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Despite extensive research and a plethora of therapeutic options, hypertension continues
to be a global burden. Understanding of the pathological roles of known and
underexplored cellular and molecular pathways in the development and maintenance
of hypertension is critical to advance the field. Immune system overactivation and
inflammation in the kidneys are proposed alternative mechanisms of hypertension, and
resistant hypertension. Consideration of the pathophysiology of hypertension in chronic
inflammatory conditions such as autoimmune diseases, in which patients present with
autoimmune-mediated kidney inflammation as well as hypertension, may reveal possible
contributors and novel therapeutic targets. In this review, we 1) summarize current
therapies used to control blood pressure and their known effects on inflammation; 2)
provide evidence on the need to target renal inflammation, specifically, and especially when
first-line and combinatory treatment efforts fail; and 3) discuss the efficacy of therapies
used to treat autoimmune diseases with a hypertension/renal component. We aim to
elucidate the potential of targeting renal inflammation in certain subsets of patients
resistant to current therapies.
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INTRODUCTION

Hypertension remains the leading modifiable risk factor for cardiovascular morbidity, kidney
disease, stroke, and premature death. In the last 3 decades, the global economic burden of
hypertension has doubled not only due to a growing and aging population (Zhou et al., 2021),
but also due to stress and a societal shift towards unhealthy lifestyles and diets. The International
Society of Hypertension released new global practice guidelines in 2020, providing an updated
definition of hypertension (Unger et al., 2020). The Society defined hypertension as a provider-
measured blood pressure greater than 140/90 mm Hg, but recognized that 24-h ambulatory blood
pressure monitoring in these individuals may show an average of greater than 130/80 mmHg (Unger
et al., 2020). The World Health Organization’s Guideline for the Pharmacological Treatment of
Hypertension in Adults stresses the importance of having multiple blood pressure measurements,
preferably across multiple visits, to accurately diagnose hypertension, but they recognize these
conditions are not feasible in all settings (WHO, 2021). The United States continues to use
hypertension guidelines set forth by the American Heart Association and American College of
Cardiology in 2017 (Carey et al., 2018b). These guidelines define hypertension as blood pressure
equal to or greater than 130/80 mm Hg, so that more efforts can be directed to control elevations in
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blood pressure before the disease progresses (Carey et al., 2018b).
In the United States itself, half of the population has hypertension
and only one out of four adults with hypertension have their
blood pressure controlled (CDC, 2019b). Hypertension as a
primary or contributing cause resulted in over 500,000 deaths
in the United States in 2019 (CDC, 2019a).

Despite several advances in science, the etiology of
hypertension still eludes physiologists (Ferdinand and Nasser,
2017). There are several mechanisms in place in the body to
ensure blood pressure remains within physiological norms.
Baroreceptors sense changes in blood pressure and then
correct these changes through neural and hormonal pathways.
These pathways augment heart rate, stroke volume, and total
peripheral resistance, as well as control body fluid and electrolyte
homeostasis (Pappano, 2010). The kidneys also have an
undeniably important role in the fluid-electrolyte balance in
the body through their intrinsic regulation of glomerular
filtration rate and changes in electrolyte handling caused by
neuroendocrine factors such as antidiuretic hormone,
aldosterone, angiotensin II (ANGII), atrial natriuretic peptide,
and brain natriuretic peptide (Oparil et al., 2018). Any
disturbance of fluid-electrolyte homeostasis can contribute to
hypertension (Coleman et al., 1975). As such, targeting water and
electrolyte homeostatic systems through the kidney has been a
cornerstone in the treatment of hypertension, although with
limited success in some subpopulations of hypertensive patients.

It is well accepted that inflammation plays an important role in
the pathogenesis of hypertension (Drummond et al., 2019).
Although the role of the immune cells in hypertension has
been known for decades (Okuda and Grollman, 1967;
Svendsen, 1976), the direct role of inflammatory processes in
the pathogenesis of hypertension was only recently appreciated.
The causal role of lymph nodes and the thymus in hypertension
in rodents was demonstrated in the 1960-70s (Okuda and
Grollman, 1967; Svendsen, 1976). It has been confirmed that
adaptive immunity with T lymphocytes [e.g., T helper (Th) cells]
is an important player in modulating the inflammatory cytokine/
chemokine production and hence in the immune-mediated
pathogenesis of experimental hypertension in rodents (Guzik
et al., 2007). Furthermore, knockout models such as B cell
activating factor (BAFF) receptor knockout (BAFF-R−/−) mice
or depletion of B and/or T cell activity using treatments like
rituximab or mycophenolate mofetil blunt experimental
hypertension in rodents (Herrera et al., 2006; Zheng et al.,
2010; Chan et al., 2015; Taylor and Ryan, 2017; Taylor et al.,
2018). The potential of mycophenolate mofetil to reduce blood
pressure in chronic inflammatory settings has also been realized
in hypertensive humans with psoriasis and rheumatoid arthritis
(Herrera et al., 2006).

Cells of the innate immune system, including monocytes,
macrophages, natural killer cells and dendritic cells (DCs) also
contribute to hypertension (Lu and Crowley, 2020). Innate
immunity is a non-specific response to antigens and causes
inflammation directly through the activation of pattern
recognition receptors such as toll-like receptors (TLRs) and
nucleotide-binding oligomerization domain (NOD)-like
receptors. Activation of these receptors on innate immune

cells leads to increased oxidative stress while also increasing
the release of various inflammatory cytokines that play
important role in the development of hypertension (Mian
et al., 2014; Van Beusecum et al., 2021). Indirectly they also
cause activation of the adaptive immunity via the Th1 response or
the humoral/antibody Th2 response, triggering further secretion
of potent pro-inflammatory cytokines like interleukin (IL)-6,
interferon (IFN)-γ, and IL-17, in turn contributing to the
hypertension pathology (Mikolajczyk and Guzik, 2019).

Interestingly, several pharmacologic agents that reduce blood
pressure have general anti-inflammatory effects as well (Silva
et al., 2019). Below we discuss common therapies for
hypertension and how hypertensive drugs from different
classes are often used in combination to reach the target blood
pressure reduction in situations where blood pressure is more
difficult to control (Tsioufis and Thomopoulos, 2017). A
complete list of pharmacologic anti-hypertensive therapies are
summarized in Table 1. We will elaborate on those showing
effects on the inflammation specifically.

Blood Pressure-lowering Medications and
Their Effect on Inflammation
The renin angiotensin system (RAS) is a target for common first-
line therapies to treat hypertension (WHO, 2021). Renin is a
peptide released by juxtaglomerular (JG) cells, modified smooth
muscle cells of the afferent arteriole of the kidney nephron, when
1) perfusion pressure within the afferent arteriole decreases; 2)
renal sympathetic nerves activate the smooth muscle in the
afferent arterioles; or 3) the macula densa senses a decrease in
NaCl concentration in the ultrafiltrate. Angiotensinogen, a
peptide produced by the liver, is cleaved by renin to produce
angiotensin I (ANG I). Angiotensin-converting enzyme (ACE),
mostly located on pulmonary vascular endothelial cells, then
further converts ANG I into the active form, ANG II
(Pappano, 2010). ANG II acts on cells in the adrenal cortex
and posterior pituitary to stimulate the release of aldosterone and
ADH, respectively. These hormones, in concert with ANG II,
promote vasoconstriction and increase sodium and water
reabsorption in the kidney, effects that combine to increase
blood pressure (Stanton and Koeppen, 2010). ANG II has also
been implicated as a crucial mediator of immune and
inflammatory processes in hypertension (Ruiz-Ortega et al.,
2000; Benigni et al., 2010) and hence ANG II infusion is a
popular and consistent in vivo animal model for inducing
hypertension with an inflammatory component in preclinical
research (Schiffrin and Touyz, 2003). Upon binding to its ANG
II-type 1 (AT1) receptor, ANG II increases vascular permeability
and increases chemokine expression, which aids the
inflammatory process and promotes immune cell infiltration
(Suzuki et al., 2003). AT1 activation also promotes the
proliferation and activation of Th1 and Th17 cells, which are
both pro-inflammatory (Liu et al., 2009; Platten et al., 2009). On
the other hand, ANG II binding to its AT2 receptor may have
anti-inflammatory effects (Benndorf et al., 2009).

Interventions blocking components of the RAS are effective in
decreasing blood pressure since they act on several targets
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including the kidneys, vasculature, brain, and immune system.
Inhibition of renin and ACE prevents downstream production
and action of ANG II, limiting rises in blood pressure. Aliskiren is
a renin inhibitor that was approved for the treatment of essential
hypertension (Sears, 2008), but the benefits of this drug may span
beyond blood pressure control as aliskiren also decreases levels of
systemic inflammatory cytokines like CD45 and CD3 T cells as
well as F4/80-positive macrophages in hypertensive mice (Yen
et al., 2013). Captopril is an ACE inhibitor that effectively lowers
blood pressure in humans and animals, but also has an anti-
inflammatory effect (Fukuzawa et al., 1997; De Albuquerque
et al., 2004; Sepehri et al., 2016; Gan et al., 2018; Mitchell
et al., 2021). Another ACE inhibitor, lisinopril, was shown to
reduce autoimmune-induced inflammation in a mouse model of
multiple sclerosis (Platten et al., 2009). ANG II receptor blockers
(ARB), such as losartan, prevent the binding of ANG II to the
AT1 receptor, the receptor primarily responsible for the
vasoconstrictor and pro-inflammatory effects of ANG II
(Brasier et al., 2002; Zhang et al., 2003; Gonçalves et al., 2004).
ARBs have been shown to be as effective as ACE inhibitors in
reducing cardiovascular risks (Li et al., 2014) while also reducing
systemic inflammation in various disease states (Fairbrass et al.,
2021; Gamboa et al., 2012).

While agents targeting RAS are first-line drugs to defend
against hypertension, there are other drugs that target different
mechanisms. Diuretics like thiazides, potassium sparing diuretics,
and loop diuretics are often used in combination with other
antihypertensive drugs; they reduce blood pressure by increasing
excretion of sodium and water. The loop diuretic, furosemide,
reduced the concentrations of proinflammatory cytokines TNF-
α, IL-6 and IL-1β and activated polarization of macrophages from
proinflammatory M1 type to anti-inflammatory M2 type.

(Yuengsrigul et al., 1999; Xu et al., 2006; Wang et al., 2020;
Tuttolomondo et al., 2021). In addition, hydrochlorothiazide
from the thiazide diuretic group inhibits the secretion of
proinflammatory cytokines like TNF-α and IFN-γ (Luo et al.,
2011; Aloud et al., 2020). Interestingly, the last decade has also
emphasized the anti-inflammatory properties of calcium channel
blockers in addition to their antihypertensive effects due to
reduced entry of calcium in the cardiac cells and smooth
muscle cells of the vasculature in turn decreasing the
contractile force. The calcium channel blocker lercanidipine
lowers the number of polymorphonuclear leukocytes and C
reactive protein in patients of essential hypertension while
nicardipine inhibits the Th2-mediated airway inflammation
and IFN-γ-induced neuro-inflammation of the microglial cells.
(Gomes et al., 2007; Farah et al., 2013; Huang et al., 2014; Saddala
et al., 2020). Beta-blockers inhibit the action of norepinephrine
and epinephrine on β-adrenergic receptors. These are generally
used to reduce the work output of the heart, promote relaxation of
the vasculature and lower the blood pressure (Shand, 1975). In
addition, β-blockers inhibit renin release from the kidneys and
have demonstrated anti-inflammatory cytokine profile after their
use (Ohtsuka et al., 2001; Gage et al., 2004; Hagiwara et al., 2009;
Jachs et al., 2021). Methyldopa is a centrally-acting α2-adrenergic
receptor agonist (Frohlich, 1980) and analog of DOPA (3,4-
hydroxyphenylanine) that inhibits the adrenergic neuronal
outflow and vasoconstriction response reducing the blood
pressure. Methyldopa blocked the antigen presentation and
inflammatory T cell responses in type 1 diabetes patients,
suggesting its potential to combat autoimmunity (Ostrov et al.,
2018; Bogacz et al., 2021). The vasodilator class of anti-
hypertensive drugs, for example hydralazine, is beneficial as an
antioxidant and anti-inflammatory agent in rodent models of

TABLE 1 | Common hypertensive drugs and their mechanisms of action.

Medication class Example drug Target/Mechanism of action References

Renin inhibitors Aliskiren Decrease renin activity consequently decreasing ANG II (Sears, 2008; WHO, 2021)
Contraindicated in patients with diabetes

Angiotensin-converting enzyme
inhibitors

Captopril Inhibits the conversion of ANG I to ANG II Ram, (2008)

Angiotensin receptor blockers Losartan AT1 receptor blocker Zhang et al. (2003)
Diuretics Chlorothiazide Increase urine excretion, lowering blood volume Oparil, (2003)

Side effect: Electrolyte imbalances
Beta blockers Propranolol Reduce heart rate and contractility (Shand, 1975; WHO, 2021)

Preferred hypertension treatment in patients with heart failure
Calcium channel blockers Diltiazem Relax vascular smooth muscle, lowers heart rate and contractility Cushman et al. (2000)

Common first-line therapy for people of African descent: more efficacious
in this population

Alpha blockers Terazosin Vascular relaxation, lowers total peripheral resistance Achari and Laddu, (1992)
Central Alpha-2 receptor agonists Methyldopa Activates α2 receptors, providing negative feedback to reduce

norepinephrine release
(Frohlich, 1980; WHO, 2021)

Primary antihypertensive medication given during pregnancy
Peripheral adrenergic inhibitors Reserpine Prevents the release of norepinephrine Magarian, (1992)

Prescribed when other medications do not work since it has more side
effects

Vasodilators Hydralazine Vasodilation Kandler et al. (2011)
Endothelin receptor antagonists BQ123 Prevents endothelin-1 mediated vasoconstriction and changes in sodium

handling
(Moore and Linas, 2010; Kohan and
Barton, 2014)

Major side effect: edema

Table 1 ANG I—angiotensin I; ANG II—angiotensin II.
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sepsis, renal and myocardial ischemia-reperfusion injury, and the
spontaneously hypertensive rat (Rodrigues et al., 2008; Li et al.,
2020; Leu et al., 2021; Santos et al., 2021). Endothelin-1 (ET-1) is a
potent vasoconstrictor and regulator of sodium excretion that
induces inflammation and oxidative stress, so endothelin receptor
antagonists have been investigated as a treatment for
hypertension (Kohan and Barton, 2014). These drugs have not
had wide attraction or success in treating hypertension due to
adverse side effects like significant edema (Moore and Linas,
2010; Kohan and Barton, 2014). It is not yet known if drugs from
other classes of antihypertensives like peripheral α-1 adrenergic
inhibitors have anti-inflammatory properties.

These studies linking the anti-inflammatory properties to anti-
hypertensive medications do not necessarily indicate a causal role
of inflammation in the pathogenesis of hypertension. An
interesting study by Marvar et al. actually demonstrated that
hydralazine lowered blood pressure and, in turn, indirectly
prevented the ANG II-induced T cell activation and vascular
infiltration of leukocytes (Marvar et al., 2010). The association
between inflammation and antihypertensive drugs may vary
depending on the type of the inflammatory marker studied,
the disease model under investigation, and the stage of the
disease. It is highly likely that inflammation and blood
pressure modulation may influence each other in a complex
way. For example the drug Etanercept, which blocks TNF-α,
reduced blood pressure in ANG II-induced hypertension (Guzik
et al., 2007) and an autoimmune model of chronic inflammation
(Venegas-Pont et al., 2010), but not in salt-dependent
hypertension (Elmarakby et al., 2008). The recent
Canakinumab Anti-inflammatory Thrombosis Outcomes Study
(CANTOS) demonstrated that the IL-1β inhibition with
canakinumab reduced major adverse cardiovascular event rates
and C reactive protein, without effecting blood pressure (Dixon
et al., 2020). Nevertheless, these studies emphasize the
importance of identifying subpopulations of patients that may
respond to particular anti-inflammatory therapy, while another
cohort may not respond to that same therapy.

The American College of Cardiology stresses the importance
of lifestyle modification in addition to or in place of
pharmacological agents (Goetsch et al., 2021). The World
Health Organization suggests initial treatment with one drug
targeting the RAS combined with a thiazide-like diuretic, along
with a drug from a third category like calcium channel blockers if
necessary (WHO, 2021). However, some medications may be
preferred or contraindicated based on the patient’s situation, e.g.,
β-blockers are a preferred hypertension treatment for heart
failure patients due to their beneficial effects on the heart, and
certain RAS inhibitors are contraindicated for people of African
descent, making calcium channel blockers a common first-line
therapy for these patients (Unger et al., 2020). The most
commonly used initial combination of therapies include a
long-acting calcium channel blocker (CCB), a blocker of RAS
(ACE inhibitor or ARB), and a diuretic. In many cases, it is still
difficult to control blood pressure even with a combination of
drugs. The American College of Cardiology and American Heart
Association defines “resistant hypertension” as occurring when
blood pressure remains above the target blood pressure of 130/

80 mmHg despite concurrent use of three antihypertensive agents
of different classes, or when four or more antihypertensive agents
are needed to control blood pressure at the optimum level (Carey
et al., 2018a). True resistant hypertension can be differentiated
from the pseudo- or apparent resistant hypertension, in which the
latter is due to measurement error, the “white coat effect”, or
nonadherence to treatment. Use of proper blood pressure
measurement techniques by trained staff, using out–of-office,
ambulatory and self-monitoring of the blood pressure,
monitoring prescription refills and achieving a good doctor-
patient relationship are some of the ways to avoid pseudo-
resistant hypertension (Carey et al., 2018a). The cause of
resistant hypertension is typically further investigated for 1)
suboptimal lifestyle factors, e.g., obesity, dietary sodium intake,
and physical inactivity; 2) other drugs interfering with the action
of the antihypertensive therapy; and/or 3) other conditions that
lead to hypertension such as endocrine disorders, renal disease,
renal artery stenosis, and coarctation of aorta (Carey et al.,
2018a). The fact that resistant hypertension cannot be
controlled easily by the current anti-hypertensive regimens
calls for new cellular and molecular targets.

The Role of Renal Inflammation in
Hypertension
Many investigators have demonstrated the causal role of renal
inflammation in the form of immune cell (both innate and
adaptive) infiltration and a pro-inflammatory milieu in the
pathogenesis of hypertension (Vanegas et al., 2005; Franco
et al., 2006). In fact, recent studies demonstrate that the
immune cell infiltration in the kidneys may alter the renal
vascular function and the fluid electrolyte balance in addition
to causing renal injury (Franco et al., 2013; Rucker et al., 2018).
Infiltrating T cells in the kidneys accentuate the Dahl salt-
sensitive phenotype by increasing intrarenal ANG II and
oxidative stress (Mattson, 2014). Proinflammatory cytokines
like IL-17A and IFN-γ can induce hypertension by altering the
reabsorption of sodium through its transporters: sodium-
hydrogen exchanger-3 (NHE3), sodium-potassium-chloride
cotransporter (NKCC) and sodium-chloride cotransporter
(NCC) on the renal tubules (Kamat et al., 2015). Additionally,
the polarization of macrophages to the pro-inflammatory M1
phenotype in the kidney can promote macrophage recruitment
and added release of various inflammatory cytokines leading to
renal damage and altered fluid-electrolyte balance (Fehrenbach
and Mattson, 2020). Studies show that stimulation of dendritic
cells (DCs) in the kidneys results in oxidative stress, fluid
retention, and increased blood pressure (Lu et al., 2020). The
importance of DCs in hypertension was demonstrated by
adoptive transfer experiments of splenic DCs from ANG II
hypertensive mice that was able to activate T-cells in the
recipient mice. Furthermore, adoptive transfer of DCs from
animals that underwent renal denervation led to a decrease in
total leukocytes, CD3+, CD4+ and CD8+ T cells in response to low
dose of ANG II. This suggests an association of the renal
sympathetic nerves and renal inflammation in the
development of hypertension (Xiao et al., 2015), which has
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been confirmed by many others (Xiao et al., 2015; Banek et al.,
2018; Banek et al., 2019; Osborn et al., 2021). Besides renal nerves,
sympathoexcitation of other nerves also contributes to
hypertension and the contribution of the sympathetic
vasomotor outflow seems to be dependent on the hypertension
model and the stage of the disease. For example, in ANG II-
induced hypertension, denervation of the splanchnic nerve, but
not the renal or lumbar nerve, was able to blunt hypertension
(Osborn and Fink, 2010). On the other hand, both renal and
splanchnic nerve contributes to hypertension in the Genetically
Hypertensive Schlager (BPH/2J) mice (Asirvatham-Jeyaraj et al.,
2021). Renal denervation was unable to reduce blood pressure in
hypertensive mice with late-stage systemic lupus erythematosus
(Mathis et al., 2013). Thus, sympathetic activation has an
important, but complicated role in the development and
maintenance of hypertension and renal inflammation and
needs further investigation.

Autoimmune-Induced Renal Inflammation
Promotes Hypertension
Autoimmune diseases are characteristic of overactivation of
immune cells, and chronic inflammation. Coincidently,
autoimmune diseases with a renal component are associated
with hypertension and cardiovascular morbidities (Boesen and
Kakalij, 2021). Examples include systemic lupus erythematosus
(SLE), Goodpasture syndrome, idiopathic membranous
nephropathy, immunoglobulin A nephropathy, anti-neutrophil
cytoplasmic antibody-associated glomerulonephritis, idiopathic
thrombocytopenic purpura, rheumatoid arthritis and psoriasis
(Panoulas et al., 2007; Coumbe et al., 2014; Giannelou and
Mavragani, 2017; Liu and Kaplan, 2018; Tumurkhuu et al.,
2019; Boesen and Kakalij, 2021). The renal pathological
mechanisms involved in autoimmune-induced hypertension
are still not completely understood; however, we do know that
the loss of self-tolerance leads to autoantibody production and
these autoantibodies form complexes, deposit into tissues like the
kidneys and promote activation of other immune cells and the
complement system. The resultant secretion of inflammatory
mediators locally promotes chronic renal inflammation and
oxidative stress (Choi et al., 2012; Small et al., 2018), which
may increase fluid and electrolyte imbalance in the kidneys and/
or cause renal vascular dysfunction leading to hypertension
(Makino et al., 2002; Liu et al., 2012; Cowley et al., 2015;
Gonzalez-Vicente et al., 2019).

SLE is the prototypical autoimmune disease with a renal
inflammatory component usually referred to as lupus
nephritis. Lupus nephritis develops following the production
of diverse complex-forming nuclear autoantibodies that attack
various self-antigens, including double-stranded DNA (dsDNA),
histones, cardiolipins, phospholipids, Smith antigen and
ribonucleoproteins (sm/RNP), and complement 1q (C1q)
(Artim-Esen et al., 2014; Dema and Charles, 2016; Chen and
Tsokos, 2021). Lupus nephritis is prevalent in more than half of
SLE patients and it causes severe damage to glomerular, tubular
and/or renal vascular structures (Najafi et al., 2001; Hsieh et al.,
2011; Tsumiyama et al., 2013; Suarez-Fueyo et al., 2017; Ding

et al., 2018). Lupus nephritis precedes hypertension in both
female human SLE and the well-accepted female mouse model
of SLE, the NZBWF1 mouse, so this enables the investigation of
contributory mechanisms of hypertension in the setting of
chronic renal inflammation. In addition, therapies that
suppress lupus nephritis warrant identification and
introduction to the hypertension field so that the scope of use
of these drugs in patients with hard-to-control hypertension with
a renal inflammatory component (e.g., resistant hypertension)
can be considered.

Currently the prevalence of SLE in the United States is 72.8 per
100,000, with a threefold increase in incidence due to improved
screening measures (Izmirly et al., 2021), and 9 out of 10 SLE
patients are women of reproductive age. There are extreme
disparities in SLE, since Black, Hispanic, Asian and Native
American women are most commonly affected for unknown
reasons. Several studies have confirmed a high prevalence of
hypertension in SLE patients, ranging from 40% to as high as 74%
in some cohorts (Sabio et al., 2011). Hypertension is a prominent
baseline risk factor for severe ischemic stroke and cardiovascular
disease in SLE patients (Mikdashi et al., 2007; Sabio et al., 2011;
Munguia-Realpozo et al., 2019). Since cardiovascular disease is
the leading cause of mortality among SLE patients, it is critical
that we understand the pathogenesis of hypertension in SLE.

Current guidelines disregard the specific management of
hypertension in SLE patients and focus on the treatment of
lupus nephritis, skin manifestations, and pulmonary
hypertension instead. Tselios et al. does recommend, however,
a reduction of blood pressure to ≤130/80 for SLE patients using
ACE inhibitors and ARBs, a similar goal and regimen
recommended by the American Society of Cardiology for
hypertensive persons (Tselios et al., 2020). The use of ACE
inhibitors like captopril may be beneficial since it reduces
renal injury and inflammation in spontaneously hypertensive
rats (SHR) while reducing blood pressure (Gan et al., 2018).
Captopril also provides renal protection when administered to
diabetic patients and Albuquerque et al. confirmed the
renoprotective effects of captopril in a mouse model of
autoimmunity (De Albuquerque et al., 2004). The same group
discovered that ACE inhibition decreases the renal expression of
the pro-inflammatory mediator transforming growth factor
(TGF)-β. These studies stress captopril’s ability to improve
renal inflammatory processes, but more studies are needed to
determine the efficacy in SLE.

Evidence of the effect of first-line SLE therapies on blood
pressure is limited. However, we do know that traditional
therapies that target lupus nephritis possess various adverse
effects (see Table 2). Corticosteroids, the most widely-used
agent for all autoimmune diseases, cause systemic side effects
such as psychosis, Cushing’s syndrome, and importantly,
hypertension in SLE patients (Petri et al., 2014; Kassel and
Odum, 2015), while the NZBWF1 mice develop osteopenia
and adrenal gland atrophy following chronic corticosteroid
therapy (Jia et al., 2018). Novel immunomodulatory drugs are
an exciting option for limiting immune system activation in SLE,
but they often dampen the immune system excessively. For
example, belimumab, a drug approved for SLE to inhibit B
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lymphocyte stimulator (BLyS) to induce apoptosis of autoreactive
B cells (Weide et al., 2003; Petri, 2004; Pisoni et al., 2005; Chugh
and Kalra, 2013), unfortunately causes progressive multifocal
leukoencephalopathy in elderly SLE patients (Fredericks et al.,
2014). Previous studies have shown that B cell or plasma cell
depletion can prevent the development of hypertension if
administered before the onset of SLE (Mathis et al., 2014;
Taylor et al., 2018). Similar treatments exist for human SLE
patients; rituximab binds to CD20 to deplete B cell activity, while
mycophenolate mofetil and cyclophosphamide inhibit B cell
activation and plasma cell synthesis. All have been efficacious
in treating human SLE hypertension (Jiang et al., 2020; Lee et al.,
2021). Mycophenolate mofetil also potentially reduces renal
lymphocyte and macrophage infiltration while combating renal
inflammation (Bravo et al., 2007). The most recent FDA-
approved drug for SLE, anifrolumab, targets type 1 IFN by
binding to its receptor IFNAR1 and inhibiting downstream
inflammatory and immunological processes (Tanaka and
Tummala, 2021). Anifrolumab caused adverse reactions such
as nasopharyngitis, upper respiratory tract infection, and
bronchitis (Mode and Stockholm, 2021), but its effect on renal
inflammation and hypertension in SLE has not been investigated.
Because of these unwanted and serious side effects, new and
better therapies are still warranted to maintain the quality of life
in SLE patients.

Mechanisms That Regulate Renal
Inflammation in SLE Hypertension
If we can target renal inflammation effectively, then there will
likely be an improvement in blood pressure control in SLE given
that majority of patients with lupus nephritis present with

hypertension (Shaharir et al., 2015). Coincidently, SLE patients
have significantly higher risks of resistant hypertension compared
to non-SLE patients and this resistant hypertension is associated
with lower renal function, and increased circulation
inflammatory markers (erythrocyte sedimentation rate and
C-reactive protein) (Gandelman et al., 2020).

Many studies have revealed mechanistic pathways regulating
renal inflammation in SLE hypertension (Figure 1) (Ryan, 2009).
Because SLE is a female-dominant disease, we often turn to the
contributions of estrogen. Estrogen stimulates autoreactive B cells
to increase autoantibody production, resulting in the rise of pro-
inflammatory cytokines such as tumor necrosis factor (TNF)-α,
IL-6, and C-reactive protein. Pharmacological blockade of
estrogen early in life reduces renal inflammation by decreasing
the population of B cells and immune complex deposition in
NZBWF1 mice (Wu et al., 2000; Sthoeger et al., 2003). This
suggests a mechanistic role of estrogen in contributing to renal
inflammatory processes early in life in SLE. Another mechanism
involves the increased production of endothelin-1, along with
hyperactivation of the RAS increasing oxidative stress, which has
been known to promote SLE hypertension (Kuryliszyn-Moskal
et al., 2008; Mathis et al., 2012; Shah et al., 2014; Munguia-
Realpozo et al., 2019). Since endothelin receptor A (ETA)
blockade ameliorates renal inflammation and albuminuria in
the diabetic rats (Saleh et al., 2011) it may be capable of doing
the same in SLE hypertension.

Less discussed are the possible neurogenic influences on renal
inflammation in SLE hypertension. Basal activity of the
hypothalamic-pituitary-adrenal (HPA) axis contributes to the
suppression of peripheral inflammation by the release of
corticosterone. Additionally, decreased parasympathetic (vagal)
tone, as indicated by decreased heart rate variability, has been

TABLE 2 | A summary of drugs for SLE hypertension/lupus nephritis.

Medication class Example drug Target/Mechanism of action References

Antimalarial Hydroxychloroquine Lysosomes, double-stranded DNA; inhibits immune activation and production of
proinflammatory cytokines

Schrezenmeier and Dörner,
(2020)

Corticosteroids Methylprednisolone Glucocorticoid receptors; inhibit many inflammation-associated molecules such as
cytokines, chemokines, arachidonic acid metabolites, and adhesion molecules

Ocejo and Correa, (2021)

B cell inhibitors Rituximab CD20 on B cells; depletes B cell activity de Bourcy et al. (2017)
Mycophenolate
mofetil

Inhibits B cell activation and plasma cell synthesis Eickenberg et al. (2012)

Cyclophosphamide Inhibits B cell activation and plasma cell synthesis Eickenberg et al. (2012)
Belimumab B lymphocyte stimulator inhibitor; inhibits B lymphocyte proliferation and differentiation into

plasma cells, induces apoptosis of autoreactive B cells
Chugh and Kalra, (2013)

Type-I IFN inhibitor Anifrolumab-fnia Type I IFN Receptors; binds to IFNAR1, blocking action of all Type I IFNs, inhibiting
downstream inflammatory and immunological processes

Tanaka and Tummala, (2021)

PPAR-γ agonist Rosiglitazone Adipose tissue; reduces ET-1, lowers blood pressure, reduces renal inflammation and
injury

Venegas-Pont et al. (2009)

Protease inhibitor Bortezomib Chymotrypsin-like subunit of 26S proteasome; decreases production of autoantibodies
and attenuates hypertension

Segarra et al. (2020)

Immunosuppressa-
nts

Azathioprine Incorporates into DNA and RNA to inhibit their synthesis, inhibits CD28-mediated signal in
T cells

Fava and Petri, (2019)

Methotrexate Dihydrofolate reductase; interferes with DNA synthesis, repair, and replication, reducing
purine synthesis, depletes folates

Fava and Petri, (2019)

Calcineurin inhibitor Voclosporin Binds and inhibits calcineurin, suppressing T cell activation and reducing renal inflammation Rovin et al. (2021)

Table 2 DNA—deoxyribonucleic acid; RNA—-ribonucleic acid; IFN—interferon; IFNAR1—subunit one of the type 1 interferon receptor; PPARγ—peroxisome proliferator activator
receptor-gamma; ET-1—Endothelin-1.
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consistently identified in clinical studies involving SLE patients
since 1997 (Laversuch et al., 1997; Maule et al., 1997; Thanou
et al., 2016; Matusik et al., 2018; Zinglersen et al., 2021). An
impaired HPA axis is present in SLE and may explain why renal
inflammation is not resolved in SLE (Rovenský et al., 1998; Pham
and Mathis, 2018). Tracey et al. established the significance of the
inflammatory reflex—specifically the efferent arm of this reflex,
known as the cholinergic anti-inflammatory pathway—a neural
circuit that attenuates excessive inflammation (Huston et al.,
2007; Tracey, 2021). This circuit runs from the vagus nerve to
the splenic nerve and causes the release of acetylcholine from
splenic T cells. This acetylcholine activates the alpha seven
subunit of the nicotinic acetylcholine receptor (α7-nAChR) on
splenic immune cells, ultimately resulting in the blunted release of
proinflammatory cytokines and overall suppression of systemic
inflammation and tissue damage (Pavlov et al., 2009; Martelli
et al., 2014a); (Figure 2). Both the cholinergic anti-inflammatory
pathway and the HPA axis rely on an active vagus nerve;
therefore, decreased vagal nerve activity in SLE likely
contributes to decreased activity of both of these anti-
inflammatory pathways (Stein et al., 1996; Thanou, 2014;
Mathis, 2015).

Studies from our lab suggest that stimulation of this
cholinergic anti-inflammatory pathway can attenuate renal
inflammation and the progression of hypertension in SLE,
presenting the nerve as a novel, potential target for

intervention for SLE hypertension (Fairley and Mathis, 2017).
Galantamine is a centrally acting acetylcholinesterase inhibitor
that enhances efferent vagus nerve activity and further enhances
the cholinergic anti-inflammatory pathway (Pavlov et al., 2009),
(Figure 2). Chronic systemic administration of galantamine in
SLE mice successfully protects from hypertension by attenuating
renal and splenic inflammation, while also decreasing the levels of
autoantibodies (Pham et al., 2018). Similarly, the action of
semapimod hydrochloride (CNI-1493), a tetravalent
guanylhydrazone molecule, which inhibits the synthesis of
proinflammatory cytokines, is mediated in part by the
activation of efferent vagal nerve fibers (Borovikova et al.,
2000; Bernik et al., 2002). When treated with systemic CNI-
1493, SLE mice showed attenuated hypertension, decreased
albuminuria, improved renal blood flow and decreased renal
vascular resistance (Maloy et al., 2016). Whether long-term
activation of the vagus nerve attenuates renal inflammation
and hypertension in SLE patients is a prospective study to
consider. Already, a randomized controlled pilot trial
subjecting human SLE patients to 4 days of transcutaneous
auricular vagus nerve stimulation successfully reduced pain
and fatigue in these patients (Aranow et al., 2021), but the
effect on renal inflammation and hypertension were not
considered. Taken together, vagus nerve stimulation is
promising in animal studies and humans so additional studies
are needed to support these findings and to understand the

FIGURE 1 | The pathophysiology of SLE-induced hypertension: A summary of factors that contribute to hypertension in SLE. Inflammation due to autoimmunity
(red), as well as humoral factors that increase it (purple), and aberrant activity causing oxidative stress (green) comprise endogenous causes of lupus hypertension. The
cholinergic anti-inflammatory pathway (blue) represents a neurogenic cause of lupus hypertension. Arrows (→) indicate stimulation; line with flathead (--|) indicates
inhibition (RAS- renin angiotensin system; α7nAchRs-alpha seven nicotine acetyl choline receptors).
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detailed molecular mechanisms for its effect in the pathogenesis
of lupus nephritis and SLE hypertension.

However, we must consider that the cholinergic anti-
inflammatory pathway features several communication nodes,
namely the vagus nerve, celiac ganglion, splenic nerve, and spleen
(Tracey, 2007; Rosas-Ballina and Tracey, 2009; Olofsson et al.,
2012; Pavlov and Tracey, 2017). Yet, this pathway and the
proposed connections are controversial (Martelli et al., 2014a;
Martelli et al., 2014c). Specifically, the neuroimmune mechanism
is thought to be mediated by communication between the vagus
and splenic nerves via the celiac ganglion. Several studies have
shown the importance of these nodes of transmission in the
protection offered by vagus nerve stimulation (Borovikova et al.,
2000; Huston et al., 2008; Rosas-Ballina et al., 2008); however,
morphological and anatomical studies suggest there may be no
such connection between the two nerves (Martelli et al., 2014c),
that the source of catecholamines may paradoxically be the vagus
itself (Verlinden et al., 2016), and/or that other nerves like the
splanchnic nerve may be the source of activation instead
(Figure 2; Martelli et al., 2014b; Komegae et al., 2018). A
recent study from our lab showed that unilateral vagotomy
decrease renal inflammation and blunt hypertension in SLE
mice, contrary from our initial hypothesis that vagotomy
would worsen SLE hypertension and inflammation due to the

disruption of the anticholinergic anti-inflammatory pathway.
These data suggest the existence of compensatory
neuroimmune mechanisms that prevail even after unilateral
vagotomy that need further attention and investigation (Pham
et al., 2020).

Attempts at reducing renal inflammation and attenuating SLE
hypertension at other nodes within the cholinergic anti-
inflammatory pathway were less successful in our hands.
While systemic administration of nicotine, an agonist of α7-
nAChR (Figure 2), reduced splenic and renal cortical expression
of proinflammatory cytokines and blood pressure (Fairley and
Mathis, 2017), partial agonist, GTS-21, and PNU-120596, a
positive allosteric modulator (PAM) did not significantly
reduce inflammation or blood pressure in SLE mice (Morales
et al., 2021). However, it is possible that the lack of beneficial
effect of GTS-21 and PNU-120596 was due to the mice being
treated at an advanced stage of SLE, and future studies that use an
earlier timeline for the administration of these α7 ligands may
prove to be more successful. Additionally, the absence of a
coexisting endogenous agonist (i.e., acetylcholine) due to
decreased vagal tone in SLE may lead to ineffectiveness of
PAM action. Interestingly, the importance of cholinergic anti-
inflammatory pathway in the treatment of resistant hypertension
has recently been recognized. In their study, Hilderman et al.

FIGURE 2 | Cholinergic anti-inflammatory pathway reduces renal inflammation and hypertension: The afferent vagus nerve detects inflammatory cytokines and
relays this information centrally to increase the efferent vagus, which synapses on the celiac ganglion and activates the splenic nerve. Another possible mechanism for
activation of splenic nerve is via the splanchnic nerve. The splenic nerve has sympathetic fibers and stimulates splenic ChAT + T cells to synthesize and secrete
acetylcholine, which acts upon various immune cells in the spleen, including macrophages, to inhibit the production and release of inflammatory cytokines. A
reduction in splenic inflammation and proinflammatory cytokines in circulation decreases renal inflammation and renal injury preventing the rise in the blood pressure. The
efferent vagus nerve can be stimulated using pharmacological agents galantamine and CNI-1493 or direct electrical stimulation. GTS-21 and nicotine, agonists of the
α7nAchR and PNU-120596, positive allosteric modulator for this receptor leads to activation of this receptor to inhibit the cytokine release from immune cells.
(β2AR—beta 2 adrenergic receptor; ChAT + T cells—choline acetyltransferase positive T cells; α7nAchRs—alpha seven nicotine acetylcholine receptors). Created with
Biorender.com.
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collected whole blood samples at different time points from
patients with resistant hypertension treated with renal
denervation. These samples, when further treated with GTS-
21, showed long-term suppression of LPS-induced TNF
compared to the short-term suppression in the vehicle group.
Although the authors could not study the effects on renal
inflammation, their study and ours suggest a role of
compromised anti-inflammatory pathways in the development
of renal inflammation in SLE hypertension (Hilderman et al.,
2019).

The antimalarial drug hydroxychloroquine, commonly used
in SLE, suppresses the activity of lysosomal enzymes, thereby
preventing major histocompatibility complex (MHC) class II-
mediated autoantigen presentation. This drug also binds to
dsDNA and inhibits toll-like receptor (TLR) signaling and/or
TLR binding in order to reduce the production of
proinflammatory cytokines (Rainsford et al., 2015). Gomez-
Gutman et al. showed that hydroxychloroquine decreases renal
inflammation, blood pressure, and renal injury, but does not
decrease levels of anti-dsDNA antibodies in the NZBWF1 mouse
model (Gómez-Guzmán et al., 2014). However,
hydroxychloroquine was administered to the NZBWF1 mice at
30 weeks of age, when autoimmune-mediated hypertension and
renal injury have already developed. It is likely that the timing of
hydroxychloroquine administration is crucial to attenuate the
extent of the autoantibodies production, reflected by the fact that
hydroxychloroquine is the first-line drug for mild, early SLE in
humans (Gies et al., 2020).

Finally, other drugs with uniquemechanisms are also beneficial in
reducing renal inflammation and blood pressure in SLE, introducing
other potential mechanisms. Rosiglitazone, a peroxisome proliferator
activator receptor gamma (PPARγ) agonist, targets adipose tissue and
has been shown to reduce endothelin-1 and attenuate hypertension as
well as renal inflammation and injury in SLE mice model (Venegas-
Pont et al., 2009). The TNF-α inhibitor, etanercept, decreases mean
arterial pressure as well as renal injury measured by
glomerulosclerosis and albuminuria, and also decreases renal
monocyte infiltration and oxidative stress (Venegas-Pont et al.,
2010). Etanercept has been approved in many autoimmune
conditions like rheumatoid arthritis, psoriasis, and systemic
sclerosis to alleviate TNF-α-mediated immune responses and
inflammation. It also decreases blood pressure in AngII-induced
hypertension (Guzik et al., 2007) and pulmonary hypertension
(Zhang et al., 2016); however, its safety and role in human SLE
hypertension needs further investigation. Another promising drug for
treating lupus nephritis is calcineurin inhibitors, drugs that block
T cell activation through the suppression of the calcium/
calcimodulin-dependent phosphatase. The novel calcineurin
inhibitor, voclosporin acts by reducing the activation of T cells,
causing stabilization of podocytes and reduction of proteinuria
(Mok, 2017; Mejía-Vilet and Romero-Díaz, 2021). Voclosporin
has recently been approved as induction therapy in lupus
nephritis in combination with myocophenolate mofetil and a
glucocorticoid. Its effects on blood pressure in lupus have not
been demonstrated (Rovin et al., 2021).

In summary, several immune and molecular pathways play a role
in executing the control of renal inflammation. Future mechanistic

studies exploring the possible pathways that contribute to the renal
inflammation in SLE-induced hypertension may help to modify the
treatment strategies for hypertension in the setting of chronic
inflammation or resistant hypertension.

CONCLUSION

There have been tremendous advances in treating hypertension.
However, there are still subpopulations of hypertensive patients
that do not respond to current combinations of antihypertensive
agents indicating that alternative mechanisms are at play. In this
review, we have provided an overview of what is currently known of
the association between inflammation and hypertension, and
evidence of the need to target renal inflammation in some
hypertension patients. We provide intriguing examples that
suggest that hypertension therapy could be more efficacious in
those with underlying renal inflammation if the therapy was
combined with an agent that combats renal inflammatory
processes. There is a high prevalence of hypertension in SLE, so
this presents an important disease model to study the control of renal
inflammation in hypertension. Resistant hypertension is highly
prevalent in SLE patients, so the link between the two also
warrants further investigation. Some common SLE therapies have
been successful in reducing both renal inflammation and blood
pressure, while the efficacies of others have not been determined
in humans or animal models of SLE. Studies determining the ability
of other common SLE drugs to reduce blood pressure in more
conventional animal models of hypertension and in hypertensive
humans are warranted. Indeed, McCarthy et al. has already
demonstrated the beneficial effects of chloroquine in
spontaneously hypertensive rat (McCarthy et al., 2016) and
chloroquine is well known to decrease vascular resistance and
blood pressure in humans (Anigbogu et al., 1993). Development
of diagnostic tools that identify the cohorts of hypertensive patients
responding to a particular anti-inflammatory therapy combating
renal inflammation is a step further towards personalized
medicine. Whether drugs used to treat SLE have a beneficial effect
on hypertension in the vulnerable population of resistant
hypertensive patients is intriguing and warrants investigation.
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