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Addiction to methamphetamine (MA) is a major public health concern.

Developing a predictive model that can classify and characterize the

brain-based biomarkers predicting MA addicts may directly lead to improved

treatment outcomes. In the current study, we applied the support vector

machine (SVM)-based classification method to resting-state functional

magnetic resonance imaging (rs-fMRI) data obtained from individuals with

methamphetamine use disorder (MUD) and healthy controls (HCs) to identify

brain-based features predictive of MUD. Brain connectivity analyses were

conducted for 36 individuals with MUD as well as 37 HCs based on the

brainnetome atlas, and the neighborhood component analysis was applied

for feature selection. Eighteen most relevant features were screened out and

fed into the SVM to classify the data. The classifier was able to di�erentiate

individuals with MUD from HCs with a high prediction accuracy, sensitivity,

specificity, and AUC of 88.00, 86.84, 89.19, and 0.94, respectively. The

top six discriminative features associated with changes in the functional

activity of key nodes in the default mode network (DMN), all the remaining

discriminative features are related to the thalamic connections within the

cortico-striato-thalamo-cortical (CSTC) loop. In addition, the functional

connectivity (FC) between the bilateral inferior parietal lobule (IPL) and

right cingulate gyrus (CG) was significantly correlated with the duration

of methamphetamine use. The results of this study not only indicated

that MUD-related FC alterations were predictive of group membership, but
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also suggested that machine learning techniques could be used for the

identification of MUD-related imaging biomarkers.

KEYWORDS

methamphetamine, machine learning, brainnetome atlas, neighborhood component

analysis, resting-state functional magnetic resonance imaging, classification

Introduction

Methamphetamine (MA) is an illegal psychoactive drug

that is highly addictive and widely abused (Qie et al., 2017).

Prolonged MA use can eventually lead to drug addiction and

cause serious damage to multiple organ systems, especially the

central nervous system (Prakash et al., 2017). It interacts with

nervous systems to modulate drug-related circuitry, resulting

cognitive impairment, memory loss, motor skill impairment,

attention deficit, psychotic disorders, violent behavior, etc.

(Rusyniak, 2011), which is closely related to MA-induced

neurotoxicity and neuroinflammation (Kim et al., 2020). Despite

these serious consequences, its use has grown significantly not

only in China (China Drug Situation Report, 2020) but in many

other countries worldwide in recent years (Bach et al., 2020).

Furthermore, the treatment outcome for MA addiction is poor,

and the relapse rate remains high after remission (Gouzoulis-

Mayfrank et al., 2017), one of the reasons is the lack of clinically

objective addiction diseases biomarkers that, if available, may

directly lead to improved treatment outcomes.

Neuroimaging can be a powerful tool for identifying

the possible relevant imaging biomarkers. Of late, resting-

state functional magnetic resonance imaging (rs-fMRI), which

measures hemodynamic changes in the blood-oxygen-level-

dependent (BOLD) signals caused by spontaneous neural

activity (Lee et al., 2013), has been explored to examine

underlying neurobiological mechanisms of addiction including

MA. In this approach, differences in neural function can be

identified by measuring the connectivity from the BOLD time

series between the various regions of the brain. By using rs-

fMRI data, previous studies examined the effects of MA on

the functional connectivity (FC) of the brain and discovered

significant differences that may be related to some of the core

symptoms observed in MA addicts (Kohno et al., 2014; Dean

et al., 2015; Zhang et al., 2018; Li et al., 2020). Although

these findings provide new insights into the neural features

of MA addiction, the great majority of these research are

based on explanatory models and the generalizability of the

results remains unclear. Importantly, with rare exceptions

(Yan et al., 2021), most of these studies are restricted to

using conventional univariate analysis (such as analysis of

variance and two-sample T-test) to identify differences in

neural processing between MA addicts and HCs, overlooking

multivariate patterns in the rs-fMRI data. This type of analysis is

not very beneficial for revealing differences in the whole spatial

pattern of brain changes between groups or for identifying

patients at the individual level, which limits its applicability in

clinical diagnoses and treatment. Hence, a methodmore suitable

for the above circumstances is needed.

Machine learning (ML) can address the above limitations.

In contrast to conventional univariate methods, ML-based

pattern classification is a kind of multivariate analyses that

train classifiers to decode behaviors, mental states, stimuli,

and other variables of interest from rs-fMRI data and thereby

showing the data contain information about them (Pereira et al.,

2009). Further, it trains computers to iteratively improve their

performance in identifying relationships between variables and

produce more superior predictive models (Cortes and Vapnik,

1995). ML-based approaches have been widely applied with rs-

fMRI data in studies on a variety of brain disorders such as

schizophrenia (Cai et al., 2020; Steardo et al., 2020), depression

(Gao et al., 2018; Han et al., 2019), Alzheimer’s (Castellazzi

et al., 2020) and Parkinson’s disease (Gu et al., 2016; Rubbert

et al., 2019), nicotine (Pariyadath et al., 2014; Wetherill et al.,

2019), cocaine (Yip et al., 2019), or MA addiction (Li et al.,

2019; Ding et al., 2020). Among these approaches, support vector

machines (SVM) is the most commonly used one due to its

better prediction accuracy and lower sensitivity to noise when

handling multidimensional data (Craddock et al., 2009). SVM

has been shown to be successful in identifying neural activation

patterns (Haxby, 2012) as well as individual-level differences

(Shen et al., 2020) from rs-fMRI data. For example, Song et al.

found that the default-mode network is the most informative

network in predicting internet gaming disorder based on SVM

classification with rs-fMRI data (Song et al., 2021). However, to

date, very few rs-fMRI data has been explored with the use of

SVM in MA addicts.

Thus, in the present study, we used an SVM-based ML

approach to analyze rs-fMRI data, looking to establish an

effective model to differentiate MA addicts from HCs and

to identify the most powerful discriminant features for the

classification. We also investigated the relationship between

discriminant features and MA use behaviors using spearman

correlation analysis. Hopefully, this study will improve our

understanding of the underlying pathological mechanisms of

MA addiction through multivariate approaches.
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Materials and methods

Participants

All participants provided voluntary written informed

consent after being fully informed of the study procedures. This

study was approved by the Ethics Committee of the Second

Xiangya Hospital of Central South University (No. S095, 2013).

Forty-six inpatients with MA use disorders (MUD) were

recruited between August 2019 and November 2019 from

the Kangda Voluntary Drug Rehabilitation Center located in

Changsha, China. The inclusion criteria for the MUD group

were: (a) Han males aged 18–45; (b) having completed at least

6 years of formal education; (c) fluent in Chinese and able

to understand instructions; (d) diagnosed with MUD by at

least two certified psychiatrists according to the Diagnostic and

Statistical Manual of Mental Disorders, Fifth Edition (DSM-5);

and (e) positive for MA and negative for other drugs in the urine

toxicology test on admission to the hospital. Individuals with a

history of major chronic medical illnesses, neurological diseases,

or mental disorders before MA use were excluded. Individuals

with contraindications for MRI scanning (e.g., claustrophobia

and implantation of metallic or electronic devices) were also

excluded. Forty-five HCs were recruited between September

2019 and January 2020 from local communities via social

media and online advertisements with the same inclusion and

exclusion criteria for the MUD group, plus that they needed

to have no history of drug abuse or dependence (except

for nicotine).

Clinical assessments

After the initial on-site screening, a detailed clinical

interview was conducted by two trained psychiatrists before the

fMRI scanning was performed. For the MUD group, the clinical

interview and fMRI scanning were conducted when participants

had no significant withdrawal symptoms. Information on the

demographics (e.g., age, educational attainment) and MA

measures (e.g., duration of MA use, average frequency of MA

use in the past year before abstinence, average frequency of MA

use in the past month before abstinence, average dose of MA

use in typical occasion, and withdrawal time) were gathered by

self-designed questionnaires.

MR imaging acquisition

The MRI scanning was performed at the Magnetic

Resonance Imaging Center of Hunan Children’s Hospital,

Changsha, China. The scanning was performed using a 3.0 T

Siemens Skyra Munich MRI system equipped with a 16-channel

head coil. For the resting-state scanning, participants were asked

to remain awake while keeping their eyes closed.

A gradient echo-planar imaging sequence was applied to

obtain resting state imaging data with the following parameters:

TR = 2,000ms, TE = 30ms, flip angle = 78◦, number of

slices = 33, slice thickness = 3.5mm, slice gap = 0.7mm,

field of view = 224 × 224mm, and voxel size = 3.5

× 3.5 × 3.5 mm3. A 3D magnetization preparing rapid

acquisition gradient echo sequence (3D MPRAGE) was applied

to obtain T1-weighted images with the following parameters:

TR = 2,530ms, TE = 2.98ms, flip angle = 7◦, number of

slices = 176, slice thickness = 1mm, slice gap = 0mm, field

of view = 256mm × 256mm, and voxel size = 1 × 1 ×

1 mm3.

Preprocessing of MR images

The rs-fMRI images were preprocessed by using DPARSF

(version 4.1) through the following steps: (1) discard the first 10

volumes, considering the magnetic saturation and adaptation

of the participants to the circumstances; (2) proofread slice-

timing with Fourier interpolation followed by removal of

physiological artifact; (3) perform head motion correction

to exclude participants with excessive head movement. For

quality control, participants with head motion >2mm or

rotation > 2◦ were eliminated; (4) co-registration of rs-

fMRI images to subject-specific T1 structural image; (5)

spatial normalization to the Montreal Neurological Institute

(MNI) standard space by resampling to 3 mm3; (6) spatial

smoothing with a full-width-at-half-maximum (FWHM).

Gaussian kernel of 4mm to improve signal detection; (7)

remove low-frequency fluctuations and high-frequency noise

by using a band-pass temporal filter (0.01–0.1Hz); (8) regress

out nuisance signals, such as global signal, white matter

signal, cerebrospinal fluid signal, and the Friston 24 head

motion parameters.

Brainnetome atlas-based FC

To extract functional regions, we used the newly developed

human brainnetome atlas as an initial segmentation of the

brain into 246 subregions. The human brainnetome atlas is

a precise connectivity-based parcellation atlas that is fine-

grained and cross-validated, containing both anatomical

and functional information and providing mapping between

the delineated structures and mental processes (visit http://

atlas.brainnetome.org/ for more details) (Fan et al., 2016).

In this study, each brain subregion was considered as a

node of the functional brain network. The time course of

each node was averaged, and Pearson correlation coefficients

between the connected nodes were identified as the edge
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weight of the functional network (Pedersen et al., 2018),

thus generating a 246 × 246 whole-brain FC matrix for

each subject. Then, the matrices underwent conversion

through Fisher’s r-to-Z transformation into binary, undirected

connection matrices.

Feature selection

Feature selection was performed using neighborhood

component analysis (NCA), a relatively new and less known

method for feature selection, for the learning of theMahalanobis

distance metric in the k-nearest neighbor classification

algorithm (Goldberger et al., 2005). It facilitated selection of

features as it does not assume any parametric distribution of

the features; it is also suitable for multiclass classification using

high dimensional features (Yang et al., 2012). Thus, this method

is a feature weighting scheme to select best feature subsets

based on the weights while minimizing the cross-validation

error of the training data. The features assigned with non-zero

weights were then retained and fed into a linear SVM to classify

the data.

Support vector machine classifier

Support vector machine is the most popular algorithm

for classification among ML techniques (Luts et al., 2010).

For example, using a set of features and labels, we trained

the SVM based on the training dataset, which mapped

the set of features to their respective labels. During the

training process, the optimum hyperplane that separated the

training data by the maximum margin was found. Thus,

with a new dataset of features derived from observation, we

could then utilize the SVM to predict a label for this new

observation. In this study, SVM was implemented in the

LIBSVM classification library. We assessed the classification

performance in a framework of permutation tests. Using

the actual value of classification accuracy after the SVM

analysis as the statistic, permutation tests were performed to

estimate the statistical significance of the value. Specifically,

the class labels of the training data were randomly changed

beforehand, and leave-one-out cross-validation was then

performed on the permuted dataset. This permutation process

was repeated 10,000 times. The classification performance was

regarded as reliable when the generalization rate obtained

by the classifier trained on the real class labels exceeded

the 95% confidence interval of the classifier trained on

randomly relabeled class labels. The accuracy, sensitivity,

and specificity were calculated to quantify the prediction

performance of the classifiers. The area under the receiver

operating characteristics curves (AUC) was also calculated to

quantify the classification power, with a greater AUC indicating

a higher classification power.

Statistical analysis

The differences in demographic characteristics between

the MUD group and HCs were tested with the independent-

sample T-test using SPSS 23.0 software. Furthermore, Spearman

correlation analysis was performed to explore the behavioral

significance of alternative FC network in the MUD patients.

To be specific, we explored the correlations between the FC

fed into the SVM as features and MA measures (duration

of MA use, average frequency in the past year, average

frequency in the past month, average dose of MA use,

withdrawal time). The statistical significance level was set at

p < 0.05.

Results

Demographics and clinical data

After excluding those who had incomplete or abnormal scan,

or excessive head motion in the process of image preprocessing,

the final dataset comprised 36 MUD and 37 HCs participants

for analyses. The demographics and clinical characteristics are

summarized in Table 1. The MUD group was older (31.06 ±

5.60) and lower educated (11.42 ± 3.15) to those in the HC

group (age, 26.35 ± 7.13; education, 13.84 ± 3.38 years). The

duration of self-reported MA use was 6.17 ± 3.34 years, average

dose of MA use in typical occasion was 0.36± 0.21 g, withdrawal

time was 63.83 ± 43.23 days. The average frequency of MA use

in the pastmonth before abstinence was significantly higher than

that in the past year before abstinence.

Discriminative features

The feature selection results using NCA are shown in

Figure 1; 18 features assigned with non-zero weights were

screened out and then fed into a linear SVM. For linear

SVM, a key advantage is that the importance of each feature

is directly related to its weighted coefficient, which enabled

us to identify the most powerful discriminative features. As

shown in Figure 2, the Figure 2A depicted the location of

the discriminative features, such as 21 brain regions and 18

edges, Figure 2B showed the rank of importance of each feature

in identifying MUD in the linear SVM classifier. The top 6

discriminative features were mainly involved the key nodes of

default mode network (DMN) subsystems. All the remaining 12

discriminative features were related to the thalamic connections

within the cortico-striato-thalamo-cortical (CSTC) loop. See

Figure 2 for more details.
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TABLE 1 Participant demographics and clinical characteristics.

Variables MUD (n = 36) HCs (n = 37) p-Value

Age 31.06 (5.60) 26.35 (7.13) <0.001

Education years 11.42 (3.15) 13.84 (3.38) <0.001

Duration of MA use (years) 6.17 (3.34) - -

Average dose of MA use (g) 0.36 (0.21) - -

Withdrawal time (days) 63.83 (43.23) - -

Frequency in the past year - -

At least once per day 4 (11.1%) - -

Once every 2–3 days 9 (25.0%) - -

Once every 4–9 days 11 (30.6%) - -

Once every 10 days or more 12 (33.3%) - -

Frequency in the past month - -

At least once per day 6 (16.7%) - -

Once every 2–3 days 12 (33.3%) - -

Once every 4–9 days 6 (16.7%) - -

Once every 10 days or more 12 (33.3%) - -

MUD, methamphetamine use disorder; HCs, Health controls.

FIGURE 1

Feature selection through neighborhood component analysis.

Classification performance

The classification accuracy was as high as

88%. The sensitivity and specificity were 86.84

and 89.19%, respectively (Table 2). See Figure 3

for the area under the receiver operating

characteristic curve (AUC = 0.94) for the

corresponding classifier.
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FIGURE 2

Edges used as features in the classification procedure. (A) depicts the location of the 18 edges most consistently selected as relevant features to

discriminate patients with methamphetamine use disorder (MUD) from healthy controls (HCs). Brain nodes are scaled according to the number

of edges connected to them. Edges are scaled according to the weight value. (B) shows the rank of importance of each feature in identifying

MUD in the linear support vector machine (SVM) classifier. MFG, middle frontal gyrus; PrG, precentral gyrus; PhG, parahippocampal gyrus; SPL,

superior parietal lobule; IPL, inferior parietal lobule; PoG, postcentral gyrus; Tha, thalamus; BG, basal ganglia; MVOcC, medioventral occipital

cortex; LOcC, lateral occipital cortex; CG, cingulate gyrus.
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Relationship between discriminative
features and MA measures

We performed Spearman correlation analyses between the

discriminative features and MA measures. The duration of

MA use was significantly positively correlated with the FC

between the right inferior parietal lobule (IPL) and right

cingulate gyrus (CG) (r = 0.029, p = 0.025), and FC

between the left IPL and right CG (r = 0.402, p = 0.025)

(Figure 4). Nevertheless, no significant correlations were found

between discriminative features and other MA measures

except duration.

TABLE 2 Prediction performance of support vector machine (SVM)

classifier trained on resting state functional magnetic resonance

imaging (rs-fMRI) data.

MUD (HCs) Accuracy Sensitivity Specificity

36 (37) 88.00% 86.84% 89.19%

MUD, methamphetamine use disorder; HCs, Health controls.

Discussion

This study used an SVM-based ML model of FC data to

distinguish individuals with MUD from healthy controls. The

classifier achieved very good classification performance, which

was close or superior to that in previous studies using data

of other modes, such as task-state fMRI (Gowin et al., 2019),

arterial spin labeling (Li et al., 2019), differentially expressed

genes (Breen et al., 2016), and heart rate extracted from MA-

induced electrocardiogram (Wang et al., 2018). Our findings

showed that classifiers based on FC measures were predictive

of group membership, indicating that the FC findings might be

promising biomarkers forMA-related diagnosis at the individual

level. The performance of our model was also superior to that in

a previous study using FC data (Yan et al., 2021). In addition

to the differences in feature extraction methods, the increment

in classification accuracy might also be caused by the different

parcellation methods. The novelty of the current study was the

selection of the human brainnetome atlas to build the network.

Previous studies indicated that compared with voxel-wise and

atlas-based parcellation methods, this set of 246 subregions

was shown to have represented information more accurately

in the network (Paxinos, 2016). It was also worth noting that

the present study used the NCA strategy as a feature selection

FIGURE 3

Receiver operating characteristics curves for cross-validated prediction performance of classifiers trained on resting-state functional magnetic

resonance imaging (rs-fMRI) data.
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FIGURE 4

The functional connectivity (FC) between the bilateral inferior parietal lobule (IPL) and right Cingulate gyrus (CG) was significantly correlated

with the duration of MA use.

method, which has been successfully applied in some previous

studies and proved to improve classification performance (Jin

and Deng, 2018; Eryilmaz et al., 2020).

The discriminative features extracted from this classifier

are considered as biomarkers to guide disease-related

interpretations, which may reveal the patterns of FC

alteration in MUD patients and facilitate the elucidation

of the neuropathological mechanisms underlying MUD.

Remarkably, in the present study, the top 6 discriminative

features were mainly involved the key nodes of DMN

subsystems, such as precentral gyrus (PrG), middle frontal

gyrus (MFG), IPL, and CG, which are highly integrated and

synergistically activated in most self-generated experiences

(Andrews-Hanna, 2012). Altered DMN function is associated

with emotional dysregulation, rumination, and compromised

cognitive functions (Hahn et al., 2011; Whitfield-Gabrieli and

Ford, 2012; Leech and Sharp, 2014). It also strongly interacts

with subcortical areas (such as basal ganglia, BG) and other

networks (such as medioventral occipital cortex, MVOcC, a

key node in the visual network) (Spreng et al., 2013; Raichle,

2015; Wang et al., 2016), affecting functions such as emotion,

cognition, attention, and impulsivity (Fox et al., 2005; Shannon

et al., 2011). There is a growing body of evidence that abnormal

DMN function and disruptive interactions between DMN and

other networks can impair the affective and cognitive processes,

resulting in drug craving and relapse (He et al., 2018; Zhang and

Volkow, 2019). Our results provided further evidence that the

DMN function in patients with MUD needs more attention.

Meanwhile, we found that the remaining discriminative

features were associated with the thalamic connections within

the CSTC loop underlying both motivated and reward behaviors

(Haber and Knutson, 2010). Stimulants including MA can affect

the normal connectivity of the CSTC loop, which deemed to be

associated with the behavioral effects of stimulants (Jentsch and

Taylor, 1999; Goldstein and Volkow, 2011). Within the CSTC

loop, the thalamus not only acts as a crucial “relay station” but

also plays a key role in the integration of thoughts, executive

function, and motor function (Sherman and Guillery, 2001; De

Bourbon-Teles et al., 2014; Huda et al., 2019); it might also

play a significant role in reward processing and goal-directed

behaviors in addiction (Corbit et al., 2003; Huang et al., 2018).

Both structural and functional changes of the thalamus along

with findings of lower graymatter volumes (Morales et al., 2015),

reduced whitematter integrity (Li et al., 2017), lowermetabolism

(Volkow et al., 2001), and altered resting state FC (Liu et al.,

2020; Mansoory et al., 2020) have been reported in individuals

with MUD. Our findings further supported the importance of

CSTC, especially the thalamus, in addiction.

In addition, we found that the FC between the IPL and

CG was significantly positively correlated with the duration of

MA use. The IPL is involved in visuo-spatial attention and

recollective aspects of episodic memory (Corbetta et al., 2000;

Wheeler and Buckner, 2004; Davidson et al., 2008; Seghier, 2013;

Zhang and Li, 2014). The CG, especially its posterior part, is

involved in visuospatial attention (Vogt et al., 1992; Grön et al.,

2000) and arousal by a stimuli (Maddock, 1999); it might help

predict subsequent relapse in substance users (Kosten et al.,

2006). Thus, we speculated that the FC between the IPL and

CGmight be at least partially affect the decision-making process

by directing visuo-spatial attention to the internal world and

attributing personal relevance to the retrieved episodic memory.

A recent study also yielded a similar result, showing that young

binge drinkers were associated with higher FC between the

IPL and posterior CG compared with controls (Correas et al.,

2016), which might reflect the effect of their previous drug

use experiences.
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Several limitations are worth noting in the present study.

First, the sample size might be limited due to the challenges in

recruiting individuals with MUD. In future studies, the model

can be trained with a larger cohort and validated with an external

sample that has not been used in any training iteration. Second,

as almost all patients in the rehabilitation center were male,

we were unable to make comparisons between genders, which

might lead to a gender bias. Third, only rs-fMRI modality was

used in this study; thus, multimodal neuroimaging data are

needed in future works to investigate whether they can help

achieve a superior predictive power. Finally, a longitudinal study

should be taken into consideration to assess the prediction of

treatment response in patients with MUD.

Conclusion

In summary, the present study showed the potential of

combining FC data with SVM-based techniques to distinguish

MUD patients from healthy subjects. With the identification

of the most discriminative features, we hope to improve our

understanding of MUD-related neuropathology.
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