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Abstract: Metabolomics helps identify metabolites to characterize/refine perturbations of biolog-
ical pathways in living organisms. Pre-analytical, analytical, and post-analytical limitations that
have hampered a wide implementation of metabolomics have been addressed. Several potential
biomarkers originating from current targeted metabolomics-based approaches have been discovered.
Precision medicine argues for algorithms to classify individuals based on susceptibility to disease,
and/or by response to specific treatments. It also argues for a prevention-based health system.
Because of its ability to explore gene–environment interactions, metabolomics is expected to be
critical to personalize diagnosis and treatment. Stringent guidelines have been applied from the very
beginning to design studies to acquire the information currently employed in precision medicine and
precision prevention approaches. Large, prospective, expensive and time-consuming studies are now
mandatory to validate old, and discover new, metabolomics-based biomarkers with high chances of
translation into precision medicine. Metabolites from studies on saliva, sweat, breath, semen, feces,
amniotic, cerebrospinal, and broncho-alveolar fluid are predicted to be needed to refine information
from plasma and serum metabolome. In addition, a multi-omics data analysis system is predicted to
be needed for omics-based precision medicine approaches. Omics-based approaches for the progress
of precision medicine and prevention are expected to raise ethical issues.

Keywords: metabolomics; biomarkers; professional and regulatory agencies; clinical practice; preci-
sion medicine; tailored treatments; cost of care

1. Introduction

The term “metabolomics” was first used at the beginning of this millennium to
identify the area of functional genomics devoted to the analysis of metabolites [1,2].
Metabolomics defines the comprehensive characterization of small molecules derived
from both the genome (i.e., endogenous metabolites) and their interaction with the en-
vironment (i.e., exogenous metabolites) [3]. In recent years, methods have advanced for
metabolomics and have allowed the for reliable identification, detection, and quantifica-
tion of new metabolites in food, plant, environmental, animal, and human research. The
combined use of untargeted and targeted metabolomics has exhibited many advantages be-
yond analytical chemistry [4]. In addition to documenting the high hypothesis-generating
potential [1], advancements in omics have provided significant information regarding new
potential biomarkers [5]. Advanced data processing systems (e.g., informatics) have greatly
helped to characterize metabolic pathways in different biological systems [6–9]. However,
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the possibility has also emerged that inherent technical limitations in analytical instru-
mentation and in methods of analyses might have slowed the progress and industrial
applications of metabolomics [10,11]. How these shortcomings have been addressed is
summarized in Section 2 of this review. Presently, easy and predictable quantification
of metabolites is achieved in plasma or serum [6,12]. However, much work needs to be
conducted to interpret and explore the overwhelming amount of data to date generated by
metabolomics [13]. How to implement the relevance of metabolomics-based tests in biomed-
ical research is discussed in Section 3 of this review. By integrating biomarkers with genetic
and phenotypic characteristics that distinguish one patient from another with comparable
clinical settings, precision medicine is aimed at systemically evaluating the underlying
causes of disease so as to target health interventions to individual needs [14]. Translational
opportunities of metabolomics are critical for the progress of precision medicine [13–16].
The extent to which the criteria applied to gather the information currently employed in
precision medicine may help the advancement of metabolomics is discussed in Section 4 of
this report.

2. Current Challenges in Targeted Metabolomics

Table 1 reports metabolomics-based biomarkers identified over the last decade in
pre-natal and post-natal diagnosis, and in related experimental models by the authors
of the present review. During the same time period, a variety of metabolomics-based
biomarkers for characterizing environmental contaminants [17] or food derivatives [2], in
addition to identifying the risk of diabetes mellitus [18,19], coronary heart disease [20–23]
or cancer [24–28], have been identified. Advantages and disadvantages of different in-
strumental platforms, whose use is related to the chemical complexity of the biological
system analyzed [10], have emerged in all these areas of metabolomics investigation. The
fact [29,30] that very sensitive detectors (e.g., MS) that directly reveal very low concentra-
tions of metabolites are not sensitive enough to simultaneously measure high-concentration
components arose as a critical disadvantage. The need for different platforms and of
different experts (analytical chemists, biologists, statisticians, data scientists and bioinfor-
maticians) to achieve a comprehensive metabolome coverage [2,3] has also been recognized.
Indeed, while reliably handling laboratory medicine issues, researchers trained in liquid
chromatography–mass spectrometry (LC–MS) often need the help of experts in bioinfor-
matics for the optimal experimental design for individual metabolomics studies and the
appropriate statistics to be employed. This argues for large metabolomics groups with
expertise and instrumentation sufficient to avoid contract laboratories (to carry out ad
hoc experiments). A multifaceted research asset also enables to: (1) set up collaboration
platforms with skilled metabolomics groups to increase chances to achieve funding for
large program projects and overcome the high costs of analytical instrumentation, and
(2) develop specialized training programs to teach beginners the broad spectrum of ex-
pertise needed for reliable analyses. How major additional pre-analytical, analytical, and
post-analytical hurdles have been (and are being) addressed in metabolomics studies is
summarized in the next few paragraphs.

• Standard operating procedures. The rationale for the wide spectrum of methods used in
different metabolomics labs [11,31,32] stems from the following: (1) no single analytical
method is sensitive and specific enough to allow for the identification and quantitation
of the whole metabolome of even a single biological entity [31]; (2) the metabolome of
a cell/organism contains metabolites differing in their concentrations (from g/L to
pg/L) [31,33], turnover rates, and stability; and (3) the biology of different living organ-
isms implies diversity in the metabolites to be identified/measured [1,33]. In view of
this, the Metabolomics Society has set up the “metabolomics Standards Initiative (MSI)”
Committee that has established rules to standardize metabolomics systems [2,34,35].
Quality control and standard operating procedures should be carefully followed to
reduce pre-analytical errors [36]. Standardization of steps throughout the study proce-
dure and data analysis (e.g., the analytical platform to be employed, instrumentation
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performance, the type of analysis to use, and the requirements for the interpretation
of the output) prevent the risk of poor-quality control metabolomics protocols, incor-
rect quantification of metabolites, and deceptive data interpretation [35,37,38]. Few
variables should be selected to make metabolomics data reliable [34].

• Quantification. Most of the data generated by metabolomics rely on normalization of
the signal [3,30]. However, semi-quantitative approaches hamper multi-omics inte-
gration and translation of metabolomics data into clinical practice [11,39]. Definition
of normal concentrations of a metabolite is key for early detection of pre-clinical
conditions [40–42]. Consistent with the possibility that metabolomics can achieve
absolute quantification of the metabolome [43], methods and analytical platforms for
absolute quantification of the metabolome using targeted approaches are presently
available [3,10]. Examples (Table 2) of technologies, platforms, and protocols for ab-
solute quantification of several metabolites are now available [44–51]. Presently, the
possibility is also documented that the relative, or absolute accuracy of quantification
of newly discovered metabolites needs newer standardization steps [38,49,52].

• Choice of separation methods. Reverse phase approaches should be used for the sepa-
ration of non-polar components (e.g., fatty acids), while normal phase approaches
should be preferred to separate polar compounds (e.g., nucleotides and sugars) [11].
Thus, the compounds to be measured and the biochemical pathways to be identi-
fied define the separation method to be employed. Robust techniques (e.g., nuclear
magnetic resonance, NMR) exhibit rather limited sensitivity of detections [15,53,54].
Advances in analytical instrumentation are overcoming such limitations [55,56]. The
use of small-in-size NMR machineries and mass spectrometers provide wide coverage
of metabolites [57]. Platforms with high reproducibility and detection consistency are
being developed to reveal low concentrations of metabolites [57–59]. Two-dimensional
chromatographic separations are becoming increasingly widespread [56], and MS
based technologies are gradually being employed in a targeted fashion [51,60].

• Combination of different techniques. “Hyphenation” may be a new frontline in metabolomics [61].
Using standards or library spectra, spectroscopy produces selective information for
identification of mixtures of chemical components separated by chromatography.
Thus “hyphenation” combines the advantages of both techniques. Combinations of
different techniques helps overcome limitations of single techniques and calls for major
achievements in metabolomic studies [62]. Hyphenation of liquid chromatography–
nuclear magnetic resonance–mass spectrometry liquid chromatography (LC–NMR–
MS LC) has been developed for global metabolite profiling and identification of
compounds [2]. The setup of such a platform needs to be simplified.

• Statistical analysis. A robust statistical analysis of the results (e.g., t-tests, ANOVA,
principal component analysis [PCA], hierarchical cluster analysis (HCA), partial least
square–discriminant analysis [PLSDA], volcano plots, correlation analysis) is criti-
cal for the reliability of metabolomics studies. For inherent reasons, the statistical
significance for analytes that differ between cohorts is difficult to be determined in
untargeted metabolomics. While enhancing the number of false negatives (type II
errors), conservative approaches such as the Bonferroni correction limit false positive
data (type I error) [4]. False discovery rate (FDR) approaches help address the issue of
removing false positives, especially in untargeted metabolomics [63]. For instance, the
Q-value calculates the maximally applicable correction to a given dataset [64].

• Metabolite identification. Both in targeted and untargeted metabolomics, the identi-
fication of “true” metabolites pushes upcoming steps of the analysis [65–68] and
informative interpretation of features beyond the standard putative identification
based on mass and/or retention time [69]. “True” metabolite identification is also
critical for pathway analysis and mapping. The development of the human http:
//www.hmdb.ca/, accessed on 31 March 2022), food (http://foodb.ca/, accessed on
31 March 2022), DrugBank (https://www.drugbank.ca/, accessed on 31 March 2022)
and T3DB metabolome database (http://www.t3db.ca/, accessed on 31 March 2022)

http://www.hmdb.ca/
http://www.hmdb.ca/
http://foodb.ca/
https://www.drugbank.ca/
http://www.t3db.ca/
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helps achieve this goal. Especially for GC–MS methods [31,70] together with com-
mercial metabolite libraries, in-house comprehensive spectral libraries of metabolites
help convert putative metabolites/features into positive identifications [68]. Spectral
libraries (e.g., Metlin or mzCloud) provide a reliable standard for the identification
of the majority of naturally occurring metabolites present in biological materials [71],
including those for which kits are not available [72]. Newer bioinformatics tools
that employ web-accessed libraries are anticipated to improve automated metabolite
identification [7,72].

3. Overpromising but Under-Delivering Translational Results

The high hypothesis-generating potential (and translational skills) of metabolomics
is now established [41], and panels of biomarkers have been defined (http://www.
mayomedicallaboratories.com, accessed on 31 March 2022). Using advanced analyti-
cal, community-based methods [72] and bioinformatics [1,5], (targeted) weaknesses in
metabolomics have largely been overcome. Inherent technical limitations that might have
delayed clinical and industrial translations of interfaces generated by this strategy have also
been minimized. Accordingly, the whole human serum metabolome has been mapped in a
UK population [73]. Additional issues are likely to be addressed through community-based
approaches [16], and this may expand metabolomics-based opportunities to primary care
facilities that have little access to expensive instruments [2], All this progress might be at
odds [13] with the perception that metabolomics is overpromising but under-delivering
translational results [15]. However: (1) other common biological matrices should be
regularly explored, and (2) metabolomics information collected in clinical investigations
should make a positive impact on the public [2]. In the present section, examples of how
metabolomics-based research (as an emerging discipline) is currently being exploited to
expand its role in health and disease are provided, and details on new potential directions
to be pursued to improve our understanding of human pathophysiology are summarized.

• Biomarkers discovery and validation. Biomarkers are defined as objectively measured
indicators of normal biological processes, pathogenic processes, or pharmacologic re-
sponses to a therapeutic intervention [5]. At variance with other biomarkers [13],
metabolites are easily quantified at a low cost [41]. Most currently identified
metabolomics-based biomarkers arise from studies that are rather limited in experi-
mental designs [4], statistical robustness and validity [37]. Indeed, to date, biomarker
discovery and validation has been often carried out in small uncontrolled trials [74].
Independent validation within the same topic, an attitude that increases confidence
in the clinical strength of a potentially metabolomics-based test, is erratic. Because
of the lack of a second evaluation in other cohorts, the possibility that any findings
these studies have generated might be poorly reproducible should be considered. In
keeping with this, a very limited number of the metabolomics-based biomarkers that
have been reported to date, are widely employed in clinical practice [75]. Ad hoc,
prospective trials are mandatory to validate biomarkers with high chances to impact
clinical practice [76,77]. In this respect, numbers of patients to be tested may be limited
in studies devoted to rare diseases [78], while they should be large enough in very
common clinical settings (e.g., hypercholesterolemia). In the latter case, the possibility
of identifying intermediate phenotypes (e.g., subjects with/without high lipoprotein
levels in the circulation) should be considered.

• Newer sources of metabolomic analysis. The roadway of pathophysiology is key to under-
standing the machinery of diseases and to recognize the cause and the downstream
effect of a disease. Investigations of metabolomics-based biomarkers should be carried
out accordingly. Advancing towards this direction implies pathophysiology-oriented
targeted metabolomics studies, which would be better if conducted in cooperation
with other omics communities [79,80]. New sources of metabolomic analyses may
be critical in this respect. In addition to plasma [81] and serum metabolome [82–84],
discoveries in urinary metabolome [85–88] and in the volatilome, (e.g., breath) [89–91]

http://www.mayomedicallaboratories.com
http://www.mayomedicallaboratories.com
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will likely help gather/refine information on the mechanisms of major causes of
death. Information-rich metabolomes may be also obtained from cerebrospinal fluid,
human saliva, broncho alveolar lavage, sweat, feces, semen, and amniotic fluid. Stud-
ies struggle to extend measurements to intact tissues [4]. In clinical pharmacology,
models of mammalian cultured primary cells are relevant for adsorption, distribu-
tion, metabolism, and excretion–toxicology (ADME–Tox) studies. With appropriate
protections, the risk–benefit ratios of these studies may be defined for individual
cases/diseases, and biomarkers identified [14,92].

• Newer directions to be pursued. Together with top causes of death in developed countries
(ischemic heart and cerebrovascular disease, and malignancy) [4], the rapid rise of
pathogens is acknowledged to increasingly contribute to world-wide mortality [93].
Newer pathogens are emerging [94]. ‘Traffic’ of microbes and the diseases they cause
is facilitated in the globalized world of the third millennium. The adaptation into
a new human host population may produce ‘new’ mutations in viruses, bacteria,
or fungi that allow them to acquire new biological characteristics to adapt to new
ecologies and to infect new hosts [95–101]. Pathogens may also be transmitted by
human blood and blood-derived products. Donor selection and blood screening,
and methods for their purification/inactivation have reduced the risk of pathogen
contamination of blood/plasma-derived products and increased the safety of blood
products [102]. However, the poor sensitivity/specificity of current screening meth-
ods, and the lack of reliable tests for some pathogens (e.g., prions), should be em-
phasized [94]. Metabolomics may minimize/eradicate the risk of contaminants in
blood, including pathogens. Because of the rise in antimicrobial resistance, many
normally harmless opportunistic microorganisms are increasing their pathogenicity,
and bacterial infections are predicted to kill more humans than cancer and heart
disease in the coming decades [103]. Metabolomics should work to establish ad hoc
biomarkers to identify the appropriate strategy and prevent future deaths in the area
of antimicrobial resistance.

4. Metabolomics in the Era of Precision Medicine

• The promise of precision medicine. Current clinical practice focuses on few variables and
provides little information on their potential interactions. The identification of vari-
ables to classify individuals into sub-populations is critical for precision medicine and
precision prevention [104]. Newborn screening for genetic mutations, e.g., phenylke-
tonuria, and progress in dietary intervention to prevent the onset of diseases, are some
of the earliest examples of precision medicine and precision prevention. Functional
genomics has been the determining factor of an early tailoring approach once key
profiles are identified [105]. More recently, information from genomics has been critical
for the progress of cancer diagnostics, therapeutics, and prevention [106], and this way
of thinking has been extended to the majority of areas in clinical medicine [14]. Cheap
genome sequencing [107], powerful methods of functional genomics, large-scale bio-
logical databases, and computational tools for analyzing large sets of data have greatly
fostered this attitude [108]. However, the genomic-approach based initiatives that have
been launched in precision medicine to date, have delivered fewer disease genes than
originally expected [3]. Limited information also arose from the approaches based
on transcriptomics and everything relating to RNAs [109]. In keeping with this [110],
evidence has emerged that: (1) many tumors are not genetically and metabolically
homogeneous; (2) metabolic heterogeneity exists also within an individual tumor
tissue [3], and (3) obesity-induced changes in adipose tissue microenvironment impact
genetics of cardiovascular disease [111]. These limitations have shifted the attention
from genomics-centered approaches to the impact of environment determinants in the
initiation and progress of malignancy, and vascular disease [112]. At variance with ge-
nomics, which only foresees events based on genetic predisposition, metabolomics also
reveals events related to gene–environment interactions [3]. As such, metabolomics is
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a key driver to exploring underlying pathogenic mechanisms of complex polygenic
diseases (e.g., cancer, cardiovascular diseases, and diabetes mellitus) for which envi-
ronmental factors (e.g., diet) substantially impact disease onset and development [113].
Recent improvements in single cell metabolomic analysis [114] lend credence to the
possibility of specific treatments for individual metabolic microenvironments within
diseased tissues [115].

• How metabolomic information can potentially benefit the development of precision medicine: an
example. Cystathionine β-synthase deficiency (CBSD, EC 4.2.1.22), also known as homo-
cystinuria (OMIM 236200, mean prevalence worldwide 1:335,000, ranges 1:1800–1:900,000),
is a recessively inherited disorder of the catabolic pathway (the transsulfuration path-
way) for the essential amino acid methionine (Met) [116]. Met is converted to the
non-structural amino acid homocysteine (Hcy), via S-adenosylmethionine (SAM) and
S-adenosylhomocysteine (SAH), by the release of a methyl group that is used in methy-
lation reactions (e.g., via phosphatidylethanolamine N-methyltransferase, PEMT).
CBSD impairs the conversion of homocysteine (Hcy) to cystathionine, leading to
Hcy accumulation in plasma (up to 200 µm/L) and urine (homocystinuria) [117–120].
Severely affected patients with CBSD present ectopia lentis, learning difficulties, con-
nective tissue disturbances including skeletal abnormalities (marfanoid habitus), osteo-
porosis, propensity to venous and arterial thrombosis, premature atherosclerosis and
occasional liver steatosis. Presently, genotype–phenotype correlation in homocystin-
uria remains obscure [120]. Using an ultra-high-performance liquid chromatography–
electrospray ionization–quadrupole time-of-flight–mass spectrometry method, and
employing an untargeted lipidomic approach, we have identified a novel biochem-
ical abnormality in plasma from 11 severe CBSD patients (belonging to nine unre-
lated families and carrying different genetic defects already reported in patients with
CBS), consisting of a depletion of phosphatidylcholine (PC; p = 0.02) and lysophos-
phatidylcholine (LPC; p = 0.003) species containing docosahexaenoic acid (DHA), and
a higher than normal medium and long-chain polyunsaturated fatty acids content
in phosphatidylethanolamine (PE) and lysophosphatidylethanolamine (LPE) species
(p < 0.02). This suggests impaired in vivo PEMT activity. As PEMT needs methyl
groups to convert PE into PC, SAM and SAH were measured by LC–MS. Whole
blood SAM and SAH concentrations were 1.4-fold (p = 0.015) and 5.3-fold (p = 0.003)
higher in CBSD patients than in controls. A positive correlation between SAM/SAH
and PC/PE ratios (r = 0.520; p = 0.019) was found. CBSD patients with liver steato-
sis (5/11) had a significantly lower PC/PE ratio than those without (48.26 ± 18.7
vs. 86.28 ± 14.4, respectively; p = 0.016). After correcting for age and gender, liver
steatosis was associated with PE/PC ratio in a multivariate linear regression analysis
(β = −0.770; p = 0.009) [78]. Pathophysiological information is that a diminished PEMT
expression/activity as reflected by a decrease in hepatic PC/PE ratio, is consistently
correlated with hepatic steatosis in mice [121]. SAH accumulation inhibits PEMT, and
SAH-mediated impairment of PEMT is linked to hepatic steatosis [121,122]. Addi-
tionally, in a transgenic model (HO mice) that expresses very low levels of CBS and
high plasma concentrations of Hcy and SAH, a post-translational repression of PEMT
that inversely correlates with liver steatosis is present, together with upregulation and
down-regulation of phospholipid species and SAM/SAH ratios similar to those found
in our CBS patients [123,124]. Together, these findings in CBSD patients highlight the
impact of Hcy levels on SAM/SAH levels regardless of the underlying genetic defect,
arguing for directions to be pursued to understand the phenotypic heterogeneity of
severely affected patients with CBS deficiency, and to provide guidelines to design
innovative strategies in this area.

• Metabolomics towards precision medicine. Tough guidelines have been applied to design
studies to attain (and analyze) data to be used in precision medicine and precision
prevention approaches. The use of big biobanks and electronic medical records that
integrate biological information with clinical data has strengthened and refined infor-
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mation from these studies [125]. Large, prospective, time-consuming and expensive
studies are mandatory to validate older, and discover newer, metabolomics-based
biomarkers with high translational chances [3]. This is predicted to uncover new
pathological pathways and disease biomarkers, to improve disease prognoses, and
facilitate treatment selection. To this end, information on metabolomics-based health
data collection in families, and new imaging techniques to monitor changes in metabo-
lite levels, are critical for the translation of metabolomics-based results into clinical
and industrial application.

# Metabolomics-based health data collection in families. In the second half of the
last century, health data collection in “healthy” individuals and their families
helped predict disease through the identification of biomarkers suggestive of
pre-clinical conditions, and allowed for informative decision making and ad
hoc preventive strategies [126]. Such measures had substantial economical and
welfare effects (when supported by human validation studies), and provided
large-scale biological databases to help predict post-treatment outcomes [108].
Metabolomics-based health data collection is likely to be critical for improved
big data analysis and tailored medical decisions. For instance, citrate, an impor-
tant biomarker of cancer [127], is increased in older healthy individuals [73]. A
comprehensive information on citrate levels in healthy individuals of different
ages is key for the progress of precision medicine (e.g., preventive screenings
and early phases of a malignancy) [128].

# New imaging techniques to monitor changes in metabolite levels. In the analysis
of the data on CBSD patients summarized above, multi-dimensional scaling
(MDS) analysis, based on lipid abundance, was implemented by the ‘DaMiRseq’
R/Bioconductor package [129] to identify specific clusters or batch effects. Dif-
ferential analyses (CBSD patients vs. controls) were performed by the ‘limma’
R/Bioconductor package [130], implementing linear models adjusted for the
effect of ‘Smoking’ [131,132]. The Benjamini–Hochberg procedure was used to
control for the FDR. A lipid was deemed significant if the FDR adjusted p-value
was <0.05 and the |log2(Fold Change)| > 1.5. Clustering analysis, performed
by MDS showed that, except for smokers, CBSD and control groups were well
separated both in positive and negative ion modes. In view of the key role of
smoking in the top causes of death, the present example strongly supports the
need for newer imaging techniques to strengthen the role of metabolomics in
advanced research and avoid false overlapping in lipidomic analysis.

# A high likelihood of translation into a routine clinical test argues for large cohort
multi-center studies to validate metabolomics-based biomarkers with high
chances to impact clinical practice. Healthy individuals should be seriously
considered in new metabolomics studies. Indeed, metabolomics is predicted to
be critical for developing medical devices that are unique to a patient (or small
groups of patients). However, metabolomics-based data should also help de-
velop devices for the health population (or for field testing of a disease) [4]. To
this end, professional and regulatory agencies should provide updated robust
guidelines for study design, data acquisition and validation, to be applied from
the very beginning of a project [79,80,133]. Conversion of results into products
is maximal when ad hoc plans and paths are defined at the start of a project.
Upon completion of data acquisition, identification of mechanisms leading to
a metabolic pattern increase the chances of successful translation of results
into clinical and industrial application [11]. Perhaps together with suppliers
involved in developing analytical platforms, the search for cheap and easy
miniaturized instruments will be critical for smart modifications of biomark-
ers. In this respect: (1) methods for absolute quantification of a wide range
of metabolites using easy analytical instrumentation should be implemented.
Rather than targeted, special attention should be devoted to newer untargeted
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quantitative metabolomics methods; (2) new better platforms are needed to
work together with other omics to progressively increase the number of genes
that expose to (or protect from) illnesses; (3) efforts to evaluate the influence
of confounding factors (e.g., age, gender, ethnicity, diet) on metabolomics re-
sults should be implemented [73], and (4) validation studies in health and
disease are urgently needed to remove potential bias. Validation is especially
mandatory in view of the: (a) inter-laboratory variation in techniques of dif-
ferent metabolomics institutions [4]; (b) lack of common practices to validate
potential biomarkers, (i.e., the absence of generally accepted procedures for
metabolic profiling for biomarker discovery); and (c) use of metabolomics data
as a source of potential pharmacologically active compounds [134,135].

5. Conclusions

Over the centuries, changes in medical attitudes have dramatically improved the cure,
and sometimes prevented the development of diseases (e.g., tuberculosis). The attitude of
metabolomics to reliably analyze metabolites, and identify new biological matrices is now
established, and technological and computational improvements have greatly enhanced the
translational capability of this omics. The existing applications of metabolomics in precision
medicine translate to advancements in the diagnosis, prevention, and treatment of disease.
Improving instrumentation and implementing standard analytical procedures is predicted
to strengthen the impact of metabolomics in future medical care. The roadway of precision
medicine and precision prevention is likely to be critical to validate old, and identify new,
metabolomics-based biomarkers. Information from sources other than plasma and serum,
and advanced pathophysiological analysis will likely refine the picture of a disease based
on measurements of the plasma or serum metabolome [136,137].

Considering the information gathered in genomics- and transcriptomics-based ini-
tiatives, it is predicted that precise clinical decisions and precision treatments will largely
abide by the accuracy of the information available, that is largely omics in nature. Truly
integrated multi-omics analyses have not been widely applied. Major effort is now manda-
tory to develop the analytical infrastructure required to generate, analyze, and annotate
multi-omics data and inform decision-making in precision medicine. Broad incorporation
of machine learning techniques and systems to provide doctors with fully automated clini-
cal analyzers are likely to be needed to assist in disease diagnosis and treatment and predict
prognosis in precision medicine [110]. Major hurdles that omics (first, metabolomics) will
face in this new dimension are largely ethical. Firstly, predictive diagnosis will change the
relationships among patients and healthcare providers, and increase physician visits, labo-
ratory tests, and patient anxiety. Presently, the poor pathophysiological information about
the overwhelming amount of data generated to date hampers translation of metabolomics
to clinical practice. A systematic approach to determining (genetic) causality is mandatory.
Secondly, using genomic, clinical, personal, and environmental data collected from very
large numbers of individuals from various populations, and connecting their health records,
“non-responders“ to a treatment, might belong to definite minority populations An effort is
needed against discrimination in access to treatments [125].

Table 1. Examples of information collected employing targeted and/or untargeted metabolomics
approaches in experimental models of disease and in pre- and post-natal diagnoses in humans.

Models of Disease

Source of Material Main Findings Refs.

Human, adult

Dysregulation of lipid metabolism and pathological
inflammation in patients with COVID-19. [138]

Liver abnormalities involving carbon and nitrogen
metabolism in moderate and severe COVID-19 patients [139]



Int. J. Mol. Sci. 2022, 23, 5213 9 of 16

Table 1. Cont.

Models of Disease

Source of Material Main Findings Refs.

Plasma phospholipid dysregulation in patients with
cystathionine-beta synthase deficiency § [78]

Plasma levels of platelet-activating factor and its
precursors in patients with familial
hypercholesterolemia on treatment with
PCSK9 inhibitors §

[22]

In vivo thromboxane A2 biosynthesis and endothelial
function in patients with familial hypercholesterolemia
receiving PCSK-9 inhibitors therapy §

[140]

Human, pediatric
Serum phospholipid profile allows for the
discrimination of infants who develop celiac disease
before 8 years of age

[141]

Animal

A targeted metabolomic approach to a mouse model of
mucopolysaccharidosis IIIB identifies specific amino
acid and fatty acid metabolic pathway alterations

[142]

Mice model of Glutaric aciduria type I (GA-I,
OMIM # 231670), an inborn error of metabolism caused
by a deficiency of glutaryl-CoA dehydrogenase. *

[143]

Reference Values as Related to Gender Differences

Human, adult Serum metabolomic profiles suggest influence of sex
and oral contraceptive use. [144]

Human, pediatric

Effect of gender on human premature blood
metabolome in neonates. [145]

Effect of gender on urinary excretion of organic acids
in children. ◦ [146]

Effect of gender on blood metabolome of female and
male human babies. [147]

Animal Effect of gender on amino acid and carnitine levels in rat
tissues (heart, liver, kidney) [148]

* Gaining insights into (brain) pathophysiology, and the development of new therapeutic interventions. ◦ relevance
of analyzing human metabolome. § untargeted metabolomics, combined metabolomic and lipidomic approach.

Table 2. Examples of absolute quantification of metabolites using targeted approaches: source of
metabolites, available methods and analytical platforms employed.

Type, (Numbers), and Source of Metabolites Quantified Quantification Method Platform Refs.

Amino and non-amino organic acids (67), urine and
serum samples. MCF derivatization GC-MS/MS [46]

Polar primary metabolites (49), chickpea cultivars BSTFA derivatization of
primary metabolites GC-MS [149]

Amino and non-amino organic acids
(50–100, human biological samples).

Calibration curve-free
GC–MS method using MCF GC-MS [150]

Amino metabolites (124), renal cancer tissue, rat urine
and plasma.

Derivatization assisted
sensitivity enhancement

with 5-AIQC
UPLC-MS/MS [151]

Lipids, lipidomic quantification (222), human serum samples. PRM QTOF LC-MS [152]
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Table 2. Cont.

Type, (Numbers), and Source of Metabolites Quantified Quantification Method Platform Refs.

Amino acids and metabolites in the urea and
tricarboxylic acid
cycles; biogenic amines; acylcarnitines; lipids,
(188, murine tissues).

Absolute IDQ TM

p180 Kit (Biocrates)

LC-MS/MS and
FIA-MS/MS,

UPLC MS/MS
[153,154]

Essential and non-essential amino acids, phospholipids
(32, human breast cancer). HR MAS NMR [155,156]

Identifying, in one session, different classes of compounds
from seeds (amygdalin), flowers (rutin), fruits
(isovitexin) leaves
(shikimic acid) and stems (epicatechin) from
Crataegus rhipidophylla Gand (58).

Ratio method NMR [157]

Legend. 5-AIQC: 5-aminoisoquinolyl-N-hydroxysuccinimidyl carbamate; BSTFA: N, O-bis-
(trimethylsilyl)trifluoroacetamide; GC: gas chromatography; LC: liquid chromatography; MCF: methyl
chloroformate derivatization; MS: mass spectrometry; UPLC: ultra performance liquid chromatography;
PRM: parallel reaction monitoring; HR MAS—high-resolution magic angle spinning; FIA—flow injection analysis;
NMR—nuclear magnetic resonance; QTOF—quadrupole time-of-flight.
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