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Editorial on the Research Topic

Mobile Genetic Elements in Cellular Differentiation, Genome Stability, and Cancer

The human genome, as well as the genome of most organisms, harbors various types and
abundances of transposable element derived repeats (Lander, 2001; Waterston et al., 2002). The
topic on: “Mobile Genetic Elements in Cellular Differentiation, Genome Stability, and Cancer,”
includes a collection of original research articles and reviews, which address the impact of
reverse transcriptases, including the ones coded by transposable elements, on both basic biological
mechanisms and disease. In 1970, the discovery of reverse transcriptases or RNA-dependent
DNA polymerases, was reported by two different laboratories (Baltimore, 1970; Temin and
Mizutani, 1970). Since then numerous studies regarding retroviral reverse transcriptases have
significantly contributed to the characterization and biology of may different retrovirus and
retroelements. These studies continue to be of interest for the prevention and treatment of
various retroviral induced human diseases and for the basic understanding of the origin of
retroviruses. In addition the knowledge of reverse transcription has been harnessed for basic use in
molecular biology and other applications, including recent widely used methods such as RNAseq.
As retroviruses are considered exogenously derived reverse transcriptases, the subsequent discovery
in 1987 of telomerase, also considered an endogenous RNA-dependent DNA polymerase, has
significantly contributed to the understanding of one of the predominant mechanisms of telomere
maintenance that contributes to most, but not all organisms with linear chromosomes (Greider and
Blackburn, 1985; Biessmann et al., 1990). Yet, sequences encoding for endogenous RNA-dependent
DNA polymerases are not limited to telomerase. The isolation and subsequent genetic,
biochemical, and molecular characterization of human full-length non-Long Terminal Repeat
(LTR) retrotransposons, termed Long Interspersed Elements (LINE-1) demonstrated that elements
formally encode a reverse transcriptase activity (Dombroski et al., 1991; Mathias et al., 1991; Feng
et al., 1996; Moran et al., 1996). Non-LTR retrotransposons are not limited to the human genome,
and are present as full-length and/or truncated, rearranged, inactive remnants in many other
genomes. In addition, the reverse transcriptase activities encoded by non-LTR retrotransposons
share sequence identity with many other reverse transcriptases (Nakamura et al., 1997; Malik
et al., 1999). Furthermore, non-LTR retrotransposons rely on the encoded reverse transcriptase
for integration, typically by target-primed reverse transcription (TPRT), which was initially
biochemically defined using the non-LTR retrotransposon R2Bm, from Bombyx mori (Luan et al.,
1993). A review by Onozawa and Aplan included in this topic, describes two different types of
LINE-1 reverse transcriptase-mediated template sequence insertion polymorphisms (TSIPs), or
integration structures that are polymorphic in the human genome (Onozawa and Aplan). The
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characteristics of class2 structures allude to the occurrence of
additional integration mechanisms by the LINE-1 reverse
transcriptase that may occur in germ cells or during
embryogenesis (Onozawa and Aplan). To note, the features
described in these class2 structures are consistent with previous
reports of endonuclease-independent LINE-1 retrotransposition
(Eickbush, 2002; Morrish et al., 2002).

Phylogenetic analysis of the reverse transcriptase domains
support the idea that retroviruses and telomerase evolved from
non-LTR retrotransposons, due to the gain or loss of LTR
sequence and/or sequences encoding for specific domains (Xiong
and Eickbush, 1988; Malik et al., 1999). These early phylogenetic
studies are consistent with the protovirus hypothesis proposed by
Temin, that (1) retroviruses are likely derived from endogenous
retrotransposons and (2) mutations that arise due to the
mobility of retrotransposons could potentially activate oncogenes
or inactivate tumor suppressor genes, perhaps contributing
to tumorigenesis (Temin, 1971; Shimotohno et al., 1980). As
LINE-1 elements are active in tumors, yet transcriptionally
repressed in many somatic cell types, there was much interest to
understand the extent that LINE-1 retrotransposition contributes
to tumorigenesis (Solyom et al., 2012; Shukla et al., 2013; Doucet-
O’Hare et al., 2015; Ewing et al., 2015; Rodic et al., 2015). Included
in this topic is original research using bioinformatic approaches
to examine LINE-1 expression and insertion profiles using RNA-
seq data from normal and primary tumor samples collected using
the Cancer Genome Atlas (TCGA) (Clayton et al.). Here the
authors examined the expression and integration differences in
breast invasive carcinoma, head and neck squamous carcinoma,
and lung adenocarcinoma and their analysis indicates two
cases of LINE-1 mediated insertions near two different tumor
suppressor genes, including an Alu insertion into the CBL
gene in breast invasive carcinoma and a LINE-1 insertion
into the first exon of the BAALC gene in a head and neck
squamous cell carcinoma. Again, these findings are consistent
with the protovirus hypothesis. However these tumors may
also harbor mutations in “host” genes that regulate LINE-1
retrotransposition. A number of reviews were included in this
topic that address recent studies on LINE-1 retrotransposition
in cancer (Honda; Kemp and Longworth ; Sciamanna et al.). In
addition, identifying cellular genes and pathways that regulate
LINE-1 transcription and activity is an active area of research,
and two reviews discuss the current understanding regarding
the regulation of LINE-1 retrotransposition in somatic cells,
which may become dysregulated in cancer (Ariumi; Pizarro
and Cristofari). The topic also includes two original research
articles on the impact of endogenous retroviruses on genome
evolution. In the article by Irie et al., the authors use dN/dS
analysis and molecular approaches to validate their findings
regarding the contribution of the sushi-ichi retrotransposon
during the evolution of the zinc finger protein-encoding gene

SIRH11/ZCCHC16 and the impact of this gene during eutherian
brain evolution. In addition, another research article examines
the evolution of the Tbx6 transcription binding sites, (ORRA1-
ORRA1D), which are LTRs derived from the endogenous
retroviruses, MaLRs (Yasuhiko et al.). The authors examine the
impact on transcription of genes harboring these Tbx6 binding
sites, using the Tbx6 knockout mouse. Their findings are coupled
with biochemical and bioinformatic approaches. Finally two
reviews nicely described the host cellular factors that impact the
transcriptional dynamics of ERVs in the human genome (Buzdin
et al.; Meyer et al.).

Overall the articles that were received for this topic:
“Mobile Genetic Elements in Cellular Differentiation, Genome
Stability, and Cancer” predominantly focus on the evolution
of endogenous reverse transcriptases (RT), including the
LINE-1 encoded RT, and the endogenous retroviruses ERVs
and MaLR. These articles also summarize the findings in
the field regarding these reverse transcriptases in normal
biology and disease. These summaries and newly reported
findings are consistent with the protovirus hypothesis (Temin,
1971; Shimotohno et al., 1980; Shimotohno and Temin,
1981). Identification of additional host factors and cellular
pathways that contribute to LINE-1 retrotransposition will
help further elucidate the protovirus hypothesis, as not all
LINE-1 insertions occur in tumor suppressor or oncogenes. In
addition, further studies regarding exogenous and endogenous
reverse transcriptases will continue to shed light on the
growing knowledge surrounding reverse transcription in the
RNA world.
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