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ABSTRACT Foot-and-mouth disease virus (FMDV) is the causative agent of foot-
and-mouth disease. It is characterized by genetic instability and different antigenic
properties. The nonstructural protein 3A is a primary determinant of the tropism and
virulence of Cathay topotype FMDVs. However, several other determinants are also
speculated to be involved in viral tropism and virulence. Deletion of 43 nucleotides
(nt) in the pseudoknot (PK) region of the 5= untranslated region (UTR) has been
found to coexist with the identified 3A deletion in Cathay topotype FMDV genomes.
In this study, we isolated an O/ME-SA/PanAsia lineage FMDV strain, O/GD/CHA/2015,
that includes an 86-nt deletion in the PK region and shows a porcinophilic pheno-
type. To investigate the potential role of the PK region in viral pathogenicity, we
generated a recombinant FMDV strain with an incomplete PK region and compared
its virulence and pathogenesis to the intact FMDV strain in swine and bovines. Dele-
tion of the 86 nt in the PKs had no major effects on the pathogenicity of the virus
in swine but significantly attenuated its ability to infect bovine cells and cattle, indi-
cating that the PK region is a newly discovered determinant of viral tropism and vir-
ulence. The role of the 43-nt deletion existing in the Cathay topotype FMDV was
also investigated by evaluating the infection properties of genetically engineered vi-
ruses. Consistently, the 43-nt deletion in the PK region significantly decreased the
pathogenicity of the virus in bovines. Overall, our findings suggest that the PK re-
gion deletion occurred naturally in the FMDV genome and that the PK region is
highly associated with viral host range and functions as a novel determinant for
FMDV pathogenesis.

IMPORTANCE This study demonstrates that the deletion in the PK region occurred
naturally in the FMDV genome. The isolated O/ME-SA/PanAsia lineage FMDV with an
86-nt deletion in the PK region showed a pig-adapted characteristic that could
cause clinical signs in swine but not bovines. Compared to the wild-type FMDV
strain, which possesses full infection capacity in both swine and bovines, the recom-
binant virus with the 86-nt deletion in the PK region is deficient in causing disease
in bovines. Deletion of the previously reported 43 nt in the PK region also led to
significantly decreased pathogenicity of FMDV in bovines. This study indicates that
the PK region is a novel determinant of the tropism and virulence of FMDV.
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Foot-and-mouth disease (FMD) is a highly contagious viral disease caused by foot-
and-mouth disease virus (FMDV). Outbreaks of FMD often result in severe economic

losses due to its effect on trade and the slaughtering of infected animals. The wide host
range and high degree of contagiousness makes FMD difficult to control and eradicate
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(1). FMDV belongs to the genus Aphthovirus in the family Picornaviridae and consists of
seven serotypes (O, A, C, SAT1, SAT2, SAT3, and Asia l) and multiple subtypes within
each serotype (2, 3). Three serotypes of FMDV, including serotypes O, A, and Asia 1,
have caused epidemics in Asia that make FMD difficult to control, and serotype O
FMDVs are mainly responsible for current outbreaks of FMD in Asian countries (4, 5).

FMDV is an RNA virus characterized by high genetic variation and antigenic diversity,
and cross-serotype protection is not always developed among different FMDV popu-
lations (6). In addition, in some regions, viral infection with one genetic lineage does
not confer full protection against another genetic lineage in the same serotype.
Different genetic lineages of the same serotype that fall within different geographical
boundaries are defined as different topotypes, and different topotypes have evolved
independently (7). Serotype O is the most prevalent of the seven serotypes of FMDV
and is considered one of the most antigenically diverse serotypes (8, 9). FMDV serotype
O is classified into 11 topotypes based on phylogenetic analysis of the VP1 coding
region, including Europe–South America (Euro-SA), Middle East–South Asia (ME-SA),
Southeast Asia (SEA), Cathay (CHY), West Africa (WA), East Africa 1 (EA-1), East Africa 2
(EA-2), East Africa 3 (EA-3), East Africa 4 (EA-4), Indonesia-1 (ISA-1), and Indonesia-2
(ISA-2) (8–10). Rapid evolution in nature results in the long-term survival and spread of
FMDV throughout a wide region and makes FMD difficult to eradicate.

The FMDV 5= untranslated region (UTR) plays an important role during FMDV
replication. The 5= UTR is �1,300 bp long and contains a short segment known as the
S fragment, which follows the poly(C) tract, the pseudoknots (PKs), the cis-acting
replication element (cre), and the internal ribosome entry site (IRES) (11). The PK region
is predicted to be involved in the conserved structures of the FMDV genome (12).
However, the role of the PK region remains largely unknown (13). It is believed that the
PK region may be involved in viral RNA replication (14). Nucleotide sequence deletions
have been observed in the PK region in FMDV O, A, and C serotypes, which raises
interesting possibilities about the hitherto-unknown evolutionary function of this
region. Previous studies have identified a 10-amino-acid deletion in the 3A protein that
is responsible for the decreased pathogenicity of Cathay topotype FMDVs in bovines.
A 43-nucleotide (nt) deletion in the PK region of the 5= UTR of Cathay topotype FMDV
that coexists with the 3A deletion was also observed (15). However, the role of this
deletion in the PK region remains unclear. We isolated an O/ME-SA/PanAsia lineage
FMDV, strain O/GD/CHA/2015, that contains an intact 3A protein and an 86-nt deletion
in the PK region of the 5= UTR. The role of the 86-nt deletion in the PKs also remains
unclear. O/GD/CHA/2015 showed a pig-adapted characteristic: that the virus could
cause clinical signs in swine but not in bovines. To investigate the potential function of
the PK region, we evaluated the association of the PK region with viral pathogenicity.
Using a reverse genetics system, we demonstrated that the 86 nt in the PK region are
an important determinant of host range for O/ME-SA/PanAsia lineage FMDVs. We also
demonstrated that artificial deletion of 43 nt that naturally occurs in the PK region of
the porcinophilic Cathay topotype FMDV genome resulted in decreased pathogenicity
of the O/ME-SA/PanAsia lineage FMDVs in bovines. Our results show a novel role of the
PK region of FMDV as a host range determinant and imply that natural deletions in
the PK region of serotype O FMDVs might cause a possible shift from cattle to swine as
the carrier for the spread of FMDV.

RESULTS
Isolation of a new O/ME-SA/PanAsia lineage FMDV strain. A new serotype O

FMDV strain was isolated from swine in the Guangdong province of China in 2015. The
isolated virus strain was named O/GD/CHA/2015. The complete genome of O/GD/CHA/
2015 was subsequently sequenced and analyzed to investigate its molecular charac-
teristics. Analysis of FMDV population variation has been performed mainly by aligning
the VP1 gene (1). Therefore, the VP1 nucleotide sequence of the O/GD/CHA/2015 strain
was first compared to the nucleotide database in GenBank using BLAST (NCBI). The VP1
gene of O/GD/CHA/2015 shared the highest sequence identity (96%) with a type O
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strain, O/VN/QT8/2013, isolated from bovines in Vietnam in 2013, which belongs to the
PanAsia lineage O/ME-SA topotype (O/ME-SA/PanAsia). The VP1 sequences of 42 other
representative isolates belonging to different serotypes or topotypes from China and
other Asian countries were used for phylogenetic analysis. The O/GD/CHA/2015 strain
shares a closer phylogenetic relationship with the recent O/ME-SA/PanAsia lineage
strains from Vietnam than with contemporary O/SEA/Mya-98 lineage FMDV strains from
China (Fig. 1). This confirmed that O/GD/CHA/2015 belongs to the PanAsia lineage
O/ME-SA topotype (O/ME-SA/PanAsia).

O/GD/CHA/2015 contains an 86-nt deletion in the PKs of the 5= UTR, and all the
porcinophilic Cathay topotype FMDVs also contain partial deletions in the PK
region. Comparison of the viral genome of O/GD/CHA/2015 with other O/ME-SA/
PanAsia lineage viruses in China was performed. Nucleotide sequence analysis of the
genome revealed that O/GD/CHA/2015 differed from the previous O/ME-SA/PanAsia
lineage viruses isolated in China (83.6 to 94.8% identity) and was most closely related
to the O/CHA/7/2011 strain. A deletion of 86 nt was observed within the PKs of the 5=
UTR of O/GD/CHA/2015 at positions 406 to 491, compared to other O/ME-SA/PanAsia
FMDV strains (Fig. 2A). As for polyprotein comparison, all of these O/ME-SA/PanAsia
lineage viruses contained 2,332 amino acids (no deletions or insertions were observed
in O/GD/CHA/2015), and O/GD/CHA/2015 also showed the highest amino acid identity
with the O/CHA/7/2011 strain (97.8%). The 3= UTR of O/GD/CHA/2015 was the same
length as that of O/CHA/7/2011 and also shared the highest nucleotide identity (91.6%).
To investigate the stability of the 86-nt deletion in the PK RNA region, the 5= UTR
sequences of the isolate and the fourth-passage progeny virus in BHK-21 cells were
determined and compared. The results showed that the progeny virus stably holds the
86-nt deletion in the 5= UTR region (data not shown). O/GD/CHA/2015 included a
considerably different 5= UTR from that of the other O/ME-SA/PanAsia lineage strains.
To further investigate the characteristics of the 5= UTR of O/GD/CHA/2015, 70 published
5= UTR sequences of serotype O FMDVs isolated in Asian countries (including different
topotypes) available in the NCBI database (with detailed isolation information in
GenBank) were subsequently extracted and compared using DNA STAR software. We
found that all the Cathay topotype FMDVs also harbored deletions in the PK region of
the 5= UTR (Fig. 2B). A 10-amino-acid deletion was identified in the 3A protein of the
porcinophilic Cathay topotype FMDVs, as previously reported (16) (Fig. 2C), and these
porcinophilic FMDVs, concurrently harbored 43-nt deletions in the PK region of the 5=
UTR. A previously isolated Chinese Cathay topotype of serotype O virus OMIII (an
artificially attenuated virus from strain Akesu/58) contained an 86-nt deletion in the PK
region similar to that in the O/GD/CHA/2015 strain (Fig. 2B) and included a 15-amino-
acid deletion in 3A (Fig. 2C). O/GD/CHA/2015 and other O/ME-SA/PanAsia lineage
viruses all included intact 3A protein (Fig. 2C). O/GD/CHA/2015 is not a Cathay topotype
strain, and it has an intact 3A protein; however, it also includes a partial PK region
deletion. The role of these deletions in the PK region remains unknown.

O/GD/CHA/2015 shows a pig-adapted characteristic. Previous studies reported
that the 10-amino-acid deletion in the 3A protein of serotype O Cathay topotype virus
strain O/TAW/97 resulted in an altered host tropism (pig adapted) and a severe
epidemic among pig farms (16). Moreover, evidence suggests that some other viral
determinants might also exist and are associated with host range specificity (17, 18).
The OMIII strain is a pig-adapted Cathay topotype strain. All the porcinophilic Cathay
topotype FMDV strains include partial PK region deletions. O/GD/CHA/2015 included an
86-nt deletion in the PK region and had an intact 3A protein. This prompted us to figure
out whether the PK region deletion resulted in a similar porcinophilic phenotype to that
caused by the 3A deletion in the Cathay topotype FMDV strains. To investigate this
hypothesis, the host range of O/GD/CHA/2015 was subsequently investigated. In
parallel, a Chinese O/ME-SA/PanAsia lineage strain, O/CHA/7/2011, with an intact PK
region was used as a control during all the animal experiments. O/CHA/7/2011 included
the complete PK region in the 5= UTR (Fig. 2A). Alignment of the polyprotein and 3= UTR
sequences of O/CHA/7/2011 and O/GD/CHA/2015 was performed. Both O/CHA/7/2011
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and O/GD/CHA/2015 included intact 3A protein and polyprotein, and no insertion or
deletion was observed in the 3= UTR (data not shown). Therefore, O/CHA/7/2011 was
used as the control. Different species have different challenge routes during FMDV
inoculation. Intradermal inoculation is the most certain method of producing infection
by FMDV in cattle (19). Intramuscular inoculation of FMDV can cause generalized

FIG 1 The FMDV O/GD/CHA/2015 strain belongs to the O/ME-SA/PanAsia lineage. Phylogenetic analysis of the VP1 sequences of FMDV O/GD/CHA/2015 and
the other 42 FMDV isolates was carried out. ClustalX 1.83 and MEGA 6.06 software were used for construction of the tree. The analyses were carried out using
the neighbor-joining method and the Kimura two-parameter nucleotide substitution model in MEGA 6.06 (www.megasoftware.net). The number of bootstrap
replicates was set at 1,000. All other parameters were default values. Partial PK region deletions found in the viral genome of the FMDV strains are marked in
blue.
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FIG 2 A PK region deletion in the serotype O FMDV genome occurred naturally in pigs, and all the porcinophilic Cathay topotype FMDVs also
included a partial PK region deletion. (A) The 86-nt deletion in the PK region identified in O/GD/CHA/2015 after comparison to other PanAsia
FMDV strains reported previously in China. The red lines indicate the deleted region in O/GD/CHA/2015. (B) Schematic representation showing
the 86-nt deletion in the PK region of O/GD/CHA/2015 compared to 70 other published serotype O FMDVs isolated in Asian countries available

(Continued on next page)
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disease in pigs (5, 20). Therefore, FMDV challenge by intradermal injection in cattle and
intramuscular injection in pigs has been recommended by both China and the World
Organisation for Animal Health (OIE) as preferred methods for FMDV challenge exper-
iments (16, 19–23). Groups of five swine or cattle that were serologically negative by
FMDV enzyme-linked immunosorbent assay were used for virus challenge. The pigs
were challenged by intramuscular injection with 107 50% tissue culture infective doses
(TCID50)/animal of either FMDV. This dose had previously been shown to be a high dose
for FMDV that can cause clinical disease in swine (24, 25). Doses of 107 and 108

TCID50/animal of either FMDV were used to infect cattle by intradermal inoculation. The
dose of 108 TCID50/animal was a high dose that caused clinical disease during the
experiments. All the animals were monitored daily for clinical signs of disease after viral
challenge. Clinical scores were determined by the following criteria as previously
described (26). Briefly, the mouth, nostril, or tongue lesion beyond the inoculation site
was assigned a score of 1 and one or more lesions per foot a score of 1. The maximum
score was 5.

Both the O/CHA/7/2011 and O/GD/CHA/2015 strains affected pigs, and all the pigs
showed significant clinical disease (severe lesions at 3 days postchallenge [dpc]) and
viremia (Fig. 3A). For the cattle, regardless of whether the low or high doses of virus
were used in the challenge, only O/CHA/7/2011 caused clinical disease. Two cattle
(animals 66 and 61) challenged with 107 TCID50/animal of O/CHA/7/2011 showed no
visible lesions during the experiments, possibly due to unavoidable logistical and
operational constraints or because this dose is insufficient to cause severe disease in all
cattle (Fig. 3B). However, all the cattle challenged with the high dose of 108 TCID50/
animal of O/CHA/7/2011 showed significant clinical lesions (Fig. 3C). In addition, the
virus was detected in the oropharyngeal fluid (OPF) from all the cattle challenged with
O/CHA/7/2011 at 15, 20, and 25 dpc (Fig. 3B and C). In contrast, O/GD/CHA/2015 failed
to cause any clinical disease even at the high dose of inoculum. Viral RNA was
undetectable in the OPF throughout the whole experiment, and no viruses were
isolated from the OPF and blood. The viremia disappeared faster than in the cattle
challenged with O/CHA/7/2011 (Fig. 3B and C). We could recover O/GD/CHA/2015 from
challenged pigs but not from cattle. These data suggested that the O/GD/CHA/2015
strain has significantly decreased pathogenicity in cattle, but is swine susceptible. This
implies that the PK region might be a novel determinant that is implicated in the host
range of O/ME-SA/PanAsia lineage FMDVs. Meanwhile, no reversion or partial reversion
was observed in the 5= UTR of virus recovered from challenged pigs (Fig. 3D). The other
genomic regions of the viruses were also sequenced. No additional mutations were
observed in the viral proteins or noncoding regions (data not shown). This suggested
that the 86-nt deletion in the PK region was stable during viral challenge experiments.

Construction of two recombinant viruses with or without the 86-nt deletion in
the PK region. To further determine the potential effect of the 86-nt deletion within
the PK region of O/ME-SA/PanAsia lineage virus on its pathogenicity, two recombinant
viruses based on the PanAsia virus O/CHA/7/2011 were generated using a reverse
genetics system. We constructed a plasmid, pO/CHA/7/2011, and a derivative of
plasmid pO/CHA/7/2011 (pO/CHA/7/2011-Δ86) containing an 86-nt deletion in the PK
region. Transfection of the pO/CHA/7/2011 plasmid in BHK-21 cells generated a wild-
type O/CHA/7/2011 FMDV with a full-length PK region (rO-WT), while transfection of
pO/CHA/7/2011-Δ86 generated a mutant O/CHA/7/2011 strain with an 86-nt deletion in
the PK region (rO-DPKs86) (Fig. 4A). After four consecutive passages in BHK-21 cells, an
indirect immunofluorescence assay was performed to identify the rescued viruses.
BHK-21 cells infected with the rescued viruses were immunostained by polyclonal

FIG 2 Legend (Continued)
in the NCBI database. (C) Comparison of the 3A protein sequences of Cathay topotype FMDV strains, O/GD/CHA/2015, and the other
O/ME-SA/PanAsia lineage viruses isolated in China. The red box indicates the previously reported porcinophilic Cathay topotype FMDV strains
with 10 amino acids in the 3A protein. The blue box indicates a 15-amino-acid deletion in the 3A protein of the FMDV OMIII strain. The sequences
of 3A proteins of O/GD/CHA/2015 and O/CHA/7/2011 are marked in blue.
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FIG 3 O/GD/CHA/2015 had no pathogenic ability in cattle. (A) Ten pigs were challenged by intramuscular injection with 107 TCID50/animal of
O/GD/CHA/2015 (with a deletion in the PK region) or O/CHA/7/2011 (with the complete PK region). Clinical signs were monitored daily and
viremia was determined at 1, 3, 5, 7, and 9 dpc. (B and C) The cattle were challenged by intradermal inoculation with 107 TCID50/animal (B) or
108 TCID50/animal (C) of O/GD/CHA/2015 or O/CHA/7/2011. Clinical signs were monitored daily and viremia was determined at 1, 3, 5, 7, 9, 15,
20, 25, and 30 dpc. Viral RNAs in the bovine OPF collected at 15, 20, 25, and 30 dpc were measured using qPCR. The left y axes represent the
viral RNA amounts (viremia and OP fluid), and the right y axes represent the clinical scores (the gray bar graphs indicate the recorded clinical
scores at different days postchallenge). The x axes represent the day postchallenge. (D) Comparison of the 5= UTR region sequences of
O/GD/CHA/2015 obtained from the tissue specimens, the propagated O/GD/CHA/2015 in BHK-21 cells, the O/GD/CHA/2015 recovered from the
challenged pigs, and the O/CHA/7/2011 strain (a schematic representation).
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antibodies specific for serotype O FMDV VP3 and exhibited green fluorescence (data
not shown). The plaque-forming assay revealed that both viruses caused visible cyto-
pathic effect (CPE) in BHK-21 cells (Fig. 4B). Unexpectedly, rO-DPKs86 had a smaller
plaque size than rO-WT; however, the two viruses had almost identical virus yields (Fig.
4B). These data demonstrated the successful rescue of rO-WT and rO-DPKs86 viruses by
reverse genetics. The PK regions of the two viruses were subsequently sequenced to
confirm the designed distinction of the rescued viruses (86-nt difference in the PK
region). Amplification of the PK region showed that an 86-nt deletion was observed in
rO-DPKs86; however, no deletions were detected in the rO-WT. Other regions of the
two viral genomes were further sequenced to confirm that, apart from the 86-nt
deletion, the sequences of rO-WT and rO-DPKs86 were identical. The results indicated
that, apart from the 86-nt deletion, some synonymous substitutions were found in the
polyprotein-coding sequence. However, no amino acid deletion or insertion was ob-
served, which suggested that there was no difference between rO-WT and rO-DPKs86
viral proteins and noncoding regions except for the 86-nt in the PK region.

The 86-nt deletion in the PKs contributed to decreased pathogenicity of
O/CHA/7/2011 in bovine cells and cattle. After successful rescue of the two recom-
binant viruses, the growth kinetics of rO-WT and rO-DPKs86 were compared in BHK-21
cells, a permissive cell line for FMDV propagation. Despite that rO-DPKs86 formed
smaller plaques than rO-WT in BHK-21 cells (Fig. 4B), there were no differences in viral
RNA replication and particle production between rO-DPKs86 and rO-WT (Fig. 4B and
5A). The ability of the viruses to form large or small plaques did not correlate with the

FIG 4 Construction and rescue of two recombinant viruses, rO-WT and rO-DPKs86. (A) Schematic representation showing the constructs of pO/CHA/7/2011 and
pO/CHA/7/2011-Δ86. (B) Plaque assays of rO-WT and rO-DPKs86 on BHK-21 cells and the determined virus titers at the indicated time points.
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FIG 5 rO-DPKs86 showed significantly decreased infective ability for bovine cells and cattle compared with rO-WT. (A) Amounts of viral RNA in rO-WT-
or rO-DPKs86-infected BHK-21 cells at 4, 8, 12, 16, 20, and 24 hpi (left panel); one-step growth curves for rO-WT and rO-DPKs86 in BHK-21 cells (middle panel);
viral CPE caused by rO-WT and rO-DPKs86 in BHK-21 cells at 16 hpi (right panel). (B) Plaque morphology caused by rO-WT or rO-DPKs86 in PK-15 cells (upper

(Continued on next page)
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ability to replicate in the growth curve experiment, which was similar to previous
observations for influenza A viruses (27). In addition, the two viruses caused similar
extents of visible CPE in BHK-21 cells (Fig. 5A). To explore whether the 86-nt deletion
in the PK region was a genetic determinant involved in the variation of the host tropism
of the virus from cattle to swine, bovine-derived BTY and swine-derived PK-15 cells
were used to evaluate the replication of rO-WT and rO-DPKs86 in vitro. The results
showed that both viruses are heterogeneous in plaque sizes but homogeneous in RNA
replication, viral yield, and CPE extent (Fig. 5B). Interestingly, although rO-WT and
rO-DPKs86 revealed same-sized plaques in BTY cells, rO-WT had a significant growth
advantage over rO-DPKs86, and rO-WT caused a more dramatic CPE than rO-DPKs86
(Fig. 5C). This indicates that the 86-nt deletion in the PK region decreases viral
replication in BTY cells but not in BHK-21 or PK-15 cells.

To compare the replication and pathogenicity of the rescued viruses in vivo, a
parallel challenge experiment similar to that shown in Fig. 3 was performed. Equal
amounts of rO-WT or rO-DPKs86 (doses of 107 TCID50/pig and 108 TCID50/cattle) were
used to infect cattle or pigs. All the challenged animals were monitored daily for clinical
signs of disease after inoculation of the viruses. Both rO-WT and rO-DPKs86 resulted in
clear clinical disease and viremia in the challenged pigs (Fig. 5D). However, in the cattle,
rO-DPKs86 only caused slight viremia, and no clinical signs of FMD were observed
compared to rO-WT. Viruses could be detected in the OPF from the rO-WT-infected
cattle at the indicated times, but not in the OPF from the rO-DPKs86-infected cattle (Fig.
5E). We could recover rO-DPKs86 from the challenged pigs but not from cattle. The
results of the in vitro and in vivo experiments indicated that the 86-nt deletion in the
PK region conferred an altered virulence of the virus in cattle. The 5= UTR sequences of
the viruses used for viral challenge and the viruses recovered from the challenged pigs
were also determined and compared. No reversion or partial reversion was observed in
the 5= UTR region of rO-DPKs86. Other genomic regions of the viruses were also
sequenced. The results indicated that there were some synonymous substitutions in
the polyprotein-coding sequences. However, no amino acid deletion or insertion was
observed, which suggested that no additional mutation occurred in the viral proteins.
In addition, no mutations were observed in the noncoding regions. This further
suggested that the 86-nt deletion in the PK region was stable during viral challenge
experiments.

Deletion of the 43 nt that were naturally lost in the Cathay topotype FMDVs
also significantly decreased the pathogenicity of O/CHA/7/2011. Apart from the
Chinese Cathay topotype virus OMIII that harbored an 86-nt deletion in the PK region
similar to that in O/GD/CHA/2015, all the porcinophilic Cathay topotype FMDVs har-
bored a 43-nt deletion in the PK region of the 5= UTR. The role of the 43 nt in the PK
region was further investigated by constructing a recombinant virus, rO-DPKs43, using
a reverse genetics system and performing similar animal experiments, as mentioned
above. A derivative of plasmid pO/CHA/7/2011 containing a 43-nt deletion in the PK
region (pO/CHA/7/2011-Δ43) was constructed by replacing part of the 5= UTR region
(Fig. 6A). Transfection of pO/CHA/7/2011-Δ43 into BHK-21 cells also successfully pro-
duced the recombinant virus rO-DPKs43. The ability of the viruses to form large or small
plaques also did not correlate with the ability to replicate in the growth curve
experiment in BHK-21 cells, and the two viruses caused similar extents of visible CPE
(Fig. 6B). Amplification of the PK region showed that 43 nt were deleted in rO-DPKs43.

FIG 5 Legend (Continued)
panel); viral RNA levels and virus loads in rO-WT- or rO-DPKs86-infected PK-15 cells at 4, 8, 12, 16, 20, and 24 hpi (middle panel); viral CPE caused by rO-WT
and rO-DPKs86 in PK-15 cells at 20 hpi (lower panel). (C) Plaque morphology caused by rO-WT or rO-DPKs86 in BTY cells (upper panel); viral RNA levels and
virus loads in rO-WT- or rO-DPKs86-infected BTY cells at 4, 8, 12, 16, 20, and 24 hpi (middle panel); viral CPE caused by rO-WT and rO-DPKs86 in BTY cells at
24 hpi (lower panel). (D) Ten pigs were challenged by intramuscular injection with 107 TCID50/animal of rO-WT or rO-DPKs86. Clinical signs were monitored daily
and viremia was determined at 1, 3, 5, 7, and 9 dpc. The left y axes represent the viral RNA levels (log10RNA copies/200 �l), and the right y axes represent the
clinical scores (the gray bar graphs indicate the recorded clinical scores at different days postchallenge). The x axes represent the day postchallenge. (E) Ten
cattle were challenged by intradermal inoculation with 108 TCID50/animal of rO-WT or rO-DPKs86. Clinical signs were monitored daily, and viremia was
determined at 1, 3, 5, 7, 9, 15, 20, 25, and 30 dpc. Viral RNAs in the bovine OPF collected at 15, 20, 25, and 30 dpc were measured.
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Other regions of rO-DPKs43 were sequenced, which indicated that, apart from the 43-nt
deletion, there was no difference between the viral elements of rO-WT and rO-DPKs43.
Plaque morphology and CPE extent in PK-15 and BTY cells were also assessed for the
rescued viruses. The results showed that rO-DPKs43 also formed smaller plaques than
rO-WT in PK-15 cells; however, the two viruses caused similar extents of visible CPE (Fig.
6C). In the BTY cells, rO-WT and rO-DPKs43 revealed similar plaque sizes, but rO-WT
caused a more dramatic CPE than rO-DPKs43 (Fig. 6D). This indicates that the 43-nt
deletion in the PK region decreases viral replication in BTY cells but not in BHK-21 or
PK-15 cells.

To compare the replication and pathogenicity of the rescued viruses in vivo, a
parallel animal challenge experiment was also performed. Five pigs or five cattle were
challenged with equal amounts of rO-WT or rO-DPKs43 (107 TCID50/pig and 108

TCID50/cattle), and clinical signs were monitored daily. rO-WT and rO-DPKs43 caused
disease in pigs, revealing similar pathogenicities (Fig. 6E). However, rO-DPKs43 resulted
in significantly decreased pathogenicity in cattle compared to rO-WT. All the cattle
challenged with rO-WT showed severe lesions, and viral RNA was detected from all the
OPF samples. In contrast, only two of five cattle challenged with rO-DPKs43 showed
moderate or mild lesions, with positive viral RNA detection in the OPF samples, and the
other three cattle showed no clinical signs, and their OPF samples were also viral RNA
negative (Fig. 6F). This indicates that the 43-nt deletion in the PK region resulted in
decreased virulence of the O/ME-SA/PanAsia lineage viruses in cattle. This 43-nt dele-

FIG 6 rO-DPKs43 showed significantly decreased infective ability in cattle compared to rO-WT. (A) Structures of genetically
engineered virus genomes of rO-WT and rO-DPKs43. (B) Plaque assays, virus titers, and the CPE observation of rO-WT and
rO-DPKs43 in BHK-21 cells. (C) Plaque morphology and CPE caused by rO-WT or rO-DPKs43 in PK-15 cells. (D) Plaque
morphology and CPE caused by rO-WT or rO-DPKs43 in BTY cells. (E) Ten pigs were challenged by intramuscular injection with
107 TCID50/animal of rO-WT or rO-DPKs43. Clinical signs were monitored daily, and viremia was determined at 1, 3, 5, 7, and
9 dpc. The left y axes represent the viral RNA levels (log10RNA copies/200 �l), and the right y axes represent the clinical scores
(the gray bar graphs indicate the recorded clinical scores at different days postchallenge). The x axes represent the day
postchallenge. (F) Ten cattle were challenged by intradermal inoculation with 108 TCID50/animal of rO-WT or rO-DPKs43.
Clinical signs were monitored daily and viremia was determined at 1, 3, 5, 7, 9, 15, 20, 25, and 30 dpc. Viral RNAs in the bovine
OPF collected at 15, 20, 25, and 30 dpc were measured.
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tion in the PK region in Cathy topotype FMDVs might be another genetic determinant,
apart from those reported previously, that is responsible for the porcinophilic proper-
ties of Cathy topotype viruses. The 5= UTR sequences of the viruses used for viral
challenge and the viruses recovered from the challenged pigs were determined and
compared. No reversion or partial reversion was observed in the 5= UTR region of
rO-DPKs43. Other genomic regions of the viruses were also sequenced. No additional
mutations were observed in the viral proteins or noncoding regions. This suggested
that the 43-nt deletion in the PK RNA region was stable during viral challenge
experiments.

DISCUSSION

Three serotypes of FMDV, including serotypes O, A, and Asia 1, have caused
epidemics in Asian countries that make FMD difficult to control, and serotype O is the
most prevalent of the three serotypes of FMDV and has occurred in many regions in
Asia. In recent years, serotype O FMDVs have been mainly responsible for outbreaks of
FMD in China (28). The present study describes a novel pig-adapted serotype O FMDV
in China that was determined to be an O/ME-SA/PanAsia lineage strain with several
undiscovered characteristics.

It has been reported that the O/ME-SA/PanAsia lineage is not restricted to infection
of pigs (16, 29). However, we identified a pig-adapted O/ME-SA/PanAsia lineage virus,
O/GD/CHA/2015, that caused disease in pigs but not in cattle. A deletion in the PK
region of the 5= UTR at position 406 to 491 was observed in O/GD/CHA/2015 compared
to previous O/ME-SA/PanAsia lineage FMDVs. The role of this 86-nt deletion in viral
pathogenicity was further studied by construction of recombinant viruses. rO-
DPKs86 had smaller average plaques than rO-WT in BHK-21 cells, while the two viruses
showed similar replication rates. The ability of rO-WT and rO-DPKs86 to form large or
small plaques did not correlate with the ability to replicate in the growth curve
experiment in BHK-21 cells. Plaque size is highly dependent on the use of certain viral
mutants, strains, and cell types, and it cannot be fully considered a reliable marker for
viral virulence, leaving the study of this crucial biological feature to the realm of animal
experimentation (30–35). For strains of some viruses, there is a connection between the
replication rate and virulence (35, 36). Previous studies also observed that several
viruses and their mutant viruses could form different plaque sizes but present similar
virus replication profiles (27, 37). For FMDV, it has been suggested that the plaque
phenotype is not necessarily of significance for production of FMDV vaccine antigen
(38). Here, our data also showed that the ability of rO-WT and rO-DPKs86 to form large
or small plaques did not correlate with the ability of the viruses to replicate in BHK-21,
PK-15, and BTY cells. This suggests that plaque size does not significantly affect the
replication of FMDV in these cells. We have also observed this phenomenon in our
previous studies when comparing the plaque sizes of some different FMDV recombined
viruses to their wild-type viruses. Some wild-type viruses can cause large plaque sizes,
but their mutants do not. We speculate that these wild-type viruses may cause fusion
of infected cells with their neighboring cells, while mutation of some regions of the viral
genome may change this characteristic. In the animal experiments, we found that this
86-nt deletion in the PK region significantly contributed to the altered virulence of the
virus in cattle. The rescued virus with the deletion showed pathogenicity in swine but
not in cattle. Low levels of viremia were detected in the rO-DPKs86-challenged cattle,
but no clinical signs were observed, no viral loads were detected from the target tissues
of the virus, and viremia disappeared quickly in the cattle. This implied that rO-DPKs86
might have lost infectivity in cattle. These results indicated that the 86-nt region at
positions 406 to 491 within the PK region of FMDV is a potential determinant of host
tropism variation, and under some circumstances altered PK regions might have a
selective advantage. FMDV in animals evolves under immune pressure and reveals new
characteristics. The accumulated mutations may help the viruses better adapt them-
selves to the environment.

China is a densely pig-populated country. In recent years, the serotype O FMDVs
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identified in China were isolated mainly from pigs, and there has been a decreasing
incidence of FMD caused by serotype O viruses in cattle (28, 39). This is possibly
because the serotype O viruses have circulated in pigs for a long time and some of the
viruses have evolved to adapt to pigs and thus had more chance to replicate in pigs.
The large number of pigs can better promote the spread of the virus. Therefore, the
altered host tropism (pig adapted) might be beneficial to the spread of FMDVs. The
deletions in the PK region of the virus imply that some of the O/ME-SA/PanAsia lineage
viruses have evolved a predilection to affect pigs, and a possible shift from cattle to
swine as the carrier for the spread of O/ME-SA/PanAsia lineage FMDVs might be under
way in China. In addition, we observed that four O/SEA/Mya-98 lineage viruses isolated
in South Korea in 2014 and 2016 also included a similar deletion in the PK region (data
not shown). The four strains were all isolated from pigs, and the host tropism charac-
teristics of these FMDV strains should be further investigated to explore the role of the
PK region in O/SEA/Mya-98 lineage viruses.

Previous studies have reported that the deletion in the 3A protein of serotype O
Cathay topotype virus strain O/TAW/97 at amino acids 93 to 102 resulted in altered host
tropism (pig adapted) and severe epidemics among swine farms (17). The virus har-
boring this deletion showed significantly attenuated infective ability in both bovine
cells and cattle. The deletion in the O/TAW/97 strain is similar to one in the egg-
passaged derivatives of FMDV (O1 Campos) that also show reduced ability to affect
cattle (16). This indicates that under some circumstances altered 3A genes could have
a selective advantage. In this study, we found that all the porcinophilic Cathay topotype
FMDVs also harbored a 43-nt deletion in the PK region of the 5= UTR, apart from a
previously identified Chinese Cathay topotype of serotype O virus OMIII that harbored
an 86-nt deletion in the PK region similar to that in O/GD/CHA/2015. After comparison
of the viral pathogenicity of rO-DPKs43 and rO-WT in swine and cattle, we determined
that the deletion of the 43 nt significantly decreased the virulence of O/CHA/7/2011 in
cattle. OMIII strain is a pig-adapted Cathay topotype strain with a similar 86-nt deletion
in the PK region that significantly affects only swine and does not cause disease in
cattle. These data imply that the PK region might also be a determinant involved in the
variation of the host tropism of Cathay topotype viruses.

The Cathay topotype FMDVs were sampled mainly in southeast and east Asian
countries (8, 40). The economic losses associated with an invasion of a pig-adapted
FMDV strain of the Cathay topotype of serotype O in Taiwan in 1997 have been
estimated at 6 billion U.S. dollars, with the slaughtering of �4 million pigs (41). The first
Cathay topotype FMDV strain was isolated from pigs in Hong Kong SAR in 1970.
Subsequently, Cathay strains have been isolated from many Asian and several Euro-
pean countries (40, 42). Cathay topotype FMDVs have been continually maintained
within the swine industry close to Hong Kong SAR from 1995 to 2005, following the
extinction of virus lineages from the Philippines and a reduced number of FMD cases
in Taiwan, according to a reconstructed phylodynamics analysis, and the Cathay strains
have been sampled on a more sporadic basis in recent years (40). The 10-amino-acid
deletion in the 3A protein has been shown to correlate with the inability of previous
Cathay topotype FMDVs to cause disease in bovines (16, 17). The mutations in Cathay
topotype viruses have accumulated over several decades, and the deletions in the PK
region might be another determinant. The deletions in the PK region and 3A protein of
Cathay topotype viruses may cooperate and result in the inability of Cathay topotype
FMDVs to cause disease in bovines.

The function of the PK region of FMDV remains unknown. In this study, molecular
epidemiological research and viral pathogenicity evaluation allowed us to hypothesize
that the 86 nt within the PK region of the 5= UTR were related to the host tropism
variation of serotype O FMDVs. Using rescue of recombinant viruses and animal
experiments, we reported the first evidence supporting the hypothesis that the 86-nt
deletion in the PK region occurred naturally and resulted in decreased pathogenicity of
O/ME-SA/PanAsia lineage virus in bovine cells and in cattle. In addition, we deduced
that the 43-nt deletion in the PK region of porcinophilic Cathay topotype FMDVs might
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be another genetic determinant that is responsible for its porcinophilic properties. This
study identified the PK region as a pathogenic determinant of FMDVs that was
associated with host tropism variation, and the generated data will contribute to
exploring the functions of the PK region of FMDVs during viral infection.

MATERIALS AND METHODS
Ethics statements. All animal experiments were approved and performed according to the require-

ments of the Gansu Animal Experiments Inspectorate and the Gansu Ethical Review Committee [license
SYXK(GAN) 2010-003].

Viruses and cells. Baby hamster kidney (BHK-21) cells and porcine kidney (PK-15) cells were cultured
as described previously (43). Primary bovine thyroid (BTY) cells were maintained in medium containing
10% fetal bovine serum. All the cells were cultured at 37°C under 5% CO2. The O/GD/CHA/2015 strain was
isolated from swine tissue in Guangdong Province, China. The O/CHA/7/2011 strain was isolated from
bovine oropharyngeal fluid (OPF) in Guizhou Province, China. We determined the genomic sequences of
the O/GD/CHA/2015 and O/CHA/7/2011 strains (accession numbers KY234502 and KY234501, respec-
tively).

Genetic and phylogenetic analyses. The GenBank accession numbers and information on the
FMDV isolates used for phylogenetic tree construction are listed in Fig. 1. Phylogenetic analysis was
performed on aligned subgenomic regions of FMDV utilizing ClustalX 1.83, the neighbor-joining
method, and the Kimura two-parameter nucleotide substitution model in MEGA6.06 software (www
.megasoftware.net) as previously described (44). One thousand bootstrap replicates were performed in
the analysis. The nucleotide sequences of viral 5= UTR were aligned using the MegAlign project of
Lasergene software (Lasergene, Madison, WI).

Construction of rO-WT, rO-DPKs86, and rO-DPKs43 infectious clones. Viral RNA was extracted
from O/CHA/7/2011 FMDV-infected BHK-21 cells for use as the template for cDNA synthesis. The strategy
for construction of the plasmid used to produce the recombinant virus was as described previously by
our laboratory (45). The viral genome was amplified using three pairs of primers, and the PK deletion was
introduced into the second fragment (fragment B) by site-directed mutagenesis PCR. Briefly, fragment B
was inserted into the pOK12 vector. DdeI and BsrGI digestion enzymes were used to obtain the fragment
B-1, and the 86- or 43-nt deletions were then introduced into the fragment B-1. Fragment B with the 86-
or 43-nt deletion was named fragment B=. The first and the third fragments and fragment B or fragment
B= was then cloned into the pcDNAP1T1 vector. The full-length viral genome or the genome with PK
deletions was cloned into the pcDNAP1T1 vector, and the purified plasmids were sequenced.

Viral rescue and identification. The highly purified pO/CHA/7/2011, pO/CHA/7/2011-Δ86, and
pO/CHA/7/2011-Δ43 plasmids were obtained using MN NucleoBond Xtra Midi Plus plasmid DNA puri-
fication kits (Macherey-Nagel, Duren, Germany) according to the manufacturer’s protocol. The extracted
plasmid DNA was transfected into BHK-21 cells (about 2 �g/106 cells) using Lipofectamine 2000 (Invit-
rogen, Carlsbad, CA) for 48 h. The culture supernatant was harvested and blind passaged into secondary
BHK-21 cells. After four consecutive passages in BHK-21 cells, the rescued viruses were detected and
analyzed using an immunofluorescence assay and a plaque titration assay on BHK-21 cells. The primer
set of Del-F (5=-CCCCCCCCCCCCCCAAGTTTT-3=) and Del-R (5=-CCTTCTCAGATCCCGAGTGTCG-3=) was
used to amplify the PK regions of the rescued viruses to confirm successful deletion of the 86 or 43 nt.
The viral genomes of the obtained rescued viruses were further sequenced using the Sanger sequencing
method.

Determination of the replication kinetics of the rescued viruses. The replication kinetics of
rO-WT, rO-DPKs86, and rO-DPKs43 were determined by analyzing the one-step growth curve of viral
titers through a TCID50 assay (46). Equal doses of rO-WT, rO-DPKs86, or rO-DPKs43 were inoculated into
monolayer cells. The infected cells were collected at various time points and subjected to virus load
titration using their corresponding cells. The results are representative of three independent experi-
ments.

Animal experiments. The World Organisation for Animal Health (OIE) recommends that FMDV
research be conducted in biosafety level 4 (BSL4) laboratories, and this is generally applicable to
FMD-free countries. In other countries and regions, the virus is approved to be handled in BSL3
laboratories (47). Therefore, all the animal experiments were performed in a confined environment and
high-containment facilities (animal BSL3) of the Lanzhou Veterinary Research Institute according to the
standard method of the OIE. In the first experiment, 10 pigs (age, 10 weeks; weight, �40 kg) or 10 cattle
(age, 7 months; weight, �100 kg) were divided into two groups, with five animals in each group. The pigs
were inoculated intramuscularly with 107 TCID50/animal of O/GD/CHA/2015 or O/CHA/7/2011, and the
cattle were inoculated intradermally at multiple sites in the tongue with different doses of O/GD/CHA/
2015 (1 � 107 or 1 � 108 TCID50/animal) or O/CHA/7/2011 (1 � 107 or 1 � 108 TCID50/animal) according
to the standard protocol of the OIE. Clinical signs, including vesicular lesions and lameness, were
monitored every day after viral challenge. Porcine samples of heparinized blood were collected at 1, 3,
5, 7, and 9 days postinoculation (dpi); bovine samples of heparinized blood were collected at 1, 3, 5, 7,
9, 15, 20, 25, and 30 dpi. The bovine samples of OPF were collected at 15, 20, 25, and 30 dpi. Clinical
scores were determined by the vesicular lesion status of the challenged animals as previously described
(26), with scores for the asymptomatic animals set at 0 and a maximum score of 5 for the infected
animals. Lesions restricted to the inoculation site were not counted.

In the other two-animal experiments, different doses of PK-complete rescued virus (rO-WT) or
rescued viruses with the 86-nt deletion (rO-DPKs86) or the 43-nt deletion (rO-DPKs43) in the PK region
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were used for viral challenge. After challenge, clinical signs were observed and recorded daily, and
samples of heparinized blood and OPF were collected as described for the first experiment.

Animal viral load quantification assay. Total RNA was extracted from frozen heparinized blood and
OPF samples during the animal experiments using an RNeasy kit (Qiagen, Hilden, Germany) according to
the manufacturer’s protocol. FMDV viral RNA levels were measured by the qPCR method as previously
described (48). Samples with threshold cycle (CT) values of �35 were considered positive.

Data availability. The genomic sequences of O/GD/CHA/2015 and O/CHA/7/2011 were submitted to
GenBank under accession numbers KY234502 and KY234501, respectively.

ACKNOWLEDGMENTS
This study was supported by grants from the National Natural Science Foundation

of China (31672585, U1501213, and 31602090), the Key Development and Research
Foundation of Yunnan (2018BB004), and the Collaborative Innovation Project of CAAS
(CAAS-XTCX2016011-01-10).

REFERENCES
1. Grubman MJ, Baxt B. 2004. Foot-and-mouth disease. Clin Microbiol Rev

17:465– 493. https://doi.org/10.1128/CMR.17.2.465-493.2004.
2. Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish GF,

Rock DL. 2005. Comparative genomics of foot-and-mouth disease virus.
J Virol 79:6487– 6504. https://doi.org/10.1128/JVI.79.10.6487-6504.2005.

3. Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish GF,
Rock DL. 2006. High throughput sequencing and comparative genomics
of foot-and-mouth disease virus. Dev Biol 126:23–30.

4. Li ZY, Liu JX. 2011. The current state of vaccines used in the field for foot
and mouth disease virus in China. Expert Rev Vaccines 10:13–15. https://
doi.org/10.1586/erv.10.146.

5. Cao YM, Lu ZJ, Liu ZX. 2016. Foot-and-mouth disease vaccines: progress
and problems. Expert Rev Vaccines 15:783–789. https://doi.org/10.1586/
14760584.2016.1140042.

6. Le VP, Nguyen T, Park JH, Kim SM, Ko YJ, Lee HS, Nguyen VC, Mai TD, Do
TH, Cho IS, Lee KN. 2010. Heterogeneity and genetic variations of
serotypes O and Asia 1 foot-and-mouth disease viruses isolated in
Vietnam. Vet Microbiol 145:220 –229. https://doi.org/10.1016/j.vetmic
.2010.04.005.

7. Samuel AR, Knowles NJ. 2001. Foot-and-mouth disease type O viruses
exhibit genetically and geographically distinct evolutionary lineages
(topotypes). J Gen Virol 82:609 – 621. https://doi.org/10.1099/0022-1317
-82-3-609.

8. Knowles NJ, Samuel AR, Davies PR, Midgley RJ, Valarcher JF. 2005.
Pandemic strain of foot-and-mouth disease virus serotype O. Emerg
Infect Dis 11:1887–1893. https://doi.org/10.3201/eid1112.050908.

9. Le VP, Vu TT, Duong HQ, Than VT, Song D. 2016. Evolutionary phylody-
namics of foot-and-mouth disease virus serotypes O and A circulating
in Vietnam. BMC Vet Res 12:269. https://doi.org/10.1186/s12917-016
-0896-0.

10. Ayelet G, Mahapatra M, Gelaye E, Egziabher BG, Rufeal T, Sahle M, Ferris
NP, Wadsworth J, Hutchings GH, Knowles NJ. 2009. Genetic character-
ization of foot-and-mouth disease viruses, Ethiopia, 1981-2007. Emerg
Infect Dis 15:1409 –1417. https://doi.org/10.3201/eid1509.090091.

11. Mason PW, Grubman MJ, Baxt B. 2003. Molecular basis of pathogenesis
of FMDV. Virus Res 91:9 –32. https://doi.org/10.1016/S0168-1702(02)
00257-5.

12. Clarke B, Brown A, Currey K, Newton S, Rowlands D, Carroll A. 1987.
Potential secondary and tertiary structure in the genomic RNA of foot
and mouth disease virus. Nucleic Acids Res 15:7067–7079. https://doi
.org/10.1093/nar/15.17.7067.

13. Belsham GJ. 2005. Translation and replication of FMDV RNA. Curr Top
Microbiol Immunol 288:43–70.

14. Pilipenko E, Blinov V, Chernov B, Dmitrieva T, Agol V. 1989. Conservation
of the secondary structure elements of the 5= untranslated region of
cardio-and aphthovirus RNAs. Nucleic Acids Res 17:5701–5711. https://
doi.org/10.1093/nar/17.14.5701.

15. Li H. 2011. Whole genome sequencing of a candidate strain for FMDV
vaccine: genomic structure and genetic variation. Mol Pathog 22:
10 –5376.

16. Beard CW, Mason PW. 2000. Genetic determinants of altered virulence of
Taiwanese foot-and-mouth disease virus. J Virol 74:987–991. https://doi
.org/10.1128/JVI.74.2.987-991.2000.

17. Knowles NJ, Davies PR, Henry T, O’Donnell V, Pacheco JM, Mason PW.

2001. Emergence in Asia of foot-and-mouth disease viruses with altered
host range: characterization of alterations in the 3A protein. J Virol
75:1551–1556. https://doi.org/10.1128/JVI.75.3.1551-1556.2001.

18. Oem JK, Lee KN, Cho IS, Kye SJ, Park JH, Joo YS. 2004. Comparison and
analysis of the complete nucleotide sequence of foot-and-mouth dis-
ease viruses from animals in Korea and other PanAsia strains. Virus
Genes 29:63–71. https://doi.org/10.1023/B:VIRU.0000032789.31134.eb.

19. Henderson WM. 1952. A Comparison of different routes of inoculation of
cattle for detection of the virus of foot-and-mouth disease. J Hyg (Lond)
50:182–194. https://doi.org/10.1017/S0022172400019537.

20. OIE. 2009. Chapter 2.1.5: foot and mouth disease, p 129. In OIE terrestrial
manual 2009: manual of diagnostic tests and vaccines for terrestrial
animals. OIE, Paris, France.

21. Sa-Carvalho D, Rieder E, Baxt B, Rodarte R, Tanuri A, Mason PW. 1997.
Tissue culture adaptation of foot-and-mouth disease virus selects viruses
that bind to heparin and are attenuated in cattle. J Virol 71:5115–5123.

22. Zhang K, Huang J, Wang Q, He Y, Xu Z, Xiang M, Wu B, Chen H. 2011.
Recombinant pseudorabies virus expressing P12A and 3C of FMDV can
partially protect piglets against FMDV challenge. Res Vet Sci 91:90 –94.
https://doi.org/10.1016/j.rvsc.2010.09.001.

23. Cao Y, Lu Z, Li Y, Sun P, Li D, Li P, Bai X, Fu Y, Bao H, Zhou C, Xie B, Chen
Y, Liu Z. 2013. Poly(I:C) combined with multi-epitope protein vaccine
completely protects against virulent foot-and-mouth disease virus chal-
lenge in pigs. Antiviral Res 97:145–153. https://doi.org/10.1016/j.antiviral
.2012.11.009.

24. Chinsangaram J, Mason PW, Grubman MJ. 1998. Protection of swine by
live and inactivated vaccines prepared from a leader proteinase-
deficient serotype A12 foot-and-mouth disease virus. Vaccine 16:
1516 –1522. https://doi.org/10.1016/S0264-410X(98)00029-2.

25. Segundo FD, Weiss M, Perez-Martin E, Dias CC, Grubman MJ, Santos Tde
L. 2012. Inoculation of swine with foot-and-mouth disease SAP-mutant
virus induces early protection against disease. J Virol 86:1316 –1327.
https://doi.org/10.1128/JVI.05941-11.

26. Rieder E, Henry T, Duque H, Baxt B. 2005. Analysis of a foot-and-mouth
disease virus type A24 isolate containing an SGD receptor recognition
site in vitro and its pathogenesis in cattle. J Virol 79:12989 –12998.
https://doi.org/10.1128/JVI.79.20.12989-12998.2005.

27. Stewart SM, Pekosz A. 2011. Mutations in the membrane-proximal re-
gion of the influenza A virus M2 protein cytoplasmic tail have modest
effects on virus replication. J Virol 85:12179 –12187. https://doi.org/10
.1128/JVI.05970-11.

28. He JJ, Yang YM, Ma WM, Shang YJ, Lv L, Zheng HX, Jin Y, Guo JH, Liu ZX,
Liu XT. 2014. Epidemic situation and characterization of O/Mya-98 strain
of foot and mouth disease virus in China. China Animal Health Inspec-
tion 31:45–51.

29. Brito B, Pauszek SJ, Eschbaumer M, Stenfeldt C, Ferreira HCD, Vu LT,
Phuong NT, Hoang BH, Tho ND, Dong PV, Minh PQ, Long NT, King DP,
Knowles NJ, Dung DH, Rodriguez LL, Arzt J. 2017. Phylodynamics of
foot-and-mouth disease virus O/PanAsia in Vietnam 2010-2014. Vet Res
48:24. https://doi.org/10.1186/s13567-017-0424-7.

30. Dortmans JC, Koch G, Rottier PJ, Peeters BP. 2011. Virulence of Newcastle
disease virus: what is known so far? Vet Res 42:122. https://doi.org/10
.1186/1297-9716-42-122.

31. Horimoto T, Kawaoka Y. 1997. Biologic effects of introducing additional

Zhu et al. Journal of Virology

April 2019 Volume 93 Issue 8 e02039-18 jvi.asm.org 16

https://www.ncbi.nlm.nih.gov/nuccore/KY234502
https://www.ncbi.nlm.nih.gov/nuccore/KY234501
https://doi.org/10.1128/CMR.17.2.465-493.2004
https://doi.org/10.1128/JVI.79.10.6487-6504.2005
https://doi.org/10.1586/erv.10.146
https://doi.org/10.1586/erv.10.146
https://doi.org/10.1586/14760584.2016.1140042
https://doi.org/10.1586/14760584.2016.1140042
https://doi.org/10.1016/j.vetmic.2010.04.005
https://doi.org/10.1016/j.vetmic.2010.04.005
https://doi.org/10.1099/0022-1317-82-3-609
https://doi.org/10.1099/0022-1317-82-3-609
https://doi.org/10.3201/eid1112.050908
https://doi.org/10.1186/s12917-016-0896-0
https://doi.org/10.1186/s12917-016-0896-0
https://doi.org/10.3201/eid1509.090091
https://doi.org/10.1016/S0168-1702(02)00257-5
https://doi.org/10.1016/S0168-1702(02)00257-5
https://doi.org/10.1093/nar/15.17.7067
https://doi.org/10.1093/nar/15.17.7067
https://doi.org/10.1093/nar/17.14.5701
https://doi.org/10.1093/nar/17.14.5701
https://doi.org/10.1128/JVI.74.2.987-991.2000
https://doi.org/10.1128/JVI.74.2.987-991.2000
https://doi.org/10.1128/JVI.75.3.1551-1556.2001
https://doi.org/10.1023/B:VIRU.0000032789.31134.eb
https://doi.org/10.1017/S0022172400019537
https://doi.org/10.1016/j.rvsc.2010.09.001
https://doi.org/10.1016/j.antiviral.2012.11.009
https://doi.org/10.1016/j.antiviral.2012.11.009
https://doi.org/10.1016/S0264-410X(98)00029-2
https://doi.org/10.1128/JVI.05941-11
https://doi.org/10.1128/JVI.79.20.12989-12998.2005
https://doi.org/10.1128/JVI.05970-11
https://doi.org/10.1128/JVI.05970-11
https://doi.org/10.1186/s13567-017-0424-7
https://doi.org/10.1186/1297-9716-42-122
https://doi.org/10.1186/1297-9716-42-122
https://jvi.asm.org


basic amino acid residues into the hemagglutinin cleavage site of a
virulent avian influenza virus. Virus Res 50:35– 40. https://doi.org/10
.1016/S0168-1702(97)00050-6.

32. Moore BD, Balasuriya UB, Hedges JF, MacLachlan NJ. 2002. Growth
characteristics of a highly virulent, a moderately virulent, and an aviru-
lent strain of equine arteritis virus in primary equine endothelial cells are
predictive of their virulence to horses. Virology 298:39 – 44. https://doi
.org/10.1006/viro.2002.1466.

33. Tearle JP, Smith KC, Platt AJ, Hannant D, Davis-Poynter NJ, Mumford JA.
2003. In vitro characterization of high and low virulence isolates of
equine herpesvirus-1 and -4. Res Vet Sci 75:83– 86. https://doi.org/10
.1016/S0034-5288(03)00031-6.

34. Dortmans JC, Rottier PJ, Koch G, Peeters BP. 2010. The viral replication
complex is associated with the virulence of Newcastle disease virus. J
Virol 84:10113. https://doi.org/10.1128/JVI.00097-10.

35. Smith H. 1972. Mechanisms of virus pathogenicity. Bacteriol Rev 36:
291–310.

36. Johnson W, Roof M, Vaughn E, Christopher-Hennings J, Johnson CR,
Murtaugh MP. 2004. Pathogenic and humoral immune responses to
porcine reproductive and respiratory syndrome virus (PRRSV) are related
to viral load in acute infection. Vet Immunol Immunopathol 102:
233–247. https://doi.org/10.1016/j.vetimm.2004.09.010.

37. Brostoff T, Pesavento PA, Barker CM, Kenney JL, Dietrich EA, Duggal NK,
Bosco-Lauth AM, Brault AC. 2016. MicroRNA reduction of neuronal West
Nile virus replication attenuates and affords a protective immune re-
sponse in mice. Vaccine 34:5366 –5375. https://doi.org/10.1016/j.vaccine
.2016.08.063.

38. Preston KJ, Owens H, Mowat GN. 1981. Relationship between plaque size
and the immunising ability of the foot-and-mouth disease virus SAT1
Nig 10/75. Arch Virol 70:63– 67. https://doi.org/10.1007/BF01320794.

39. He JJ, Guo JH, Liu XT. 2015. Current situation and prevention suggestion
on foot-and-mouth disease in China. China Animal Health Inspection
32:10 –14.

40. Di Nardo A, Knowles NJ, Wadsworth J, Haydon DT, King DP. 2014. Phylo-
dynamic reconstruction of O CATHAY topotype foot-and-mouth disease
virus epidemics in the Philippines. Vet Res 45:90. https://doi.org/10.1186/
s13567-014-0090-y.

41. Yang PC, Chu RM, Chung WB, Sung HT. 1999. Epidemiological charac-
teristics and financial costs of the 1997 foot-and-mouth disease epi-
demic in Taiwan. Vet Rec 145:731–734. https://doi.org/10.1136/vr.145.25
.731.

42. Gleeson LJ. 2002. A review of the status of foot and mouth disease in
South-East Asia and approaches to control and eradication. Rev Sci Tech
21:465– 475. https://doi.org/10.20506/rst.21.3.1346.

43. Zhu Z, Wang G, Yang F, Cao W, Mao R, Du X, Zhang X, Li C, Li D, Zhang
K, Shu H, Liu X, Zheng H. 2016. Foot-and-mouth disease virus viroporin
2B antagonizes RIG-I-mediated antiviral effects by inhibition of its pro-
tein expression. J Virol 90:11106 –11121. https://doi.org/10.1128/JVI
.01310-16.

44. Zhu ZX, Zhang XC, Adili G, Huang J, Du XL, Zhang XL, Li PF, Zheng XG,
Liu XT, Zheng HX, Xue QH. 2016. Genetic characterization of a novel
mutant of peste des petits ruminants virus isolated from Capra ibex in
China during 2015. BioMed Res Int 2016:7632769. https://doi.org/10
.1155/2016/7632769.

45. Lian K, Yang F, Zhu Z, Cao W, Jin Y, Li D, Zhang K, Guo J, Zheng H, Liu
X. 2015. Recovery of infectious type Asia1 foot-and-mouth disease virus
from suckling mice directly inoculated with an RNA polymerase I/II-
driven unidirectional transcription plasmid. Virus Res 208:73– 81. https://
doi.org/10.1016/j.virusres.2015.06.008.

46. Lian K, Yang F, Zhu Z, Cao W, Jin Y, Liu H, Li D, Zhang K, Guo J, Liu X,
Zheng H. 2016. The VP1 S154D mutation of type Asia1 foot-and-mouth
disease virus enhances viral replication and pathogenicity. Infect Genet
Evol 39:113–119. https://doi.org/10.1016/j.meegid.2016.01.009.

47. Namatovu A, Wekesa SN, Tjornehoj K, Dhikusooka MT, Muwanika VB,
Siegsmund HR, Ayebazibwe C. 2013. Laboratory capacity for diagnosis of
foot-and-mouth disease in Eastern Africa: implications for the progres-
sive control pathway. BMC Vet Res 9:19. https://doi.org/10.1186/1746
-6148-9-19.

48. Zheng HX, Lian KQ, Yang F, Jin Y, Zhu ZX, Guo JH, Cao WJ, Liu HN, He
JJ, Zhang KS, Li D, Liu XT. 2015. Cross-protective efficacy of engineering
serotype A foot-and-mouth disease virus vaccine against the two pan-
demic strains in swine. Vaccine 33:5772–5778. https://doi.org/10.1016/j
.vaccine.2015.09.055.

Role of PK Region in Pathogenicity of FMDV Journal of Virology

April 2019 Volume 93 Issue 8 e02039-18 jvi.asm.org 17

https://doi.org/10.1016/S0168-1702(97)00050-6
https://doi.org/10.1016/S0168-1702(97)00050-6
https://doi.org/10.1006/viro.2002.1466
https://doi.org/10.1006/viro.2002.1466
https://doi.org/10.1016/S0034-5288(03)00031-6
https://doi.org/10.1016/S0034-5288(03)00031-6
https://doi.org/10.1128/JVI.00097-10
https://doi.org/10.1016/j.vetimm.2004.09.010
https://doi.org/10.1016/j.vaccine.2016.08.063
https://doi.org/10.1016/j.vaccine.2016.08.063
https://doi.org/10.1007/BF01320794
https://doi.org/10.1186/s13567-014-0090-y
https://doi.org/10.1186/s13567-014-0090-y
https://doi.org/10.1136/vr.145.25.731
https://doi.org/10.1136/vr.145.25.731
https://doi.org/10.20506/rst.21.3.1346
https://doi.org/10.1128/JVI.01310-16
https://doi.org/10.1128/JVI.01310-16
https://doi.org/10.1155/2016/7632769
https://doi.org/10.1155/2016/7632769
https://doi.org/10.1016/j.virusres.2015.06.008
https://doi.org/10.1016/j.virusres.2015.06.008
https://doi.org/10.1016/j.meegid.2016.01.009
https://doi.org/10.1186/1746-6148-9-19
https://doi.org/10.1186/1746-6148-9-19
https://doi.org/10.1016/j.vaccine.2015.09.055
https://doi.org/10.1016/j.vaccine.2015.09.055
https://jvi.asm.org

	RESULTS
	Isolation of a new O/ME-SA/PanAsia lineage FMDV strain. 
	O/GD/CHA/2015 contains an 86-nt deletion in the PKs of the 5 UTR, and all the porcinophilic Cathay topotype FMDVs also contain partial deletions in the PK region. 
	O/GD/CHA/2015 shows a pig-adapted characteristic. 
	Construction of two recombinant viruses with or without the 86-nt deletion in the PK region. 
	The 86-nt deletion in the PKs contributed to decreased pathogenicity of O/CHA/7/2011 in bovine cells and cattle. 
	Deletion of the 43 nt that were naturally lost in the Cathay topotype FMDVs also significantly decreased the pathogenicity of O/CHA/7/2011. 

	DISCUSSION
	MATERIALS AND METHODS
	Ethics statements. 
	Viruses and cells. 
	Genetic and phylogenetic analyses. 
	Construction of rO-WT, rO-DPKs86, and rO-DPKs43 infectious clones. 
	Viral rescue and identification. 
	Determination of the replication kinetics of the rescued viruses. 
	Animal experiments. 
	Animal viral load quantification assay. 
	Data availability. 

	ACKNOWLEDGMENTS
	REFERENCES

