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A B S T R A C T   

The hydropower Plant in Terengganu is one of the major hydroelectric dams currently operated in 
Malaysia. For better operating and scheduling, accurate modelling of natural inflow is vital for a 
hydroelectric dam. The rainfall-runoff model is among the most reliable models in predicting the 
inflow based on the rainfall events. Such a model’s reliability depends entirely on the reliability 
and consistency of the rainfall events assessed. However, due to the hydropower plant’s remote 
location, the cost associated with maintaining the installed rainfall stations became a burden. 
Therefore, the study aims to create a continuous set of rainfall data before, during, and after the 
construction of a hydropower plant and simulate a rainfall-runoff model for the area. It also 
examines the reliability of alternative methods by combining rainfall data from two sources: the 
general circulation model and tropical rainfall measuring mission. Rainfall data from ground 
stations and generated data using inverse distance weighted method will be compared. The sta-
tistical downscaling model will obtain regional rainfall from the general circulation model. The 
data will be divided into three stages to evaluate the accuracy of the models in capturing inflow 
changes. The results revealed that rainfall data from TRMM is more correlated to ground station 
data with R2 = 0.606, while SDSM data has R2 = 0.592. The proposed inflow model based on 
GCM-TRMM data showed higher precision compared to the model using ground station data. The 
proposed model consistently predicted inflow during three stages with R2 values ranging from 
0.75 to 0.93.  
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1. Introduction 

Most of the hydrological studies mainly used ground station data. Rainfall is one of the most challenging elements of the hydro-
logical cycle to forecast [1]. In most locations, rain gauge stations are accessible as precipitation estimation gadgets. Although the 
results are generally acceptable, constraints such as no coverage at certain remote regions or with one or two rain gauges at a single 
enormous catchment area are common in developing countries such as Malaysia. General Circulation Models or GCM is one of example 
for numerical model that signify physical methods in the environment, sea, cry sphere and land surface, are among the innovative tools 
as of now available to simulate responses of worldwide climate framework. Due to its conjunction with nested regional model, only a 
more straightforward models used to give all-inclusive or found the middle value of assessments of atmosphere reaction and have the 
potential in sway investigation which to give geologically and truly predictable appraisals of worldwide environmental change [2]. 

Environmental change can affect water assets through changes in the hydrological cycle. Rainfall is one of the principal factors, 
caused from environmental change. To appraise future environmental change due to nonstop increment of ozone harming substance 
fixation in the air, Global Climate Models (GCMs) are utilized. Direct yield from GCMs cannot be used for hydrological evaluation 
because of its coarse spatial goals. Therefore, downscaling is used to turn the coarse spatial objectives of GCMs into an appropriate plan 
that can involve the production of station data for unique territories by using GCM environment yield factors [2–4]. 

Tukimat et al. [5] utilized the model of an integrated Statistical Downscaling Model and Geographic Information System 
(SDSM-GIS) to analyse the long-term precision of predicted ungauged station rainfall. It is appropriate to assess the precision of 
projected rainfall mapping at ungauged extent. The outcome of this study showed that the SDSM-GIS model has a high capacity for 
ungauged catchment to produce long-term rainfall patterns. In the simulated results, the SDSM technique was found to be effective in 
providing long-term climate trends at measured stations with a lower percentage of mean absolute error and a higher R2 value of about 
1.0. 

Tahir et al. [6] contemplated the importance of precipitation by downscaling system utilizing SDSM at Limbang stream bowl. The 
examination explores model capabilities at tropical area, and anticipated the atmosphere inconstancy at nearby scale under a few 
emanation situations of RCP2.6, RCP4.5, and RCP8.5. The outcomes demonstrated that under RCP2.6 situation, there will be an 
expansion of 8.13%, while 14.7% ascent in RCP4.5 situation during time of year 2071–2100. A sudden increment of about 40.6% was 
seen under the solid situation of RCP8.5. In this way, it is reasoned that future example of precipitation at Limbang waterway 
catchment under all situations is consistently expanding because of environmental change. Discoveries of this examination may help, 
policymakers and individual experts for better arranging of water the board and seepage framework during change atmosphere in the 
future. 

Singh et al. [7] analyzed the potential relevance of SDSM in day by day downscaling of Tmax, Tmin and precipitation in a piece of 
Sutlej bowl, to investigate feasibility of yields on third era of Canadian Coupled Global Climate Model (CGCM3) and Hadley Center 
Coupled Model, variant 3 (HadCM3) in downscaling of Tmax, Tmin and precipitation using SDSM. This examination likewise explored 
future changes on Tmax, Tmin and precipitation under various spread circumstances (A1B and A2 of CGCM3 and A2 and B2 of 
HadCM3) for the 21st century. 

Tukimat & Harun [8] utilized SDSM model to create atmosphere designs with temperature, precipitation, wet and dry length for 30 
years (year 2040–2069). Results indicated that future atmosphere design will even now be interrelated to the verifiable record, yet 
with more noteworthy extents. 

Hassan & Harun [9] investigated the flexibility of SDSM for downscaling temperature and precipitation. During calibration and 
validation, the SDSM model showed a decent reproduction of monthly for precipitation and temperature. 

Wilby et al. [10] defined a decision support tool to evaluate neighbourhood environmental change impacts utilizing a solid 
measurable downscaling practice. Genuine Downscaling Model (SDSM) underpins fast improvement of different, ease, single-site 
conditions of consistently surface environment factors under present and future local air driving. In addition, the development per-
formed subordinate assignments of marker variable pre-screening, model arrangement, focal symptomatic testing, quantifiable 
evaluations and illustrating of condition information. 

In previous study, statistical downscaling method (SDSM) was utilized to determine bigger scale rainfall data to a more sufficient 
scale through induction of cross-scale relationship with irregular or potentially deterministic capacities [11]. Measurable downscaling 
is used to accomplish data from environmental change at finer grids by improving direct statistical connections between massive scale 
climatic dissemination of rainfall and its neighbourhood factors. It creates quantitative relationships between massive scale baro-
metrical factors (predictors) and nearby surface factors (predictands). In this study, programming coded in Visual Basic 6.0 of SDSM 
4.2 was utilized [12]. 

Mohd Zad et al. [13], analyzed the exhibition of precipitation estimation from TRMM 3B42–V7 utilizing precipitation measure 
information in Malaysia, explicitly from the Pahang stream bowl and using a lot of execution marker. The findings indicate that the 
district’s elevation affects the scoring displays. Root Mean Squared Error (RMSE) is lower at a higher height and mid-elevation for the 
most part. In the identification and volumetric correspondence between TRMM and downpour measures, TRMM demonstrates a mild 
show. The purpose of satellite recognitions is to be equipped for parameter considerations and the reinstitution of water-driven state 
components that better reflect the hydrological characteristics of a catchment. Streamflow is at last assessed by the model itself. It is 
entirely expected to fuse satellite perceptions of flood immersion zone, and water arranges data from radar altimetry or construed from 
water surface region and high-goals geography information, into hydrodynamic or flood directing model. 

The processing and incorporation of the use of heterogeneous data from space and ground-based information sources has been used 
in past studies. This has resulted in high precision in forecasting. The flood monitoring and forecasting system has facilitated major 
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social security changes and reduced economic damage caused by floods [14]. 
The study by Brakenridge et al. [15] found that a comparison of gauging station versus modelled discharge often showed that a 

small positive model bias with satellite-observed annual runoff errors observed is also positive and could be increased by eliminating 
bias from rating curves. 

The parameters of rainfall-runoff models in such catchment cannot be obtained by merely calibrating runoff data for catchment 
with a lack of technical knowledge on its hydrological regime, limited ground data available, inadequate runoff data are reported 
available or very few ground rain gauges installed in a huge catchment; therefore, other alternative methods need to be acquired. 
Model parameters involved calibration are usually transposed from identical measured catchments in order to solve problems with 
incomplete inaccessible rainfall data or ungauged catchments. Physically dependent model parameters are typically inferred near the 
ungauged catchment of interest from other rainfall stations. In ungauged catchments, the key problem is the absence of local ground 
rainfall and runoff data to be used in data calibration. 

In this study, the study area is located in a rural forested area of Hulu Terengganu. Based on data exploration conducted, minimal 
numbers of ground rain gauges were set-up in this area before and during the construction of the Hydropower plant. Due to this reason, 
this study has adopted Inverse Distance Weighted (IDW) technique in providing continuous Ground Rainfall Data before, during and 
after the construction of hydropower plant and the use of National Centers for Environmental Prediction (NCEP) data through GCM 
downscaled by SDSM and weather satellite data to produce a continuous rainfall in this study area is most desirable. 

Inverse Distance Weightage (IDW) is one of the most well-known interpolation methods, which is a simple and intuitive deter-
ministic interpolation. IDW is easy to be implemented and available in almost any GIS software, so it is applied frequently in various 
disciplines [16]. Interpolation of the Inverse Distance Weighted (IDW) is a careful methodology that upholds the condition that a 
point’s rough worth is impacted more by well-established realities close by than by those farther away. 

This study aims to produce a continuous set of rainfall data at the study area before, during, and after the construction of the 
Hydropower plant and to simulate a rainfall-runoff model at the study area. 

2. Methodology 

2.1. Study area 

The hydropower plant in Terengganu is one of the major hydropower plants in Malaysia. It also serves as a multipurpose hy-
dropower plant. This hydropower plant station is located in the district of Kuala Berang in Terengganu. The best of Malaysia, Hy-
dropower plant is one of the primary sustainable power sources accessible. 

This hydropower plant commands a catchment area of 2600 km2 for before, during and after Hydropower plant construction (based 
on catchment and watershed delineation from DEM conducted). This hydropower plant is contributed by five (5) major river tribu-
taries, namely Sg. Terengganu Sg. Cacing, Sg. Petang, Sg.Tembat and Sg. Petuang. In this study, rainfall is the input parameter used to 
develop the proposed hydrodynamic model at the chosen study area. Based on its strategic location and proximity to the hydropower 

Fig. 1. Location of Study Area (this map was created with ArcGIS 10.8 software).  
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plant, Sg. Gawi (Station No: 5128001) ground rainfall station monitored by Department of Irrigation and Drainage Malaysia (DID), 
situated at Latitude of 5.143◦N and Longitude of 102.84◦E was chosen as the main ground rainfall station used in this study as shown in 
Fig. 1. 

2.2. Data acquisition 

Rainfall data used in this study are from the year 1971 until 2017. These data are divided into three (3) stages, namely before the 
construction of hydropower plant (1971–1979), during the construction of hydropower plant (1980–1986), and after the construction 
of hydropower plant (1987–2017). The reason analyses were conducted in these substages is to investigate the trend of river flow 
during these three different stages in order to detect any possibilities of impacts from the operation of the hydropower plant. The robust 
historical data used in this analysis would boost the outcomes of the rainfall-runoff model. After the construction of the hydropower 
plant, data were divided into two (2) parts, namely the year 1987–1997 and the year 1998–2017. This is because TRMM weather 
satellite data are available only after the year 1997. 

Rainfall data used in this study are divided into two (2); namely, Ground Rainfall and Atmospheric Rainfall from General Circu-
lation Model (GCM), downscaled using Statistical Downscaling Model (SDSM) and TRMM Satellite Rainfall. 

The Tropical Rainfall Measuring Mission (TRMM) 3B42–V7 dataset was obtained from Giovanni Earth Data website, https://www. 
earthdata.nasa.gov/technology/giovanni. The ground rainfall data was obtained from DID Ground Rain Gauge stations. 

In this study, satellite estimates were carried out at regular resolution to balance the time resolution of the data from the ground 
rain gauge, at daily intervals and 0.25◦ × 0.25◦ (approximately 27.8 km × 27.8 km) spatial resolution. Data were extracted within 
latitudes and longitude boundaries of Terengganu at 19 years duration of 1998–2017. 

Simulated inflow data are used to validate rainfall-runoff simulation from General Circulation Model (GCM), downscaled using 
Statistical Downscaling Model (SDSM) and TRMM Satellite Rainfall (GCM-TRMM). The inflow data was simulated because there is no 
monitoring station within the surrounding area of the hydropower plant, therefore the data from rainfall stations which is in the same 
catchment was used to simulate the inflow of the river. 

2.3. Rainfall data infilling methods 

As shown in Fig. 2, most of the Ground Rain gauges were found to be located towards the east of Hulu Terengganu, away from the 
upstream of hydropower plant. Due to this reason and data availability, this study has adopted the Inverse Distance Weighted (IDW) 
technique in providing continuous Ground Rainfall Data before, during, and after the hydropower plant’s construction. Equation (1) 
shows the general equation for IDW method. 

Fig. 2. Location of Ground Rain gauges used for IDW technique (this map was created with ArcGIS 10.8 software).  
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where z0 at 0 point is the simulated value, zi at the known point, i is the z value, di is the distance between point i, and point 0, s is the 
number of known points used in the calculation, and k is the stated power. 

Power k governs the degree of local control. A power of 1.0 implies a constant rate of change between points in value (linear 
interpolation). A power of 2.0 or higher means that near a known point and levels away from it, the rate of change in values is higher. 
An important characteristic of IDW interpolation is that all predicted values are within the range of maximum and minimum values of 
the known points. 

2.4. Statistical downscaling model (SDSM) rainfall data 

In order to obtain the necessary refined rainfall values from General Circulation Model (GCM), Statistical Downscaling Model 
(SDSM) was utilized. In SDSM, seven (7) key capacities were performed to be specific Quality Control, Transform Variables, Screen 
Variables, Calibrate Model, Weather Generator, Scenario Generator and Compare Results. In the quality control exercise conducted in 
this study, all gross data errors and missing data will be identified. This is importance to ensure the quality of input data used. 

The input data will then be transformed into logarithm, power, inverse, lag, binomial, and others depending on its suitability to 
input data used. Next, the predictors selection will be conducted based on statistical analyses such as monthly and partial correlations 
between predictand and predictor presented in the Screen Variables. The principal reason for Screen Variables activity is to help the 
client in choosing the fitting downscaling indicator factors. This is one of the most testing stages being developed of SDSM, since the 
selection of indicators exceptionally decides the character of downscaled atmosphere situation. 

Screening potential helpful indicator predictand connections for model adjustment is an extremely significant stage being 

Fig. 3. Shows the flow chart of operating SDSM Version 4.2 analysis.  
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developed of SDSM. Choice of fitting indicator factors exceptionally decides the accomplishment of SDSM and the character of 
downscaled atmosphere situation [12]. Predictors were selected based on a combination of the correlation matrix, partial correlation 
and p-value. 

After predictor selection, the predictor-predictand equation will then be tested at calibration and validation stages. The Calibrate 
Model activity clients a client indicated predictand alongside a lot of indicator factors. It figures the parameters of various relapse 
conditions utilizing streamlining calculation at either double simplex of conventional least squares. In the interim, Weather Generator 
operation generates ensembles of synthetic daily weather series given observed (or NCEP re–analysis) atmospheric predictor variables. 

The technique empowers the confirmation of aligned models utilizing free information and the amalgamation of artificial time 
arrangement for current atmosphere conditions. Three choices for graphical investigation were given by SDSM 4.2 through Frequency 
Analysis, Compare Results, and Time Series Analysis screens. The Scenario Generator operation produces ensembles of synthetic daily 
weather series given atmospheric predictor variables supplied by a climate model (either for present or future climate experiments), 
rather than observed predictors. The input files for both the Weather Generator and Scenario Generator options will not be the same 
length as those used to obtain the model weights during the calibration phase. 

There are two (2) kinds of sub-models in SDSM, namely unconditional and conditional used according to the requirement of 
predictands. For an independent variable such as temperature, the unconditional sub-model is used. For a conditional dependent 
variable such as precipitation, the conditional is used [10]. Projection for future temperature at regional scale are required to 
determine possible changes in evapotranspiration (ET) due to climate change. In this study, SDSM version 4.2 was used to downscale 
the precipitation (rainfall) in the study area over the years 1971–1997. Fig. 3 shows the flow chart of operating SDSM Version 4.2 
analysis. 

SDSM is a hybrid of multiple linear regression (MLR) and the stochastic weather generator (SWG). MLR establishes a statistical/ 
empirical relationship between NCEP, large-scale variables, and local scale variables, and produces some regression parameters. These 
calibrated parameters, along with NCEP and GCM predictors, are then used by SWG to simulate up to 100 daily time series in order to 
create a better correlation with the observed time series [17]. 

In SDSM, the generation of climate parameters on the station scale is linearly conditioned by observed large-scale environmental 
predictors (j = 1, 2, …, n). The downscaled method is either unconditional (as with the occurrence of rainy days) or conditional (as 
with wet days) (as with rainfall amounts). As shown in Equation (2), the frequency of wet day (Wi) on day I is linearly dependent on the 
vector n predictors of Xij. 

Wi =α0 +
∑n

j=1
αjXij (2) 

Under the requirement of 0 ≤ Wi ≤ 1. Precipitation occurs at the point when the unvarying random number r ≤ Wi. The wet-day 
edge (mm) can fluctuate between areas, depending on the rainfall or the accuracy of the estimate. It is also critical to say that daily 
rainfall aggregates have not been established for many days, downplaying the rainfall frequencies, thus aligning the model. 

In order to establish tirelessness of wetland droughts, indicator variables Xij may be simultaneous or slowed. The precipitation of Pi 
is decreased at the point where a rainy day is restored, using Equation (3): 

Pk
i = β0 +

∑n

j=1
βj Xij + εi (3)  

where k (normally 0.25) is utilized to change every day. Nevertheless, other changes example, logarithm or inverse normal) may 
likewise be applied to Pi. Direct linear relationships are formed between the predictand Ui and the selected NCEP/NCAR predictors Xij 

on individual sites such as Equation (4) in the case of unconditional processes such as daily temperature: 

Ui= γ0 +
∑n

j=1
γjXij + εi (4) 

The chosen NCEP/National Center for Atmospheric Research (NCAR) predictors on day i are where Ui is temperature on day i and 
Xij. Regression coefficients evaluated for each month using the least-square relapse are alpha, βj and γj, and εi is model fault. These 
parameters are generated using stochastic arrangements of sequentially autonomous Gaussian numbers and are included in the regular 
schedule of deterministic segments [7]. 

2.5. TRMM Satellite Rainfall Data 

The Tropical Rainfall Measuring Mission (TRMM) 3B42–V7 dataset was obtained from Giovanni Earth Data website. In this study, 
satellite estimates were carried out at regular resolution to balance the time resolution of the data from the ground rain gauge., at daily 
interval with 0.25◦ × 0.25◦ (approximately 27.8 km × 27.8 km) spatial resolution. Data were extracted within latitudes and longitude 
boundaries of Sg. Gawi station at 19 years duration of 1998–2017. 

2.6. Validation and calibration of SDSM rainfall and TRMM Satellite Rainfall 

In this study, Ground Rainfall data from DID were used to validate SDSM Rainfall and TRMM Satellite Rainfall data. Rainfall from 
Statistical Downscaling Model (SDSM) rainfall were used from year 1971–1997 at 26 years duration. 
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The accuracy of TRMM Satellite data was validated at daily interval by comparing with the selected ground rain gauges at Sg. Gawi. 
The comparisons between TRMM Satellite Rainfall Data and Ground Rainfall Data were conducted with point-to-pixel approach. This 
method is chosen to prevent any potential errors and uncertainties during the field rain gauge interpolation cycle. Over the years 
1998–2017, Gawi ground rain gages as well as compared with their respective grid points. Root Mean Square Error (RMSE) and 
Correlation Coefficient Squared (R2), as presented in the Statistical Analysis subsection, are statistical tests used to validate the rainfall 
results. 

2.7. Hydrological model development on rainfall – runoff 

In this study, the Ground Rainfall and Atmospheric Rainfall namely, SDSM Rainfall and TRMM Satellite Rainfall are converted into 
runoff using Hydrological Procedure No. 27, Estimation of Design Flood Hydrograph based on Clark method for Rural Catchment in 
Peninsular Malaysia by Department of Irrigation and Drainage (DID), Malaysia.  

a) Areal Reduction Factor 

Precipitation is typically not equitably transmitted over an area for a storm case, the amount of precipitation decreases with good 
ways from the middle of the storm. In Peninsular Malaysia, enormous varieties can occur in short separations in precipitation sum, 
especially when storms ruled. HP1 was adopted in this analysis as Area Reduction Factors of Hydrological Procedure No.1 (1982).  

b) Temporal Distribution 

Numerous trend and peak discharge can be attained from temporal pattern. Temporal patterns of storm events have substantial 
effect on the computed peak values of river flow. DID Hydrological Procedure No.1 [18] defined a temporary distribution of the 
cumulative annual rainstorms over 1⁄2, 3, 6, 24 and 72 h in length. For this reason, nine (9) ground rainfall stations were selected, 
located in different parts of Peninsular Malaysia. The average time distributions over record years were determined. Temporary 
distributions of the Peninsular East and West Coasts. In this study, 24 h temporal pattern were used.  

c) Rainfall – Runoff Relationships 

The method used in Hydrological Procedure No. 11 (HP11) [19] was adopted in this study to determine the relationship between 
rainfall runoffs. The estimated cumulative volume of storm rainfall at a given flood event and direct runoff derived from the flood 
hydrograph is used to monitor the rainfall-runoff relationship. 

In HP11, for catchments in Peninsular Malaysia, at year 1970–2000, 177 storms from 37 catchments out of 40 catchments were 
used to develop rainfall runoff relationship. Equation (5) and Equation (6) were then fitted to the observed data to represent larger 
floods analyzed. Equation (5) and Equation (6) were derived for catchments in Peninsular Malaysia. Where P is in mm of total rainfall, 
and Q is in mm of direct runoff. 

Q= 0.33 P, P < 75 mm (5)  

Q=
P2

P + 52
, P > 75 mm (6)    

d) Time Distribution of Runoff 

Unit Hydrograph is one of the methods to distribute runoff volume with time. Synthetic unit hydrograph (SUH) method was used to 
describe the entire unit hydrograph (UH) with only a few parameters for a gauged catchment. Hydrograph parameters are related to 
the properties of the catchment from which the parameters are derived. For this analysis the Clark Unit Hydrograph is used. Clark [20], 
stated that the interpretation of stream is portrayed when region bend. The time area twist shows the catchment area as a limited 
amount of time from the earliest starting point of actual precipitation, in addition to overflowing before the catchment outlet. Real 
precipitation is precipitation that are not lost through penetration or held ashore surface for example direct overflow. Clark [20], 
utilized straightforward direct repository where capacity is identified with inflow so as to portray reduction as shown in Equation 7, S 
is storage of catchment, R is coefficient of catchment storage and O is outflow from the catchment. 

S=RO (7)    

e) Clark Parameter Determination 

Estimation of Time of Concentration (Tc) and Catchment Storage Coefficient (R) for ungauged catchment used Equations (8) and 
(9). The catchment features of the study area are represented by these equations. In this study, numerous linear regression program 
named Cuanalo & Webster [21] was utilized to decide scientific connections of Tc and R with catchment qualities, for example, 
territory, slope and length of the standard for hydropower plant. 
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Tc= 2.32 A− 0.1188L0.9573S− 0.5074 (8)  

R= 2.976 A− 0.1943L0.9995S− 0.4588 (9)  

where A is the area of catchment in km2, L is the main stream length in km and S is the main stream slope weighted in m/km.  

f) Design Baseflow 

To settle on the hydrograph of the total structure, a baseflow is needed. Before a big storm, verifiable baseflow characteristics can 
hardly be expected. Baseflows were captured under very dry and mildly humid catchment conditions. A better fit condition was 
induced for general use, as shown in Equation (10). Where the baseflow in m3/s is QB and A in km2 is the catchment area. 

QB = 0.11A0.85889 (10)    

g) Validation and Calibration of Generated River Flow 

In this study, statistical analyses were conducted to evaluate the performance of generated River Flow from Atmospheric Rainfall 
(GCM-TRMM) compared to River flow station generated from Ground Rainfall. 

2.8. Statistical analysis 

In computational metrics, quantitative statistical tests using metrics such as Root Mean Square Error (RMSE), Determination 
Coefficient (R2), and Relative Error percentage (RE%) are commonly accepted [1,22]. Equation (11), Equation (12), and Equation (13) 
shows the RMSE, R2, and RE used to validate both rainfall and river flow in this study. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Xi − Xi)

2

√

(11)  

R2 = 1 −

∑
(x̂i − xi)

2

∑
(xi − meanx̂i)

2 (12)  

RE%=
(xi − x̂i)

xi
∗ 100 (13) 

where, 
xi is Ground Rainfall/River flow station generated from Ground Rainfall. 
x̂i is Atmospheric Rainfall/generated River Flow from Atmospheric Rainfall 
n is the number of observations. 

3. Results and discussion 

The ground rainfall data in this study obtained from 12 stations covering the study area of hydropower plant catchment from 1983 
until 2017. Since this study covers the duration before constructing the dam (from 1971 to 1979), the inverse distance weighted (IDW) 
method was adopted to simulate the rainfall for the period from 1971 to 1983. To interpolate the rainfall during the first duration stage 
using IDW, the rainfall data from the 12 stations used for this purpose. The generated rainfall data and the measured rainfall data can 
be seen in Fig. 4. The generate rainfall depth shows similar fluctuations compared with the measured rainfall data except for the last 

Fig. 4. Ground Rainfall data used in the study.  
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recent ten years where extreme rainfall events occurred which are considered as rare extreme events that happened at the study area 
[23]. 

After obtaining the required rainfall data for the entire duration of the three stages from ground stations and IDW method, the next 
step in to downscale the rainfall data from the global circulation model (GCM) for the same duration. Downscaling steps were carried 
out using the statistical downscaling model (SDSM) to acquire 26 years of rainfall data from 1971 to 1997. It can be observed in Fig. 5 
that the rainfall depths for both grounds and downscaled data similar display similar patterns during each month, and the latter model 
capable of detecting the peak events of rainfall with an adequate level of precision. 

For rainfall from 1998 to 2017, the estimated data obtained from the tropical rainfall measuring mission (TRMM) satellite. Fig. 6 
shows that the monthly data of the rainfall from TRMM satellite and the ground stations. It can be shown that the calculation of TRMM 
rainfall displays a close range of values to the measured ground station rainfall and achieves encouraging precision. 

The results in Table 1 reveal that the rainfall data obtained from TRMM is more correlated to the measured rainfall data from the 
ground stations where the value of R2 are range from 0.5 to 0.8, while R2 are range from 0.5 to 0.7 for SDSM rainfall data. The proposed 
inflow model based on GCM-TRMM rainfall data exhibits a high level of precision compared to the developed inflow model using 
rainfall data from ground stations. 

Fig. 7 shows the rainfall for the entire duration during the three stages from both the ground rainfall, a combined rainfall data from 
the IDW model, and measured rainfall. In contrast, the atmospheric rainfall data is a combination data obtained from SDSM and TRMM 
satellite. The next step will be using the two sets of data to develop the rainfall-runoff model to predict the inflow during these three 
stages. 

Finally, the two inflow models that were built can be seen in Fig. 8. The first inflow model is developed using the rainfall data from 
ground stations, while the second inflow model is developed by integrating the rainfall data from two sources GCM-TRMM. It can be 
seen that the proposed inflow model based on rainfall data from GCM-TRMM capable of capturing the changes of the developed inflow 
model using the rainfall data from ground stations. In addition to that, a significant increase in the predicted inflow rate from the 
developed model during stage three after constructing the dam compared with the first stage period. Such increases have been reported 
by previously conducted studies [24,25], indicating the robustness of the proposed model in predicting the pattern of the inflow during 
the entire duration of the three stages. 

Summary of statistical analysis using R2 and RMSE to validate the proposed inflow model using GCM-TRMM rainfall data is 
tabulated in Table 2. Based on these statistical indicators, it can be assumed that the model proposed in this study is can be used as a 
reliable predictive model where R2 values are ranging from 0.749 to 0.933. 

The lowest performance was found to be during the first stage duration, which is expected since, during this period, the obtained 
rainfall data was from SDSM model; despite that, the accuracy for this period still acceptable where R2 is equal to 0.749. It is also 
noteworthy that during the following steps, the proposed model performs with a reliable degree of precision. Even after constructing 
the dam, the model able to capture the changes in the inflow rate with reasonable precision for the entire duration of the third stage. To 
conclude, this study’s finding proved the inflow model’s superiority when the used rainfall data obtained from satellite and can be used 
as an alternative to the measured rainfall data from the ground stations. 

For more in-depth understanding for the performance of the proposed river inflow model, Relative Error distribution for the whole 
duration has been calculated and shown in Fig. 9. It could be observed from Fig. 9 that the proposed model could be successfully 
provide reliable accuracy for the inflow compared to the actual ones. It can be depicted that the maximum relative error obtained using 
the proposed model is over-estimate the actual value by 20% or under-estimate the actual value by − 25%. 

By considering that 20% or less relative error in estimating the river inflow is acceptable level of accuracy, it could be noticed that 
the model successfully provides accurate inflow estimation for 53 events out of 56 which is considered as remarkable performance. 

Therefore, it can be concluded that GCM-TRMM rainfall data is a reliable source for rainfall-runoff modelling, as it exhibits a high 
degree of correlation compared to generated data from Machine Learning (as reported by Ref. [23]). The accuracy of rainfall data and 
runoff modelling is crucial for hydropower generation, providing valuable information on how flood waves move through a point over 
time. This study emphasizes the importance of accurate rainfall data not only for hydropower generation but also for decision-making 
in agriculture, infrastructure development, and water supply. 

Fig. 5. Graphical comparison between SDSM Rainfall and Ground Rainfall.  
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4. Conclusions 

This study used rainfall data from the general circulation model and tropical rainfall measurement mission (GCM-TRMM) to 
forecast inflow for the period from 1971 to 2017. To obtain the regional rainfall data from GCM, a statistical downscaling model 
(SDSM) was put into place. The suggested model’s validity was tested using intensive distance weighted (IDW) data and rainfall data 
from 12 ground stations deployed in the catchment of hydropower plants. The entire duration is divided into three stages presenting 
the development that occurred in the catchment (before constructing hydropower plant, during and after the construction). The 
study’s findings reveal that the proposed model (GCM-TRMM) can be used as a reliable predictive model where R2 values are ranging 
from 0.749 to 0.933. The rainfall-runoff model was developed using the Clark method in this study; more development could be 
achieved if a more sophisticated model could capture the non-linearity associated with a rainfall-runoff relationship, such as data- 
driven models. Future research could focus on the employing the Machine Learning (ML) models to solve the non-linearity feature 
in the rainfall-runoff model, especially those associated with image processing to such as Convolution neural network. 

Fig. 6. Graphical comparison between ground rainfall and TRMM satellite rainfall.  

Table 1 
Statistical test (R2 and RMSE) between ground rainfall and atmospheric rainfall.  

In-Situ Rainfall Atmospheric Rainfall Year R2 RMSE 

Ground Rainfall SDSM Rainfall (1971–1997) 
Overall Study (Before, During and After hydropower plant Construction) 

1971–1975 0.6 14.2 
1976–1980 0.6 13.9 
1981–1985 0.5 13.8 
1986–1990 0.6 18.8 
1991–1995 0.5 12.4 
1996–1997 0.7 14.9 

TRMM Satellite Rainfall (1998–2017) 
After hydropower plant Construction 

1998–2002 0.5 13.4 
2003–2007 0.8 19.9 
2008–2012 0.5 19.3 
2013–2017 0.6 20.8  

Fig. 7. Graphical Comparison between Ground Rainfall and Atmospheric Rainfall (GCM-TRMM) for the overall study period (1971–2017).  
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