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Fat tissues, the brite and the dark sides
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Abstract Fat tissue iswellknownfor itscapacity tostoreenergy
and its detrimental role in obesity and metaflammation.
However, humans possess different types of fat that have differ-
ent functions in physiology and metabolic diseases. Apart from
white adipose tissue (WAT), the body’s main energy storage,
there is also brown adipose tissue (BAT) that dissipates energy
as a defense against cold and maintains energy balance for the
wholebody.BATispresentnotonly innewbornsbutalso inadult
humans and its mass correlates with leanness. Moreover,
Bbrown-like^ adipocytes have been detected in human WAT.
These Bbrown-in-white^ (brite) or beige cells can be induced
by cold and a broad spectrum of pharmacological substances
and, therefore, they are also known as Binducible brown
adipocytes.^Activationofbrownand/orbriteadipocytesreduces
metabolic diseases, at least in murine models of obesity. Thus,
brown/brite adipocytes represent the Bbrite^ side of fat and are
potential targets fornovel therapeuticapproaches for treatmentof
obesity and obesity-associated diseases.
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Introduction

Obesity and overweight have been conclusively shown to in-
crease the risk of type 2 diabetes, hypertension, hypercholester-
olemia, cardiovascular disease, and certain types of cancer [27].
Obesity not only affects people in developed countries but also
people in developing countries who intake large amounts of
calorie-dense food. The World Health Organization (WHO)
reported in 2014 that 39 % of adults worldwide were over-
weight and 13 % were obese. Overweight and obesity are ur-
gent health issues: the numbers have doubled since 1990 and—
according to the WHO—more people die of obesity and its
consequences than of undernutrition and famine.

An important pathophysiological basis of obesity and
obesity-associated disorders is the increase in adipocyte size
due to the uptake/storage of excess energy in the form of lipids,
which causes cellular stress and an inflammatory response that
spreads throughout the whole body (metaflammation) [19].

In addition to the Bbad^ white fat that represents, for many
people, the Bdark side^ of fat tissue, there is also a bright side:
brown fat takes up glucose and lipids and burns energy to
generate heat. Moreover, cold exposure and different pharma-
cological stimuli bring out Bbrown-like^ cells in white fat
depots. These cells function similar as brown adipocytes and
are also termed brite or beige cells.

Types of fat

White fat

White adipose tissue (WAT) is the major adipose organ in
adults and is the main storage site of energy in the form of
triacylglycerols. Whenever fuel is required, fatty acids are
released from WAT by lipolysis. This process is initiated by
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norepinephrine which binds to the beta-adrenergic receptors
on white adipocytes leading to the generation of cAMP. The
second messenger cAMP activates protein kinase A and, in
turn, stimulates the hormone-sensitive lipase releasing free
fatty acids from triacylglycerol in the lipid droplets. WAT
composes as much as 20 % of the body weight of healthy
adult humans. Although it is widely distributed throughout
the whole body, separate/specific depots can be distinguished:
visceral white adipose tissue (vWAT) mainly surrounds inter-
nal organs, whereas superficial or inguinal white adipose tis-
sue (igWAT) is located beneath the skin.

Morphologically, a white adipocyte is a unilocular cell and
contains a single large lipid droplet that pushes the nucleus
close to the plasma membrane. Mitochondria are located
mainly in the thicker portion of the cytoplasmic rim near the
nucleus. Beyond simple fat storage, WAT is also a secretory
and endocrine organ that secretes hormones (including leptin,
adiponectin, angiotensinogen, tumor necrosis factor α
(TNFα), interleukin 6 (IL-6), metallothionein, resistin, and
etc.) and has an important role in metabolic homeostasis, in-
flammatory processes, and vascular homeostasis [46].
Although no specific markers for WAT have been identified,
several genes including fatty-acid binding protein 4 (FABP4
or aP2), peroxisome proliferator-activated receptor γ
(PPARγ), and CCAAT/enhancer-binding protein α
(C/EBPα) have been found to have an important role and/or
are highly expressed in WAT.

Development of WAT is initiated in the mesoderm during
the embryonic period [12]. Murine igWAT develops between
embryonic days 14 and 18, whereas vWAT develops postna-
tally [54]. White adipocytes have been thought to originate
from precursors that lack myogenic factor 5 (Myf5) [5, 7,
48], until Guertin’s group discovered different origins of white
adipocytes from different WAT depots: white adipocytes from
posterior subcutaneous, mesenteric, and perigonadal visceral
depots are all Myf5-negative, whereas those from anterior
subcutaneous and retroperitoneal visceral depots are nearly
all Myf5-positive [39].

The transcriptional regulation of WAT adipogenesis in-
volves the activation of several transcriptional factors includ-
ing PPARγ and C/EBPs [36]. PPARγ is a master regulator of
all kinds/colors of adipose tissue and is indispensable forWAT
development [2, 37]. C/EBPα maintains expression of
PPARγ and, together with PPARγ, regulates gene transcrip-
tion to promote adipocyte differentiation. Consequently, C/
EBPα deficiency in mice inhibits WAT development [23].

Brown fat

Brown adipose tissue (BAT) is a special type of adipose
organ found in almost all mammals including mice, rats,
rabbits, sheep, bears, and humans [44]. Pigs are one ex-
ception: they lack BAT and are completely dependent on

shivering thermogenesis to keep warm [47]. Activated
BAT burns lipids and glucose, contributing to energy dis-
sipation and thus results in heat production, a process
known as non-shivering thermogenesis (NST). NST is
critically dependent on uncoupling protein 1 (UCP1), a
brown adipocyte-specific protein. UCP1 uncouples the re-
spiratory chain of oxidative phosphorylation within mito-
chondria, shifts energy from the mitochondrial electron
chain away from ATP production, and releases the
superfluent energy as heat. BAT has been thought to exist
only in hibernating mammals and newborns, until func-
tional BAT was discovered in adult humans in 2009 [6,
38, 50, 51]. Regarding its location, unlike WAT, its distri-
bution is limited mainly in the supraclavicular, neck, and
perirenal regions of human body [28, 45]. In comparison
to lipid-loaded, mature white adipocytes, brown adipo-
cytes are smaller and contain multilocular smaller lipid
droplets and many UCP1 positive mitochondria, which
vary in size and shape and are a major reason for the color
of BAT. Apart from UCP1, several markers for brown
adipocytes have been described including, peroxisome-
proliferator-activated receptor γ-coactivator 1α (PGC-
1α), cell death-inducing DNA fragmentation factor
alpha-like effector A (Cidea), Zic1, Lhx8, Eva1, and
Epsti1 [11].

BAT develops earlier than WAT during embryogenesis
(as early as day 9.5) [3, 22, 55]. Brown adipocytes arise
from central dermomyotome during embryonic develop-
ment, and they share their origin with skeletal muscle
cells, dermal cells, and a subpopulation of white adipo-
cytes [1, 22, 40, 41]. Although Myf5 was initially report-
ed as a specific marker for precursors that give rise to
brown adipocytes and muscle cells [41], recent studies
in mice showed that Myf5-positive precursors also give
rise to white adipocytes in anterior/dorsal depots indicat-
ing that Myf5 is rather a marker for cell position [39].

During BAT development, some positive regulators
have been identified so far, including protein PR domain
containing 16 (PRDM16), PPARα, bone morphogenetic
protein 7 (BMP7) and Orexin. Although PRDM16 was
shown to be dispensable for brown adipocyte develop-
ment [4], it is required for maintaining BAT function dur-
ing aging. PRDM16 forms complexes with other regula-
tory factors including PPARγ, PGC-1α/β, euchromatic
histone-lysine N-methyltransferase 1 (EHMT1), C-
terminal-binding proteins (CtBPs), and early B cell
factor-2 (EBF2) [20, 21, 30, 34, 41, 42]. PPARα was
demonstrated to bind to a PPAR-responsive element in
the distal PGC-1α gene promoter, thereby, inducing ex-
pression of PGC-1α [17]. BMP7 and Orexin have been
shown to promote brown adipocyte development via in-
duction of PGC-1α, UCP1, PPARγ, and C/EBPs [49] as
well as through p38 mitogen-activated protein kinase
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(MAPK) and bone morphogenetic protein receptor-1α
(BMPR1A)-dependent Smad 1/5 signaling [43].

Brite fat

Brite/beige fat, which is also known as inducible brown
adipose tissue, functions as an extra or reserve brown
adipose tissue that can be induced by cold exposure to
dissipate energy [15, 32]. Brite adipocytes are dispersed
among the white adipocytes and are morphologically sim-
ilar to a classical brown adipocyte (Fig. 1) containing
multilocular, but variable-in-size, lipid droplets and plenty
of UCP1-positive mitochondria [57, 58]. Brite cells also
express brown fat-specific genes, including UCP1, Cidea,
PGC-1α, PRDM16, and CCAAT/enhancer-binding pro-
tein β (C/EBPβ). In mice, Zic1 and Hoxc9 have been
identified as the most specific markers for classical BAT
and brite fat, respectively [53]. In addition, several other
potential brite-selective markers including Cd137, Tbx1,
Tmem26, Cited1, and Shox2 have been suggested [11].

There is no consensus concerning the mechanism of
Bbrowning^ and the embryonic origin of brite adipocytes.
There is evidence that brite adipocytes arise from pre-
existing white adipocytes [13, 52]. On the other hand, there
is also evidence that they arise by de novo adipogenesis from
precursors [54]. Moreover, it was postulated that brite cells are
masked as white adipocytes and might Bde-mask^ upon cold
exposure or pharmacological stimulation [29]. Interestingly,
another study showed about 10 % of brite adipocytes in
igWAT arise from smooth muscle [24]. Thus, brite adipocytes
might be more heterogenous than other adipocytes.

PRDM16 and PPARα/γ play critical roles in brite cell de-
velopment. Their positive regulatory effect has been shown to
be related to an induction in PGC-1α expression [16, 56] and
a stable interaction of PRDM16 and PPARγ, which might be
promoted by a Sirtuin 1 (SIRT1)-dependent deacetylation of
PPARγ [33]. In addition, the cyclic GMP (cGMP) pathway
has been shown to induce brite adipocyte development as well
[14, 15, 25].

Prospect and challenges

Since white fat is often viewed as Bbad^ or as the Bdark
side^ of adipose tissue, one might be inclined to over-
come or ease obesity via inhibition of adipose tissue ex-
pansion [10, 26]. It sounds like a reasonable therapeutic
approach, since many regulatory factors have been iden-
tified that regulate differentiation of precursor cells to ma-
ture adipocytes. However, evidence from several animal
models [8, 26, 35] show that blocking adipocyte develop-
ment is unhealthy. If lipids are not stored by adipose tis-
sue, they Bspill over^ and are stored ectopically. Ectopic
storage of excess lipids in the liver and muscle is detri-
mental for these tissues and will worsen the metabolic
dysfunction [10]. Moreover, adipose tissue functions as
a secretory organ and secretes hormones like leptin and
adiponectin that play important roles in appetite regula-
tion and cardiovascular health, respectively [9, 18]. For
these reasons, it is clear that other ways to fight obesity
are needed.

An alternative might be to further the Bbrite side^ of fat by
increasing the number of brown and/or of brite cells.
According to the evidence of numerous animal models [4,
11, 14, 15, 25, 31–33, 53], several regulatory factors of brown
and brite fat development might be used for such an approach.
However, there is a lack of human studies on this subject. A
major reason for this is the lack of easy accessible biomarkers
for brown and brite fat in humans. It is also not known wheth-
er there might be unwanted side effects of a long-term en-
hancement of thermogenesis. Thus, more human studies are
needed to unravel the role of human brown and brite fat in
physiology and disease.
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Fig. 1 White, brite, brown
adipocytes and the two faces of
brite adipocytes
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