prepared as described in the supplementary data section (compound 10) by Riegelhaupt et al. (2010).

Refinement

The H atoms of the ordered hydroxyl, water and amine atoms were placed in the positions indicated by a difference electron density map and their positions were allowed to refine with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O}, N)$. The water H atoms were restrained to an $\mathrm{O}-\mathrm{H}$ distance of $0.82(2) \AA$. The methyl H atoms were constrained to an ideal geometry $(\mathrm{C}-\mathrm{H}=0.98 \AA)$ with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely about the adjacent $\mathrm{C}-\mathrm{C}$ bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (aromatic), 0.99 (methylene) or 1.00 (tertiary) \AA with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, N)$. Thirty-four high angle outlier reflections identified by having $\mathrm{F}_{\mathrm{o}} \gg \mathrm{F}_{\mathrm{c}}$ and

supplementary materials

collected in the same area of reciprocal space (and with $\Delta \mathrm{F}_{\mathrm{o}} * * 2 /$ e.s.d. >5) were omitted from the final cycles of refinement based on the lack of backstop mask corrections.

Figures

Fig. 1. An ORTEP (Farrugia, 1999) view showing the asymmetric unit of (I) with 50% probabilility ellipsoids. The dotted lines represents an intermolecular hydrogen bond.

Fig. 2. Mercury cell packing view (Macrae et al., 2006) emphasizing the links with the water of crystallization: conventional hydrogen bonds not running up the a axis are shown (dotted lines).For the complete hydrogen bonding set see Table 1 . Contact atoms are shown in ball mode; H atoms are omitted for clarity. Symmetry operations: (i) $1-x, y-1 / 2,3 / 2-z$ (ii) $1 / 2-1$.
$x, 1=y, 1 / 2+z$. $x, 1-y, 1 / 2+z$.

7-(5-Methylsulfanyl- β-D-erythrofuranosyl)-7 H-\ pyrrolo[2,3-d]pyrimidin-4-amine monohydrate

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$
$F(000)=664$
$M_{r}=314.36$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=4.790(1) \AA$
$b=16.610$ (3) \AA
$c=18.020$ (4) \AA
$V=1433.7(5) \AA^{3}$
$Z=4$

Data collection

Rigaku Spider
diffractometer
Radiation source: Rigaku MM007 rotating anode
Rigaku VariMax-HF Confocal Optical System
Detector resolution: 10 pixels mm^{-1}
ω-scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.712, T_{\text {max }}=1.0$
8013 measured reflections

2582 independent reflections
2422 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.045$
$\theta_{\text {max }}=71.9^{\circ}, \theta_{\text {min }}=7.3^{\circ}$
$h=-5 \rightarrow 2$
$k=-20 \rightarrow 20$
$l=-21 \rightarrow 19$

Refinement

Refinement on F^{2} Secondary atom site location: difference Fourier map

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.091$
$S=1.08$
2582 reflections
209 parameters

2 restraints

Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.031 P)^{2}+0.7234 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.33$ e \AA^{-3}
Absolute structure: Flack (1983), 986 Friedel pairs
Flack parameter: 0.02 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
S1	$0.97214(14)$	$0.38389(4)$	$0.36963(3)$	$0.01889(16)$
O1W	$0.2297(5)$	$0.66101(10)$	$0.58560(11)$	$0.0210(4)$
H1A	$0.363(5)$	$0.6337(16)$	$0.5723(16)$	0.032^{*}
H1B	$0.110(6)$	$0.6336(16)$	$0.6041(16)$	0.032^{*}
O2'	$0.8902(4)$	$0.53482(10)$	$0.64314(9)$	$0.0155(4)$
H2'O	$0.971(7)$	$0.5148(17)$	$0.6768(15)$	0.023^{*}
O3'	$0.6026(4)$	$0.56178(10)$	$0.51450(10)$	$0.0171(4)$
H3'O	$0.553(7)$	$0.5708(17)$	$0.4704(16)$	0.026^{*}
O4'	$0.4719(4)$	$0.38417(10)$	$0.55162(8)$	$0.0166(4)$
N1	$0.1518(5)$	$0.40830(11)$	$0.87950(11)$	$0.0148(5)$
C2	$0.0798(6)$	$0.45356(14)$	$0.82094(13)$	$0.0152(5)$
H2	-0.0681	0.4906	0.8293	0.018^{*}
N3	$0.1866(5)$	$0.45398(11)$	$0.75258(11)$	$0.0132(4)$
C4	$0.3891(6)$	$0.39748(13)$	$0.74463(13)$	$0.0126(5)$
C5	$0.4795(6)$	$0.34442(13)$	$0.79930(13)$	$0.0130(5)$
C6	$0.3551(5)$	$0.35230(14)$	$0.87012(13)$	$0.0144(5)$
N6	$0.4318(5)$	$0.30707(13)$	$0.92757(12)$	$0.0188(5)$
H6A	$0.355(7)$	$0.3126(17)$	$0.9726(16)$	0.028^{*}
H6B	$0.552(7)$	$0.2722(17)$	$0.9214(17)$	0.028^{*}
C7	$0.6937(6)$	$0.29487(14)$	$0.76725(14)$	$0.0155(5)$

H7	0.7949	0.2532	0.7913	0.019^{*}
C8	$0.7228(6)$	$0.31939(14)$	$0.69593(14)$	$0.0141(5)$
H8	0.8501	0.2971	0.6611	0.017^{*}
N9	$0.5374(4)$	$0.38247(11)$	$0.68120(10)$	$0.0128(4)$
C1' $^{\prime}$	$0.5393(6)$	$0.43227(14)$	$0.61535(12)$	$0.0139(5)$
H1' $^{\prime}$	0.3971	0.4760	0.6208	0.017^{*}
C2' $^{\prime}$	$0.8210(6)$	$0.46963(14)$	$0.59653(13)$	$0.0133(5)$
H2' $^{\prime}$	0.9698	0.4276	0.5998	0.016^{*}
C3' $^{\prime}$	$0.7750(6)$	$0.49214(14)$	$0.51606(14)$	$0.0138(5)$
H3' $^{\prime}$	0.9552	0.5009	0.4892	0.017^{*}
C4' $^{\prime}$	$0.6191(6)$	$0.41680(15)$	$0.48763(13)$	$0.0139(5)$
H4' $^{\prime}$	0.4815	0.4328	0.4486	0.017^{*}
C5' $^{\prime}$	$0.8164(6)$	$0.35258(16)$	$0.45686(13)$	$0.0188(6)$
H5'A $^{\prime}$	0.7116	0.3019	0.4492	0.023^{*}
H5'B	0.9660	0.3419	0.4935	0.023^{*}
C6' $^{\prime}$	$0.7305(6)$	$0.34328(16)$	$0.30226(15)$	$0.0219(6)$
H6'A	0.7358	0.2843	0.3041	0.033^{*}
H6'B	0.7835	0.3615	0.2525	0.033^{*}
H6'C	0.5412	0.3620	0.3137	0.033^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0145(4)$	$0.0267(3)$	$0.0155(3)$	$-0.0023(3)$	$0.0037(3)$	$-0.0050(3)$
O1W	$0.0206(12)$	$0.0217(9)$	$0.0208(10)$	$-0.0034(8)$	$0.0045(8)$	$0.0000(8)$
O2'	$0.0170(10)$	$0.0174(8)$	$0.0120(9)$	$-0.0004(7)$	$-0.0028(8)$	$-0.0007(7)$
O3' $^{\prime}$	$0.0200(11)$	$0.0205(9)$	$0.0108(8)$	$0.0075(8)$	$-0.0027(8)$	$0.0023(7)$
O4'	$0.0138(10)$	$0.0262(9)$	$0.0096(8)$	$-0.0044(9)$	$0.0006(8)$	$-0.0020(7)$
N1	$0.0160(12)$	$0.0172(10)$	$0.0113(10)$	$0.0002(8)$	$-0.0001(9)$	$0.0006(8)$
C2	$0.0135(14)$	$0.0164(11)$	$0.0157(12)$	$0.0007(10)$	$-0.0020(11)$	$-0.0023(10)$
N3	$0.0108(11)$	$0.0172(9)$	$0.0117(11)$	$0.0010(8)$	$-0.0005(9)$	$-0.0015(9)$
C4	$0.0102(13)$	$0.0155(11)$	$0.0121(12)$	$-0.0032(9)$	$-0.0034(10)$	$-0.0014(10)$
C5	$0.0113(14)$	$0.0155(10)$	$0.0123(11)$	$-0.0002(10)$	$0.0009(11)$	$0.0012(9)$
C6	$0.0153(14)$	$0.0157(11)$	$0.0121(11)$	$-0.0018(10)$	$-0.0028(11)$	$-0.0004(10)$
N6	$0.0235(15)$	$0.0226(10)$	$0.0104(10)$	$0.0066(10)$	$0.0018(10)$	$0.0015(9)$
C7	$0.0130(14)$	$0.0162(11)$	$0.0174(12)$	$0.0012(10)$	$-0.0002(12)$	$0.0008(10)$
C8	$0.0105(14)$	$0.0158(11)$	$0.0160(13)$	$0.0017(10)$	$0.0025(11)$	$-0.0035(10)$
N9	$0.0104(11)$	$0.0170(9)$	$0.0110(10)$	$-0.0010(9)$	$0.0025(9)$	$0.0006(8)$
C1'	$0.0133(15)$	$0.0196(11)$	$0.0089(11)$	$0.0001(10)$	$-0.0008(10)$	$-0.0001(9)$
C2'	$0.0077(13)$	$0.0178(11)$	$0.0142(12)$	$-0.0002(10)$	$-0.0020(11)$	$0.0008(10)$
C3'	$0.0110(14)$	$0.0174(11)$	$0.0131(12)$	$0.0020(10)$	$0.0011(11)$	$0.0001(10)$
C4'	$0.0098(14)$	$0.0227(12)$	$0.0091(11)$	$0.0009(10)$	$-0.0027(10)$	$0.0029(10)$
C5'	$0.0184(15)$	$0.0227(12)$	$0.0153(12)$	$0.0002(12)$	$-0.0011(12)$	$-0.0042(11)$
C6'	$0.0177(16)$	$0.0283(14)$	$0.0197(14)$	$-0.0005(12)$	$-0.0007(12)$	$-0.0054(12)$

Geometric parameters (\AA, ${ }^{\circ}$)

S1—C6'	$1.808(3)$
S1—C5'	$1.816(3)$

1.816 (3)

N6-H6A
N6-H6B
0.90 (3)

S1-C5'
1.816 (3)

N6-H6B
0.82 (3)

sup-4

supplementary materials

O1W-H1A	0.820 (18)	C7-C8	1.355 (3)
O1W-H1B	0.805 (18)	C7-H7	0.9500
O2'-C2'	1.410 (3)	C8-N9	1.399 (3)
O2'-H2'O	0.79 (3)	C8-H8	0.9500
O3'-C3'	1.422 (3)	N9-C1'	1.446 (3)
O3'- ${ }^{\prime} 3^{\prime} \mathrm{O}$	0.84 (3)	C1'-C2'	1.523 (4)
O4'- Cl^{\prime}	1.436 (3)	C1'-H1'	1.0000
O4'- ${ }^{\prime} 4^{\prime}$	1.456 (3)	C2'-C3'	1.514 (3)
N1-C2	1.341 (3)	C2'-H2'	1.0000
N1-C6	1.357 (3)	C3'-C4'	1.545 (3)
C2-N3	1.334 (3)	C3'-H3'	1.0000
C2-H2	0.9500	C4'- ${ }^{\text {C }}{ }^{\prime}$	1.529 (3)
N3-C4	1.357 (3)	C4'-H4'	1.0000
C4-N9	1.369 (3)	C5'-H5'A	0.9900
C4-C5	1.391 (3)	C5'-H5'B	0.9900
C5-C6	1.415 (3)	C6'-H6'A	0.9800
C5-C7	1.436 (3)	C6'-H6'B	0.9800
C6-N6	1.331 (3)	C6'-H6'C	0.9800
C6'-S1-C5'	102.20 (14)	O4'- ${ }^{\prime} 1^{\prime}-\mathrm{H}^{\prime}$	109.2
$\mathrm{H} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~B}$	111 (3)	N9-C1'- ${ }^{\text {H1 }}$	109.2
$\mathrm{C} 2^{\prime}-\mathrm{O} 2^{\prime}-\mathrm{H} 2^{\prime} \mathrm{O}$	104 (2)	C2'-C1'- ${ }^{\prime} 1^{\prime}$	109.2
$\mathrm{C} 3{ }^{\prime}-\mathrm{O} 3^{\prime}-\mathrm{H} 3^{\prime} \mathrm{O}$	109 (2)	O2'- $\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	114.53 (19)
C1'-O4'- $\mathbf{C 4}^{\prime}$	108.50 (17)	$\mathrm{O} 2{ }^{\prime}-\mathrm{C} 2{ }^{\prime}-\mathrm{C} 1^{\prime}$	112.9 (2)
C2-N1-C6	118.1 (2)	C3'-C2'-C1'	100.7 (2)
N3-C2-N1	129.2 (2)	$\mathrm{O} 2^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime}$	109.5
N3-C2-H2	115.4	C3'-C2'-H2'	109.5
N1-C2-H2	115.4	$\mathrm{C} 1{ }^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime}$	109.5
C2-N3-C4	111.6 (2)	O3'-C3'-C2'	107.7 (2)
N3-C4-N9	125.8 (2)	$\mathrm{O} 3^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	111.8 (2)
N3-C4-C5	125.9 (2)	C2'-C3'-C4'	100.83 (19)
N9-C4-C5	108.3 (2)	O3'- ${ }^{\prime} 3^{\prime}-\mathrm{H} 3^{\prime}$	112.0
C4-C5-C6	116.7 (2)	C2'-C3'-H3'	112.0
C4-C5-C7	107.5 (2)	C4'-C3'-H3'	112.0
C6-C5-C7	135.8 (2)	O4'- ${ }^{\prime} 4^{\prime}-\mathrm{C} 5^{\prime}$	109.07 (19)
N6-C6-N1	119.2 (2)	O4'- ${ }^{\prime} 4^{\prime}$ - ${ }^{\text {C }}{ }^{\prime}$	105.84 (19)
N6-C6-C5	122.2 (2)	C5'- ${ }^{\prime} 4^{\prime}-\mathrm{C} 3^{\prime}$	112.7 (2)
N1-C6-C5	118.6 (2)	O4'- ${ }^{\prime} 4^{\prime}-\mathrm{H} 4{ }^{\prime}$	109.7
C6-N6-H6A	122 (2)	C5'-C4'- ${ }^{\prime} 4^{\prime}$	109.7
C6-N6-H6B	119 (2)	C3'-C4'-H4'	109.7
H6A-N6-H6B	119 (3)	C4'-C5'-S1	111.59 (18)
C8-C7-C5	106.4 (2)	C4'-C5'-H5'A	109.3
C8-C7-H7	126.8	S1-C5'-H5'A	109.3
C5-C7-H7	126.8	C4'-C5'-H5'B	109.3
C7-C8-N9	109.9 (2)	S1-C5'-H5'B	109.3
C7-C8-H8	125.1	H5'A-C5'-H5'B	108.0
N9-C8-H8	125.1	S1-C6'-H6'A	109.5
C4-N9-C8	107.91 (19)	S1-C6'-H6'B	109.5
C4-N9-C1'	125.7 (2)	H6'A-C6'-H6'B	109.5
C8-N9-C1'	125.5 (2)	S1-C6'-H6'C	109.5

O4'- ${ }^{\text {C1'- }}{ }^{\text {N }} 9$	109.66 (18)	H6'A-C6'-H6'C	109.5
O4'- Cl^{\prime} - $\mathrm{C} 2^{\prime}$	104.34 (19)	H6'B-C6'-H6'C	109.5
N9-C1'- C^{\prime}	114.9 (2)		
C6-N1-C2-N3	-2.3 (4)	C4'-O4'- ${ }^{\prime} 1^{\prime}-\mathrm{N} 9$	-148.2 (2)
N1-C2-N3-C4	2.3 (4)	C4'-O4'- ${ }^{\prime} 1^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	-24.6 (2)
C2-N3-C4-N9	179.6 (2)	C4-N9-C1'-O4'	-126.6 (2)
C2-N3-C4-C5	0.3 (3)	C8-N9-C1'-O4'	65.6 (3)
N3-C4-C5-C6	-2.4 (4)	C4-N9-C1'- $\mathrm{C}^{\prime}{ }^{\prime}$	116.2 (3)
N9-C4-C5-C6	178.2 (2)	C8-N9-C1'- C^{\prime}	-51.6 (3)
N3-C4-C5-C7	179.5 (2)	$\mathrm{O} 4^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{O} 2^{\prime}$	164.56 (18)
N9-C4-C5-C7	0.1 (3)	N9- $\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{O} 2^{\prime}$	-75.3 (3)
C2-N1-C6-N6	179.5 (2)	O4'- ${ }^{\prime} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	42.0 (2)
C2-N1-C6-C5	-0.2 (3)	N9-C1'- $\mathbf{C 2}^{\prime}-\mathrm{C} 3^{\prime}$	162.11 (19)
C4-C5-C6-N6	-177.4 (2)	O2'- $\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{O} 3^{\prime}$	-45.9 (3)
C7-C5-C6-N6	0.1 (5)	$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{O} 3^{\prime}$	75.5 (2)
C4-C5-C6-N1	2.2 (3)	$\mathrm{O} 2^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	-163.2 (2)
C7-C5-C6-N1	179.7 (3)	C1'-C2'-C3'- ${ }^{\prime} 4^{\prime}$	-41.8 (2)
C4-C5-C7-C8	-0.1 (3)	C1'-O4'- ${ }^{\prime} 4^{\prime}-\mathrm{C} 5^{\prime}$	119.1 (2)
C6-C5-C7-C8	-177.8 (3)	C1'-O4'- ${ }^{\prime} 4^{\prime}-\mathrm{C} 3^{\prime}$	-2.5 (2)
C5-C7-C8-N9	0.2 (3)	O3'-C3'- ${ }^{\prime} 4^{\prime}-\mathrm{O} 4{ }^{\prime}$	-85.9 (2)
N3-C4-N9-C8	-179.4 (2)	C2'-C3'-C4'-O4'	28.4 (2)
C5-C4-N9-C8	0.0 (3)	O3'-C3'- ${ }^{\prime} 4^{\prime}-\mathrm{C} 5^{\prime}$	155.0 (2)
N3-C4-N9-C1'	11.0 (4)	C2'-C3'- ${ }^{\prime} 4^{\prime}-\mathrm{C} 5{ }^{\prime}$	-90.8 (2)
C5-C4-N9-C1'	-169.5 (2)	O4'- ${ }^{\prime} 4^{\prime}-\mathrm{C}^{\prime}-\mathrm{S} 1$	172.20 (16)
C7-C8-N9-C4	-0.1 (3)	C3'- 4^{\prime} '- ${ }^{\text {C }}$ '--S 1	-70.5 (2)
C7-C8-N9-C1'	169.5 (2)	$\mathrm{C} 6^{\prime}-\mathrm{S} 1-\mathrm{C} 5$ - C^{\prime}	-91.9 (2)

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	${ }^{\cdots} \cdots$	$D-\mathrm{H} \cdots$
$\mathrm{O} 2^{\prime}-\mathrm{H} 2^{\prime} \mathrm{O} \cdots \mathrm{N} 3{ }^{\mathrm{i}}$	0.79 (3)	1.99 (3)	2.776 (3)	173 (3)
O1W-H1A $\cdots{ }^{\prime}{ }^{\prime}$	0.82 (3)	1.96 (3)	2.748 (3)	162 (3)
O1W-H1B $\cdots{ }^{2}{ }^{\text {iii }}$	0.80 (3)	2.07 (3)	2.848 (3)	162 (3)
O3'-H3'O‥N1 $1^{\text {iii }}$	0.84 (3)	1.94 (3)	2.766 (3)	166 (3)
N6-H6A \cdots O1W ${ }^{\text {iv }}$	0.90 (3)	2.12 (3)	2.998 (3)	166 (3)
N6-H6B $\cdots \mathrm{O}^{\text {W }}{ }^{\text {v }}$	0.82 (3)	2.13 (3)	2.928 (3)	164 (3)

Symmetry codes: (i) $x+1, y, z$; (ii) $x-1, y, z$; (iii) $-x+1 / 2,-y+1, z-1 / 2$; (iv) $-x+1 / 2,-y+1, z+1 / 2$; (v) $-x+1, y-1 / 2,-z+3 / 2$.

Fig. 1

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2257).

 ## References

 Abola, E. \& Sundaralingam, M. (1973). Acta Cryst. B29, 697-703.
 Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
 Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
 Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
 Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
 Flack, H. D. (1983). Acta Cryst. A39, 876-881.
 Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

