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Brain microvascular endothelial cells (BMECs) possess unique properties that are
crucial for many functions of the blood-brain-barrier (BBB) including maintenance
of brain homeostasis and regulation of interactions between the brain and immune
system. The generation of a pure population of putative brain microvascular endothelial
cells from human pluripotent stem cell sources (iBMECs) has been described to
meet the need for reliable and reproducible brain endothelial cells in vitro. Human
pluripotent stem cells (hPSCs), embryonic or induced, can be differentiated into large
quantities of specialized cells in order to study development and model disease.
These hPSC-derived iBMECs display endothelial-like properties, such as tube formation
and low-density lipoprotein uptake, high transendothelial electrical resistance (TEER),
and barrier-like efflux transporter activities. Over time, the de novo generation of an
organotypic endothelial cell from hPSCs has aroused controversies. This perspective
article highlights the developments made in the field of hPSC derived brain endothelial
cells as well as where experimental data are lacking, and what concerns have emerged
since their initial description.

Keywords: induced pluripotent stem cells, endothelial cell, epithelial cell, cell fate and differentiation,
misclassification, brain–blood barrier (BBB), disease modeling

INTRODUCTION

The latest efforts to develop drugs targeting neurodegeneration and neurological disorders have
been met with disappointment in recent clinical trials. The relative ineffectiveness of those
drugs has incited the scientific community to develop better pre-clinical models by improving
human cell-based models to capture the complexity of the brain. While the discovery of induced
pluripotent stem cells and subsequent generation of brain organoids has advanced innovative
avenues, these brain organoids are still rudimentary, lacking primordial non-neuronal cell types
of the central nervous system (CNS) like microglia and most importantly functional blood vessels.
During embryonic development, endothelial cells (ECs) acquire unique organ-specific molecular
and cellular specializations that are crucial for the formation of the blood-brain-barrier (BBB)
and therefore the maintenance of brain homeostasis. Human pluripotent stem cells (hPSCs),
embryonic or induced, have been used in an effort to generate large quantities of specialized cells
for development studies and disease modeling. The use of hPSCs to generate a pure population of
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these specialized brain microvascular ECs (iBMECs) has been
described to meet the need for a reliable and reproducible in vitro
BBB model. Specifically, it has been reported that hPSC-derived
iBMECs display EC-like properties including tube formation,
low density lipoprotein uptake, high transendothelial electrical
resistance (TEER), and select barrier-like transporter activity.
Over time, this de novo generation of an organotypic endothelial
cell from hPSCs has aroused controversies. This perspective
article highlights the developments made in the field of hPSC
derived brain endothelial cells as well as where experimental
data are lacking, and what concerns have emerged since their
initial description.

FROM GENERIC TO CNS SPECIFIC
ENDOTHELIAL CELLS

Brain endothelial cells plays an essential role in the development
of a multicellular vascular structure separating the central
nervous system (CNS) from the peripheral blood circulation
(Bär, 1980; Risau and Wolburg, 1990; Engelhardt, 2003). In
mammals, this process begins when cells originating from the
mesoderm, known as angioblasts, enter the head region and
form the perineural vascular plexus (PNVP) which will go on
to encompass the neural tube by mid-gestation. None of the
microvasculature in the CNS is derived from the neuroectoderm
but instead, new vessels sprout from the existing PNVP into
the developing neuroectoderm (Risau and Wolburg, 1990;
Engelhardt, 2003). This process is highly regulated, occurring
at precise stages of embryonic development, thus leading to the
formation of a reproducible pattern of neuro-vasculature in all
mammals (Aird, 2007a,b).

Initial signs for CNS angiogenesis and induction of BBB traits
are given by the neural microenvironment on embryonic day
E10 in mice (Obermeier et al., 2013). Endothelial cell progenitors
from the PNVP infiltrate the neuroectoderm following a gradient
of vascular endothelial growth factor (VEGF), resulting in
the development of nascent “leaky” or “immature” blood
vessels (Potente et al., 2011). Activation of the Wnt/β-catenin
pathway in these nascent blood vessels triggers the expression
of genes critical for the formation of the BBB. Wnt ligands
secreted by the neural microenvironment bind to a set of
receptors expressed by the endothelial cells (Frizzled, LRP5,
LRP6) to elicit the expression of GLUT1, DR6, and TROY
(Stenman et al., 2008; Tam et al., 2012). Furthermore, G-protein
coupled receptor 124 (GPR124) seems to be essential for
barrier genesis in the brain as it acts as an endothelial
specific co-activator of Wnt/β-catenin signaling in the BBB
(Kuhnert et al., 2010; Anderson et al., 2011; Cullen et al.,
2011). By day E15 an embryonic BBB is formed in mice
(Daneman et al., 2010; Ben-Zvi et al., 2014); however, the exact
timing of BBB formation in human development and whether
humans are born with a fully mature BBB remains unclear
(Saunders et al., 2013).

This primitive BBB further mature by recruiting pericytes
to the developing blood vessels. This step is critical to ensure
proper BBB formation and function (Armulik et al., 2010;

Bell et al., 2010; Daneman et al., 2010; Vanlandewijck et al., 2018).
A recent study deconvoluted the complexity of the endothelial
responses to pericytes at the single cell level (Andaloussi
Mae et al., 2020). Activation of endothelial TIE2 signaling by
ANGPT2 secreted by pericytes reinforce endothelial arterio-
venous zonation, angiogenic quiescence and a limited set of BBB
functions. It was also shown that the last component of the
BBB, astrocytes, support the endothelial cells in acquiring BBB
attributes and barrier properties (Alvarez et al., 2011).

ORGANOTYPIC PROPERTIES OF BRAIN
MICROVASCULAR ENDOTHELIAL
CELLS

The major endothelial transport systems, ions channels and
GPCRs are described in detail elsewhere (Daneman and Prat,
2015; Vanlandewijck et al., 2018; Hariharan et al., 2020). The
unique cellular junction molecules expressed by brain endothelial
cells are briefly discussed below.

The BBB is lined with specialized endothelial cells (EC)
known as brain microvascular endothelial cells (BMEC) that
possess intercellular tight junctions (TJs), lack fenestrations,
and greatly limit transcytosis. BMECs, acting in conjunction
with various neural cell types and non-cellular elements,
form the BBB which regulates the dynamic transfer of select
molecules into and out of the CNS (Zlokovic, 2008; Daneman
et al., 2009; Daneman, 2012). These properties are achieved
through the presence of distinctive TJs exhibiting a high
trans-endothelial electrical resistance (TEER) in vivo and
reduced caveolar-mediated transport, along with the presence
of selective transporters. Due to their significant structural
and functional overlap, most of the current understanding of
endothelial cell TJs has been derived from examination of their
epithelial counterparts (MDCK, CACO2, and ECV304) (Garberg
et al., 2005). However, BBB-endothelial TJs hold many unique
attributes which may be more akin to ECs of other organs when
paracellular permeability and dynamic regulation are evaluated
under pathophysiological conditions.

The establishment and maintenance of BBB TJs are governed
by mainly three transmembrane proteins: Claudins, Occludin,
and Junction Adhesion Proteins (JAM). The Claudin family
is comprised of at least 24 member proteins which contain
two extracellular loops responsible for homophilic interaction
as well as establishing a link with claudins of contiguous
endothelial cells. This homophilic interaction forms the primary
seal of the TJ in vivo (Piontek et al., 2008) with Claudin -
1, -3, -5, and -12 initially thought to be expressed by BBB-
forming ECs. While some studies showed immunostaining
against Claudin-1 at the BBB in rodent models (Liebner et al.,
2000), it has since been shown that it is not expressed by
BBB-forming ECs (Pfeiffer et al., 2011). Likewise, while some
research groups have reported that brain microvasculature
expresses Claudin-3 (Wolburg et al., 2003), others could
not reproduce or confirm this observation (Kominsky et al.,
2007; Steinemann et al., 2016). The generation of a Claudin-
3−/− mice demonstrated that the junctional immunostaining
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produced by anti-Claudin-3 antibodies in mouse brain ECs
in situ and in vitro is not due to the presence of Claudin-
3 but rather to an endothelial junctional antigen that is still
present in brain ECs of Claudin-3−/− mice (Castro Dias
et al., 2019). Of note, it is now known that Claudin-1 and -
3 are selectively expressed by the epithelium of the choroid
plexus (Steinemann et al., 2016). Thus, these contradictory
observations emphasize the contentious reliability of assessing
Claudin protein expression in BBB TJs though their transcript
expression still remain an important measure of cell specific
tight junctions.

Another barrier property of the BBB lies in their ability to
restrict immune cell infiltration to the CNS as BMECs generally
has a low expression of leucocyte adhesion molecules during
homeostatic conditions (Reese and Karnovsky, 1967; Brightman
and Reese, 1969; Westergaard and Brightman, 1973). Immune
cell trafficking across the BBB during pathophysiological
conditions have been extensively studied in animal models
of neuroinflammatory disease. These studies highlight the
unique interaction of immune cells with BMECs which
is regulated by a sequential cascade of different signaling
pathways involving various adhesion molecules. BMECs
harbor unique intrinsic properties which allow them to adapt
and respond to inflammatory cues and thereby regulate
immune cell trafficking through the BBB. BMECs exposed
to TNFα, IL-1β, and IL-6 have shown increased paracellular
permeability as well as acquiring an activated phenotype
(de Vries et al., 1996).

These phenotypical modifications, unique to the vascular
cells, are mainly characterized by an induced expression of
endothelial cellular adhesion molecules that are critical for the
recruitment of circulating leukocytes to sites of inflammation.
The importance of ICAM-1 in regulating leukocyte recruitment
during neuroinflammation has been highlighted in different
animal models using both ICAM-1-null mice and ICAM-1-
blocking antibodies (Zhang Rui et al., 1995; Kitagawa et al., 1998).
An in vivo study in mice showed that E-selectin deficiency exert
a neuroprotective effect characterized by reduced inflammation
and neuronal apoptosis (Ma et al., 2012). Additionally, genetic
P-selectin knock-in mice show increased BBB permeability
and stroke injury (Kisucka et al., 2009). Hence, any BMEC
cultured in vitro must be able to phenocopy this response to
inflammatory stimuli in order to be considered physiologically
relevant BBB model.

A BRIEF OVERVIEW OF IN VITRO
BLOOD BRAIN BARRIER MODELS

The development of in vitro models has accelerated mechanical
studies on the BBB as well as large scale screening of drugs
with potential to penetrate the brain, with some limitations.
Many studies have been conducted using primary BMEC isolated
from various animal tissues, most commonly bovine, porcine,
and rodent (Dehouck et al., 1990; Gaillard et al., 2001; Deli
et al., 2005; Roux and Couraud, 2005; Zhang et al., 2006;
Burek et al., 2012; Yusof et al., 2014; Helms et al., 2016;

Veszelka et al., 2018). BMECs isolated from larger animal models
generally possess higher TEER, at around 800 �.cm2 (Rubin
et al., 1991), and low permeability due to high expression
of junctional markers such as claudin-5, ZO-1, and occludin
(Rubin et al., 1991; Cecchelli et al., 2007; Cohen-Kashi Malina
et al., 2009; Patabendige et al., 2013). In particular, bovine
and porcine brain ECs can be isolated in large quantities with
ease; as a result, they have become the preferred choice for
many permeability and transcytosis studies. Rodent brain ECs,
specifically mouse or rat, have also been widely used as an in vitro
model of the BBB with some groups developing immortalized
cell lines (Roux et al., 1994; Wagner and Risau, 1994; Burek
et al., 2012) and others discovering the use of Puromycin
to increase the purity of primary isolations (Perrière et al.,
2005; Calabria et al., 2006). Brain ECs these models generally
possess lower TEER (under 300 �.cm2) (Daneman et al., 2010)
but offer an avenue for BBB studies in transgenic models.
Models using rodent brain ECs also provide the opportunity for
large cohort studies and cells which can be targeted by many
established antibodies.

These animal BMECs have also been studied in many co-
culture conditions allowing for the discovery of many important
cellular interactions between BMECs, astrocytes, and pericytes
in the neurovascular microenvironment (Gaillard et al., 2001;
Coisne et al., 2005; Garberg et al., 2005; Nakagawa et al.,
2007; Helms et al., 2010, 2012; Liu et al., 2014). These co-
culture models also possess higher TEER with the larger
animal models exceeding 2,500 �.cm2 in some studies (Helms
et al., 2014). Over time, BBB models developed using these
various animal cell lines have demonstrated well-characterized
permeability phenotypes and physiological similarities to human
BMECs (Warren et al., 2009; Shawahna et al., 2011; Uchida
et al., 2011; Hoshi et al., 2013). For instance, bovine co-culture
models possess highly differentiated junctions which allow for
various permeability and junction modulation assays using drug
compounds (Wolburg et al., 1994; Gaillard and de Boer, 2000;
Schaddelee et al., 2003; Boveri et al., 2006; Bohara et al.,
2014). Rodent co-culture conditions utilizing single or multiple
neural cell types have been shown to successfully mimic the
neurovascular unit and even induce certain BBB phenotypes such
as elevated TEER in vitro which has been validated by small
molecule permeability screening (Coisne et al., 2005; Nakagawa
et al., 2007, 2009; Abbott et al., 2012; Watson et al., 2013).
Animal BBB models have provided a wealth of insight into
various aspects of BBB physiology and pathology with a large
amount of cross-validation between models. However, recent
advances in the field have illuminated aspects in which animal
models are lacking such as precise reproducibility with certain
models showing a wide range of varied TEER and junctional
phenotypes between laboratories (Schaddelee et al., 2003;
Helms et al., 2014).

In an effort to generate a completely homologous model for
clinical research and drug development, human primary BMECs
have also been used in in vitro BBB models but are difficult
to procure in sufficient numbers for experimental purposes
(Bernas et al., 2010). Though human BMECs have provided
a useful model for the study of many developmental and
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regulatory neurovascular pathways, the ethical questions and
general restrictions placed on obtaining healthy human brain
tissue along with low BMEC yields during isolation places a
substantial limitation on their use in in vitro studies (Bernas
et al., 2010). In addition, often times human BMECs offered
by commercial vendors lack detailed documentation as to the
isolation and sourcing of the cells, creating concerns over their
use in many physiological models (Helms et al., 2016). The
barrier properties and endothelial identity of primary BMECs are
also not well maintained in vitro for extended periods of time,
rendering them suboptimal for a number of potential BBB assays
(Helms et al., 2016).

In order to overcome these limitations, immortalized human
BMEC lines were established (Stins et al., 2001; Weksler et al.,
2005; Rahman et al., 2016). These cells provided researchers with
a model of human BMECs which was easy to use and had less
batch variation availability issues. However, immortalized human
BMECs also lose many of their brain specific EC attributes and
produce a sub-physiologic TEER in vitro making them ineffective
for functional studies (Urich et al., 2012; Weksler et al., 2013;
Helms et al., 2016). It has also been reported that expression of
endothelial tight junction specific CLDN5 is significantly lower
in immortalized human BMECS than in vivo. Taken together,
BMECs originating from either animal or human tissue origins
lose some of their organotypic phenotypes when cultured in vitro
(Urich et al., 2012; Weksler et al., 2013). The use of all the
previously mentioned brain endothelial cells in various mono-
and co-culture conditions has highlighted the need for a stable
in vitro BBB model possessing both vascular endothelial and
barrier phenotypes (Helms et al., 2016).

HUMAN PLURIPOTENT STEM CELL
DIFFERENTIATION AS A POSSIBLE
ALTERNATIVE

Recently, Lippmann et al. (2012) have reported the generation
of a pure population of putative BMECs from pluripotent stem
cell sources (iBMECs) has been described to meet the need
for a reliable and reproducible in vitro human BBB model.
Human pluripotent stem cells, embryonic or induced, can
differentiate into large quantities of specialized cells in order to
study development and model disease. iBMECs are generated
primarily through directed differentiation of pluripotent stem
cells into both neural and endothelial progenitors followed
by selective purification. Under these differentiation culture
conditions, it is proposed that the neural cell types provide a
microenvironmental cues that coax the emerging endothelial
progenitors toward a BBB-specific phenotype as they further
differentiate into ECs (Lippmann et al., 2012). Later iterations
of this protocol reported that adding retinoic acid or inhibiting
GSK3 during this neuro-endothelial differentiation process
would enhance the yield and fidelity of these putative iBMECs
(Lippmann et al., 2014; Qian et al., 2017; Faley et al., 2019).
Additionally, others have developed a more defined serum-
free method which aimed to improve the consistency of
differentiated iBMECs while decreasing the overall length of

the differentiation process (Hollmann et al., 2017; Neal et al.,
2019) (Table 1). Regardless of the method used, these iBMECs
display endothelial-like properties, such as tube formation and
low-density lipoprotein uptake, high TEER (≥800 �.cm2), and
barrier-like efflux transporter activities (Stebbins et al., 2016;
Appelt-Menzel et al., 2017; Canfield et al., 2017; Hollmann
et al., 2017; Lim et al., 2017; Stebbins Matthew et al., 2017;
Vatine et al., 2017; Delsing et al., 2018; Sances et al., 2018).
They have also been reported to express select BMEC marker
transcripts such as PECAM1, CDH5, and CLDN5, among other
BBB-specific markers (Qian et al., 2017; Vatine et al., 2017, 2019;
Lee et al., 2018; Faley et al., 2019; Martins Gomes et al., 2019;
Linville et al., 2020).

iBMECs generated using the original neuro-endothelial
differentiation and subsequent protocols have quickly been
adopted as a robust and viable source of human BMECs in
many different in vitro studies of the BBB. At their inception,
iBMECs were primarily used as a monoculture system to
recapitulate the BBB in two-dimensional cell culture conditions.
The cells were described to replicate barrier and transporter
phenotypes present in the BBB in vivo in a cell-autonomous
manner as well as respond to signaling from other neural
cell types and microenvironmental changes. iBMECs cocultured
with astrocytes and/or pericytes have been reported to have
increased TEER to above 1,500 �.cm2 as well as expression of
certain transporters and receptors present in the BBB such as
SLC2A1, BCRP, MRP1, and LRP1 (Lippmann et al., 2012, 2014;
Canfield et al., 2017; Qian et al., 2017; Vatine et al., 2017, 2019).
Some groups have concluded that not only does the vascular
endothelial identity of iBMECs remain stable in co-culture but
that these conditions aid in the maturation of iBMECs into a
more functional BBB model defined in large part by a decrease
in dextran permeability through the barrier model.

Unsurprisingly, culturing these cells on a 2-D surface,
regardless of the extra cellular matrix used, places observable
limitations on cell–cell interactions including movement of
secreted factors in the dish. These limitations would eventually
lead to iBMECs being adapted to three-dimensional BBB models
including various brain “organ-on-chip” models designed to have
iBMECs interacting with various other cell types in 3-D (Sances
et al., 2018; Faley et al., 2019). Some of these models also allow
for flow to be introduced to the cells, further mimicking in vivo
conditions (DeStefano et al., 2017; Vatine et al., 2019). Many
groups have used 3-D iBMEC based models to further study the
BBB under more physiologically relevant conditions; reporting
data on permeability, gene expression, and barrier properties of
iBMECs (Vatine et al., 2019; Linville et al., 2020). Over time,
the use of both 2-D and 3-D iBMEC-based BBB models has led
to many conclusions regarding the properties and functions of
brain specific ECs which has added a lot of data to the field of
BBB research. As a result of these reports, iBMECs have been
widely accepted for use as a brain specific EC in many in vitro
systems to assess BBB properties and function in homeostatic and
disease models (Lippmann et al., 2012, 2013, 2014; Wilson et al.,
2015; Stebbins et al., 2016; Appelt-Menzel et al., 2017; Canfield
et al., 2017; Hollmann et al., 2017; Lim et al., 2017; Qian et al.,
2017; Stebbins Matthew et al., 2017; Vatine et al., 2017, 2019;

Frontiers in Physiology | www.frontiersin.org 4 March 2021 | Volume 12 | Article 642812

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-642812
M

arch
24,2021

Tim
e:15:34

#
5

Lu
etal.

P
S

C
-D

erived
E

pithelialC
ells

M
isclassified

as
E

ndothelium

TABLE 1 | Major iterations of hPSC-derived iBMEC protocols.

Year References Protocol Changes
vs. 2012

Cell
line/Maintenance

Differentiation
media

QPCR Antibodies Barrier assays Transporters/
transcytosis

2012 Lippmann et al.
(2012). Nature
biotechnology

(1) Prior diff cells are
passaged on
Matrigel (mTESR1 for
2–3 days.
(2). Media is switched to
lack of FGF (UM) for
5–7 days.
(3). Switch to EC media
human Endothelial
Serum-Free Medium
(Invitrogen) supplemented
with 20 ng/mL bFGF and
1% platelet-poor plasma
derived bovine serum32
(PDS; Biomedical
Technologies, Inc.).
(4) 1–2 days of EC medium
treatment, cells were
dissociated with dispase
(2 mg/mL; Invitrogen) and
plated onto 12-well tissue
culture polystyrene plates
and maintained in EC
media.

NA ES line: H9, IPS:
IMR90-4,
iPS-DF19-9-11T33,
iPS-DF6-9-9T.
Irradiated MEFS,
DMEMF12
20%KOSR,
1xMEM,
1mM-lglutamine,
4ng.ml bFGF

UM = lack of FGF
and
EC = Endothelial
Serum-Free
Medium (Invitrogen)
supplemented with
20 ng/mL bFGF
and 1%
platelet-poor
plasma derived
bovine serum32
(PDS; Biomedical
Technologies, Inc.)

PECAM1, CDH5,
vWF, LDLR, LRP1,
INSR, LEPR,
BCAM, TFRC,
AGER, STRA6,
SLC7A5, SLC1A1,
SLC38A5,
SLC16A1,
SLC2A1, ABCB1,
ABCG2, ABCC1,
ABCC2, ABCC4,
and ABCC5.
PLVAP, SLC21A14,
FST, FZD7, FZD4,
FZD6, STRA6,
LEF1, APCDD1,
SLC2A1, ABCB1
control: GAPDH,
NO EC CONTROL

PECAM-1 (Rabbit,
Thermo Fisher)
CLAUDIN-5
(Mouse, Invitrogen)
Occludin (Mouse,
Invitrogen)
P-glycoprotein
(Mouse, Thermo
Fisher)
GLUT-1a (Rabbit
antiserum)
VE-Cadherin
(Mouse, SCBT)
Nestin (Rabbit,
Millipore)
βIII tubulin (Rabbit,
Sigma)
βcatenin
(FITC-conjugated
Mouse, BD
Biosciences)
Wnt7a FISH
Wnt7b FISH
GFAP (Polyclonal
Rabbit, Dako)
aSMA (Mouse,
American Research
Products)

TEER, coculture
with rat astrocytes

Inulin, sucrose,
glucose, vincristine,
colchicine,
prazosin,
diazepam,
rodhamine 123
((cyclosporine). No
EC control

(Continued)
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TABLE 1 | Continued

Year References Protocol Changes vs. 2012 Cell
line/Maintenance

Differentiation
media

QPCR Antibodies Barrier assays Transporters/
transcytosis

2014 Lippmann et al.
(2014)Lippmann
et al., . Scientific
reports

(1) Prior diff cells
are passaged on
Matrigel (mTESR1
for 2–3 days. (2).
Media is switched
to lack of FGF (UM)
for 5–7 days.
(3). Switch to EC
media human
Endothelial
Serum-Free
Medium (Invitrogen)
supplemented with
20 ng/mL bFGF
and 1%
platelet-poor
plasma derived
bovine serum32
(PDS; Biomedical
Technologies, Inc.).
(4). 1–2 days of EC
medium treatment,
cells were
dissociated with
dispase (2 mg/mL;
Invitrogen) and
plated onto 12-well
tissue culture
polystyrene plates
and maintained in
EC media (RA

Addition of Retinoic
Acid on day 6 use
of versene to
dissociate the cells
instead of dispase,
results in less
debris

IMR90-4 and
DF19-9-11T iPSCs
and H9 hESCs in
mTESR or 2012

UM = lack of FGF
and
EC = Endothelial
Serum-Free
Medium (Invitrogen)
supplemented with
20 ng/mL bFGF
and 1%
platelet-poor
plasma derived
bovine serum32
(PDS; Biomedical
Technologies,
Inc.) + RA

ABCB1, ABCG2,
ABCC1, ABCC2,
ABCC5, and
STRA6

PECAM-1 (Rabbit,
Thermo Scientific)
GLUT-1 (Mouse,
Thermo Scientific)
Occludin (Mouse,
Life Technologies)
CLAUDIN-5
(Mouse, Life
Technologies)
VE-Cadherin
(Mouse, SCBT)
E-Cadherin (Goat,
R&D Systems)
P-glycoprotein
(Mouse, Life
Technologies)
BCRP (Mouse,
Millipore) MRP1
(Mouse, Millipore)
GFAP (Rabbit,
Dako) βIII tubulin
(Rabbit, Sigma)
Nestin (Mouse,
Millipore) αSMA
(Mouse, American
Research Products)
PDGFRβ (Rabbit,
Cell Signaling)

TEER, coculture
with NPC
astrocytes, neurons
and primary
pericytes

DOXO, rhodamine
DCFDA

(Continued)
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TABLE 1 | Continued

Year References Protocol Changes vs. 2012 Cell
line/Maintenance

Differentiation
media

QPCR Antibodies Barrier assays Transporters/
transcytosis

2017 Qian et al. (2017).
Science advances

6 (µM of CHIR on
D0-1, he medium
was removed and
cells were
transitioned to
DeSR2 (DeSR1
plus B27
supplement) for
another 5 days
with daily medium
changes. At day 6,
cells were switched
to hECSR1 medium
[human endothelial
serum-free medium
(hESFM)
supplemented with
basic fibroblast
growth factor
(bFGF, 20 ng/ml),
10 (M RA, and
B27] to induce RA
signaling in the
hPSC-derived
endothelial
progenitors in an
attempt to drive the
specification to
BMECs. Cells were
maintained in this
medium for 2 days.
At day 8, cells were
replated onto a
Matrigel-coated
substrate in
hECSR1, and at
day 9, the medium
was switched to
hECSR2 (hECSR1
lacking RA and
bFGF).

Accutase instead of
Versene

Human iPSCs
[iPS(IMR90)-4 (72),
iPS-DF 19-9-11T
(73), and hESCs
(H9) (29)] were
maintained on
Matrigel
(Corning)–coated
surfaces in mTeSR1

6 µM CHIR99021
(Selleckchem) in
DeSR1:
DMEM/Ham’s F12
(Thermo Fisher
Scientific), 1×
MEM-NEAA
(Thermo Fisher
Scientific), 0.5×
GlutaMAX (Thermo
Fisher Scientific),
and 0.1 mM
β-mercaptoethanol
(Sigma). After 24 h,
the medium was
changed to DeSR2:
DeSR1 plus 1×
B27 (Thermo Fisher
Scientific) every day
for another 5 days.
At day 6, the
medium was
switched to
hECSR1: hESFM
(Thermo Fisher
Scientific)
supplemented with
bFGF (20 ng/ml),
10 µM RA, and 1×
B27

Brachyury (R&D
Systems) PAX2
(SCBT) CD31
(Thermo Fisher)
VE-Cadherin
(SCBT) vWF (Dako)
VEGFR2 (SCBT)
CLAUDIN-5
(Invitrogen)
Occludin
(Invitrogen) ZO-1
(Invitrogen) GLUT-1
(Thermo Fisher)
PGP (Thermo
Fisher) BCRP
(Millipore) MRP1
(Millipore) OCT3/4
(SCBT) TRA-1-60
(SCBT) NANOG
(SCBT) ICAM-1
(R&D Systems)

“We also compared
the differentiation
reproducibility with
that of the
previously reported
UM protocol (33).
Although both
methods produce
BMECs capable of
substantial barrier
formation from
multiple hPSC lines,
BMECs
differentiated from
H9 hESCs and
19-9-11 iPSCs
using the defined
method exhibited
higher TEERs and
lower
batch-to-batch
variation.”

Efflux transporter
activities were
measured by the
intracellular
accumulation of (G)
rhodamine 123, (H)
Hoechst, and (I)
DCFDA, substrates
for Pgp, BCRP, and
MRP, respectively.
CsA, Ko143, and
MK571 were used
as specific
inhibitors of Pgp,
BCRP, and MRP,
respectively

(Continued)
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TABLE 1 | Continued

Year References Protocol Changes vs. 2012 Cell
line/Maintenance

Differentiation
media

QPCR Antibodies Barrier assays Transporters/
transcytosis

2017 Hollmann et al.
(2017). Fluids
barriers CNS

Modified 2014
protocol

E8 and E6 media,
E6 for 4 days then
continued as
Lippmann et al.
(2014) protocol.

MR90-4 iPSCs
CC3 iPSCs, CD12
iPSCs, and SM14
iPSCs in growth
factor-reduced
Matrigel (VWR) in
E8 medium

E8 medium was
prepared by adding
100 µL of human
insulin solution
(Sigma-Aldrich),
500 µL of
10 mg/mL of
human
holo-transferrin
(R&D Systems),
500 µL of
100 µg/mL human
basic fibroblast
growth factor
(bFGF; PeproTech),
and 500 µL of
2 µg/mL TGFβ1
(PeproTech) to
500 mL of E4. The
final concentrations
are 2.14 mg/L
insulin, 100 µg/L
bFGF, 2 µg/L
TGFβ1, and
10.7 mg/L
holo-transferrin E6
medium was
prepared by adding
100 µL of human
insulin solution and
500 µL of
10 mg/mL of
human
holo-transferrin to
500 mL of E4. The
final concentrations
are 2.14 mg/L
insulin and
10.7 mg/L
holo-transferrin UM
and EC same as
2–14

PECAM-1 (Rabbit,
Thermo Scientific)
GLUT-1 (Mouse,
Thermo Scientific)
OCCLUDIN
(Mouse, Thermo
Scientific)
CLAUDIN-5
(Mouse, Thermo
Scientific)
VE-Cadherin (Goat,
R&D Systems)
GFAP (Rabbit,
Dako) PDGFR-B
(Rabbit, SCBT)
NG2 (Mouse,
SCBT) αSMA
(Mouse, SCBT)

TEER Intracellular
accumulation of
rhodamine 123 (a
Pgp substrate) was
evaluated in the
absence of bFGF
and RA. Cells were
incubated with
10 µM PSC833 or
10 µM MK-571 for
1 h at 37◦C. They
were then
incubated for an
additional house
with 10 µM
rhodamine 123 or
10 µM H2DCFDA.

A summary of the original hPSC-derived iBMEC protocol (Lippmann et al., 2012) as well as the major adaptations made in subsequent studies (Lippmann et al., 2014; Hollmann et al., 2017; Qian et al., 2017) highlighting
the key changes and experimental conditions used in each study.
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Delsing et al., 2018; Lee et al., 2018; Sances et al., 2018; Faley et al.,
2019; Martins Gomes et al., 2019; Linville et al., 2020).

CONFLICTING REPORTS OF IBMEC
VASCULAR CELL IDENTITY

Cellular identity is multifaceted and is usually determined by
a combination of transcriptional, translational and functional
phenotypes presented by a cell. This concept is particularly
important for PSC-derived cell types, as directed differentiation
to a target cell may yield a heterogenous population where
the target cell type is less frequent or lacking in canonical
lineage-specific genes that can have a tremendous impact on
the overall efficacy of the cell as an in vitro model. Moreover,
there is an existing concern regarding the standards by which
cells engineered in vitro are validated against their primary
counterparts in native tissues (Daley, 2015). These concerns stem
from reports using only a small number of transcriptional or
protein markers, limited or peripheral functional assays, and
global RNA expression analyses which taken together can lead to
a misguided identification of the cell type produced in vitro.

The characterization of iBMECs has been dominated by their
in vitro barrier properties which has largely been based off
the TEER measurements of these cells in monolayer conditions
(Stebbins et al., 2016). Expression of barrier specific genes such
as ZO-1 and OCLN have also served as a standard to bolster this
barrier phenotype though these and many other tight junction
marker genes expressed by iBMECs are not canonically specific
to vascular ECs (Acharya et al., 2004; Hwang et al., 2013).
Over time, some studies have started to present conflicting data
regarding the cellular identity of these cells (Delsing et al., 2018;
Lu et al., 2019; Vatine et al., 2019). Given that organ specific
models rely heavily on cell specific responses to stimuli or cell–
cell interactions which can differ widely depending on cell type,
concerns over iBMEC cellular identity presents a major problem
with their use in in vitro BBB models.

As the BBB is principally a vascular structure, it is
imperative that iBMECs are phenotypically, transcriptionally and
functionally analogous to definitive ECs which make up the
BBB. Recently, there have been several reports demonstrating
certain incongruencies in the cellular identity of iBMECs. Delsing
et al. (2018) demonstrated that iBMECs generated from the
neuro-endothelial differentiation expressed a considerably lower
level of key endothelial marker genes in both mono and co-
culture conditions when compared to other hPSC derived ECs
or primary human BMECs. This study reported the presence of
PECAM1, ZO-1, CLDN-5, VWF, and other endothelial markers
in protein staining of iBMECs as well as hPSC derived ECs of
a different protocol. However, the bulk RNA sequencing data
reported a statistically significant decrease in mRNA expression
of PECAM1, CDH5, CLDN5, and VWF, in iBMECs relative to
the other ECs tested. The study went on to show that iBMECs
express CLDN4, CLDN6, and CLDN7 indicating the presence of
an epithelial cell junction. Taken together, this data led the group
to conclude that iBMECs possess somewhat of a mixed phenotype
(Delsing et al., 2018).

In Lu et al. (2019), our group conducted an in-depth
characterization of iBMECs using a combinatorial analysis of
protein and RNA expression comparing iBMECs from previously
published work to their own. Our analysis also included multiple
primary endothelial cell controls as well as hPSC derived ECs
generated using a another previously published protocol (James
et al., 2010). Initial microscopy and fluorescence activated cell
sorting (FACS) revealed a lack of PECAM1 and CDH5 protein
expression in iBMECs compared to the other ECs used in
this study. EPCAM protein expression is also demonstrated
in exclusively the iBMECs using the same assays. To validate
these results, we performed a meta-analysis of bulk RNA
sequencing data comparing their own iBMECs to previously
published RNA transcriptomes obtained from the NCBI Gene
Expression Omnibus (GEO).

We were able to demonstrate that not only were their iBMECs
transcriptionally equivalent with previously published iBMECs
but also that all iBMECs lacked a canonical EC transcriptional
profile and conversely expressed many genes normally related to
an epithelial cell lineage such as EPCAM, KRT8, KRT19, SPP1,
and FREM2. These results were confirmed by single-cell RNA
sequencing which also showed iBMECs to be a homogenous
epithelial cell population lacking a vascular EC identity. An
absence of key EC transcription factor (TF) and marker genes
was observed in both RNA sequencing platforms, concerns over
the validity of the previously established protein expression data
becomes apparent. iBMECs used in this study were shown to be
transcriptionally identical to those previously published which
mean that positive protein expression data could be due to non-
specific binding by monoclonal antibodies, especially in the case
of proteins from large homologous families such as Claudins
(Krause et al., 2015). In summary, this study concludes that
though iBMECs present a tight junction phenotype with high
TEER, their cellular identity is severely lacking in congruency to
vascular ECs making them unsuitable for use as an in vitro model
of the human BBB (Lu et al., 2019) (Table 2).

TABLE 2 | hPSC-derived iBMECs are not phenotypically comparable to
primary human BMECs.

hPSC-Derived BMEC
in vitro

Primary Human BMEC
in vitro

Surface marker
profile

PECAM1− CDH5−

EPCAM+
PECAM1+ CDH5+

EPCAM−

Claudin family
repertoire

Claudin-4, Claudin-6,
Claudin-7

Claudin-5

Barrier
properties

High junctional electrical
resistance

Low junctional electrical
resistance

Inflammatory
response

No canonical vascular
response observed

VCAM-1, ICAM-2,
E-Selectin upregulation

Significant
media
differences

Serum free (or 1% platelet
poor bovine serum)

Fetal bovine serum;
SB431542

Extracellular
matrix

Fibronectin/collagen IV
mixture

Gelatin

An overview of crucial differences between hPSC-derived iBMECs and primary
human BMECs illustrating major differences in cellular phenotype as well as in vitro
culture conditions.
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Using many of the same bulk RNA endothelial and epithelial
control samples from the GEO repository as Lu et al. (2019), and
their own iBMECs, Vatine et al. (2019) performed a meta-analysis
as well. iBMECs in this study were seeded in an organ-chip
device in which the authors claim they establish a hollow vessel-
like structure. A Principal Component Analysis (PCA) of their
dataset revealed that iBMECs clustered closest to some of the
endothelial controls. However, the lung epithelial cell libraries
used in this analysis were prepared using total RNA without
ribosomal depletion, while the rest of the dataset consisted of
samples that were both polyA-primed and depleted of their
ribosomal transcripts. Such a discrepancy in library preparation
methods is likely to have caused a significant bias in this PCA;
in fact, sample divergence across PC1 was exclusively due to
the presence of ribosomal transcripts. Still, this meta-analysis
also reported the presence of many epithelial cell transcripts
in iBMEC samples, reinforcing previous conclusions about the
presence of a non-vascular epithelial cell identity in these cells.
This study goes on to introduce iBMEC organ-chips to different
levels of laminar flow and co-culture with various hPSC-derived
neural cell types. Bulk RNA sequencing of iBMECs in each of

these conditions revealed a number of differences in expression
of the CLDN gene family (Figure 1) as well as junction related
genes (Figure 2) which the authors used to conclude that certain
conditions allowed for the functional maturation of iBMECs
(Vatine et al., 2019).

Importantly, these changes in expression levels were reported
in relative terms for each transcript after normalization across
samples that did not include an EC control. The FPKM values
for some of the genes reported varied with statistical significance
across conditions (CLDN4, CLDN6, HIF1A, and CAV1); however,
some of these statistically significant differences denoted changes
in FPKM values of less than 1 (CLDN5, CLDN10) stipulating
an overall lack of function difference in gene expression.
Interestingly, differences in FPKM values of greater than 20
occurs exclusively in genes more closely related to an epithelial
lineage, reinforcing the notion of an epithelial phenotype in
iBMECs. Differences in FPKM of some marker genes were
also shown to be not significantly different between samples
even though the Row Z-score demonstrates a large difference
in expression. Moreover, the average FPKM of some of these
marker genes across all samples was under 0.1 indicating that

FIGURE 1 | Claudin family RNA expression in iBMECs under sheer stress. Violin plots of Claudin family gene expression in iBMEC organ-chip samples at various
flow pressures adapted from data provided by Vatine et al. (2019) (significance indicates p-value < 0.05).

Frontiers in Physiology | www.frontiersin.org 10 March 2021 | Volume 12 | Article 642812

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-642812 March 24, 2021 Time: 15:34 # 11

Lu et al. PSC-Derived Epithelial Cells Misclassified as Endothelium

FIGURE 2 | Junctional-related gene RNA expression in iBMECs under sheer stress. Violin plots of junctional-related gene expression in iBMEC organ-chip samples
at various flow pressures adapted from data provided by Vatine et al. (2019). Genes were defined as junctional-related according to the referenced study
(significance indicates p-value < 0.05).

the genes are barely expressed and unlikely to undergo any
translation (Hart et al., 2013). Interpretation of near zero FPKM
values as functional expression of a gene could lead to incorrect
assumptions of cell identity and functional phenotypes.

The lack of a functional vascular endothelial identity in
iBMECs is further reinforced in a study by Martins Gomes et al.
(2019) in their study focusing on their use as a disease model
for Neisseria meningitidis (Nm) infection of the brain. While
characterizing the response of iBMECs to inflammatory factors
brought on by Nm infection, the group notes no difference
in VCAM-1 or E-Selectin RNA expression which shows a lack
of an EC specific response to inflammatory stimuli. Nishihara
et al. (2020) further bolsters these results with their study in
which they assess immune cell interactions with iBMECs. They
characterized the inflammatory response of iBMECs generated
with the established method (Lippmann et al., 2014) and those
generated using the later adapted chemically defined method
(Qian et al., 2017). Interestingly, it was shown that iBMECs
differentiated using either method did not stain positive for

ICAM-2, VCAM-1, E-selectin, or P-Selectin (Nishihara et al.,
2020). ICAM-1 upregulation was only reported upon removal
of retinoic acid, which was previously described to contribute
greatly to the development of a vascular EC identity in these cells
(Lippmann et al., 2014), from the differentiation process. The
group ultimately concluded that iBMECs generated from any of
these protocols lack expression of many vascular cell adhesion
molecules and are not well suited for modeling immune cell
interactions in the BBB.

POSSIBLE MEANS FOR INDUCTION OF
VASCULAR BBB PHENOTYPE IN
HPSC-DERIVED CELLS IN VITRO

Before a functional hPSC-derived vascular BBB model can be
developed, stable hPSC-derived vascular ECs must be generated.
In a recent study (Lu et al., 2021), our group demonstrated
that a vascular fate can be induced in iBMECs through
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introduction of certain EC-specific ETS TFs (ETV2, ERG,
and FLI1). These reprogrammed cells (rECs) harbor an EC
transcriptomic profile, retaining a PECAM1+CDH5+KDR+ EC
immunophenotype during passaging and expansion. Purified
rECs can respond to inflammatory stimuli (i.e., TNF-α) and
permeabilizing agents (i.e., VEGF-A and anti-VE-cadherin
antibody) in a manner congruent with vascular ECs. rECs were
also shown to be capable of forming tubes in vivo using an
immunocompromised mouse model, whereas iBMECs derived
from the same hPSCs could not. This strategy of transcription
factor reprogramming establishes a vascular EC identity in cells
that otherwise lacked any phenotypic and functional aspects of
bona fide ECs. However, further work is required to generate
a reliable brain specific EC and that this only represents a
crucial step toward the generation of true brain ECs suitable
for in vitro modeling of physiological and pharmaceutical
studies of the BBB.

In addition to the co-culture systems referenced above,
numerous culture conditions have been demonstrated to improve
BBB phenotypes in vitro. Some groups were able to show that
neural cell conditioned media could increase barrier resistance
and decrease permeability in BMEC monolayers (Siddharthan
et al., 2007; Puech et al., 2018). Others have used cytokines
and small molecules in the culture medium to modify barrier

and vascular phenotypes these ECs. As previously mentioned,
de Vries et al. (1996) demonstrated that exposure to cytokines
such as TNF-α, IL1-β, and IL-6 induces an overall decline in
TEER across rat brain EC monolayers. Schulze et al. (1997)
later showed that Lysophosphatidic Acid increases tight junction
permeability in porcine brain ECs. In contrast, a study from
Roudnicky et al. (2020b) has indicated that the ALK5 inhibitor
RepSox could modulate EC barrier stability. These studies all
support the notion that microenvironmental queues play a large
role in the homeostatic regulation of BMECs and adjustments to
culture conditions will largely affect the overall function of an
in vitro BBB model.

Moving on from culture conditions, intrinsic transcriptional
regulation may also be critical for the establishment of a
vascular BBB model. A separate Roudnicky et al. (2020a) study
was able to demonstrate that synergistic overexpression of
TFs including SOX18, TAL1, SOX7, and ETS1 can enhance
certain properties in EC such as barrier function. Their work
shows that hPSC-derived ECs transduced with these TFs have
increased transmembrane electrical resistance and tight junction
protein expression while also decreasing paracellular transport
(Roudnicky et al., 2020a). Taken together, this data suggests
transcription factor overexpression could eventually be used in
conjunction with chemomodulation in order to directly generate

FIGURE 3 | iBMECs do not possess an endothelial transcriptional profile or vascular junctional components. iBMECs are shown to lack expression of phenotypical
markers of a vascular EC lineage while expressing many epithelial cell lineage genes by bulk and single-cell RNA sequencing methods. The junctional components in
iBMECs are also incongruent with canonical EC junctions leading to very serious concerns as to the efficacy of their use in an in vitro vascular BBB model.
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brain-specific ECs from hPSCs which could be suitable for
in vitro BBB models.

CONCLUDING REMARKS

Over the past decade many groups have aimed to advance the
study of the BBB by developing in vitro models attempting to
mimic the physiological complexity of the BBB in vivo. Many
difficulties have arisen during the course of these efforts as such
models must phenocopy the high TEER observed in vivo as well
as the intricate cellular transport mechanisms that are hallmarks
of the BBB. It has been demonstrated that BBB traits are not
intrinsic to brain specific ECs, but rather the result of a dynamic
interplay with their microenvironment including multiple cell
types such as astrocytes and pericytes. Consequently, primary
brain ECs lose their barrier properties, especially high TEER,
when cultured in vitro. Many laboratories have attempted to
resolve this issue by developing various in vitro BBB models
using neural cell co-cultures consisting of ECs, pericytes, and
astrocytes. These models also include pluripotent stem cell
differentiation methods as well as brain organoids and ‘organ-on-
a-chip’ approaches.

Validation of these in vitro models relies mainly on using
TEER and expression of tight junction proteins as a determinant
of barrier function. Using these measurements as a proxy for
functional BBB-specific tight junctions presents some limitations
since it can only measure the paracellular junctions. The BBB has
many transcellular permeability functions that are imperative for
its function which cannot be measured in this way. Additionally,
high TEER and many of the junctional proteins used to
validate brain EC identity have been demonstrated in other non-
endothelial cell types such as epithelial cells. ECs have also been
shown to possess a polarized morphology (Lizama and Zovein,
2013) similar to epithelial cells, however, these morphological
and junctional characteristics do not suggest that epithelial cells
can be used interchangeably with ECs in in vitro vascular barrier
models. Other problems may also have arisen from assigning
a vascular EC identity to hPSC-derived cells based on the
expression of a restricted set of brain EC markers. False positive
results of EC identity can occur in these cases due to antibody
cross-reactivity with proteins present in the cell sample that
are not specific to ECs. As shown, iBMECs may demonstrate

a high TEER in vitro and express certain non-vascular specific
junctional genes, however, they lack many functional phenotypes
intrinsic to ECs. By not responding to inflammatory stimuli in an
EC specific manner, their use in many models would yield results
misrepresenting the in vivo BBB (Figure 3).

Taken altogether, the data presented by recent studies (Delsing
et al., 2018; Lu et al., 2019; Martins Gomes et al., 2019; Vatine
et al., 2019; Nishihara et al., 2020) contradict the vascular
cellular identity of iBMECs and instead demonstrate that these
cells might be of an epithelial lineage. iBMECs have been
shown to lack expression of key EC marker genes such as
PECAM1, CDH5, CLDN5, and VWF while also expressing
epithelial cell genes including EPCAM, FREM2, and CLDN4.
Expression of genes such as E-Selectin, VCAM-1, P-Selectin
were also shown to be completely unaffected by inflammatory
stimuli further decreasing the possibility for these cells to be
used as a functional model of the BBB in vitro. This leads to
the possibility that the barrier function observed in iBMECs
could in fact more closely resemble an epithelial cell barrier
such as the choroid plexus or intestinal epithelial barrier. As
these cells lack a canonical vascular EC phenotype, the use of
current protocols to generate iBMECs as prototypical human
BBB model could results in inaccurate physiological studies and
screening for misguided druggable targets or treatments with
potential ineffective clinical outcomes. Thus, the application of
a rigorous and thorough characterization of stem cell-derived
products using the latest available technologies such as single cell
multi-omics and metabolomics should be necessary, rather than
facultative, for the development of faithful disease models and
safe cell-based therapies.
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