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Most multicellular organisms require apoptosis, or programmed cell death, to function properly and survive. On the other hand,
morphological and biochemical characteristics of apoptosis have remained remarkably consistent throughout evolution. Apoptosis
is thought to have at least three functionally distinct phases: induction, effector, and execution. Recent studies have revealed that
reactive oxygen species (ROS) and the oxidative stress could play an essential role in apoptosis. Advanced microscopic imaging
techniques allow biologists to acquire an extensive amount of cell images within a matter of minutes which rule out the manual
analysis of image data acquisition. The segmentation of cell images is often considered the cornerstone and central problem for
image analysis. Currently, the issue of segmentation of mitochondrial cell images via deep learning receives increasing attention.
The manual labeling of cell images is time-consuming and challenging to train a pro. As a courtesy method, mitochondrial cell
imaging (MCI) is proposed to identify the normal, drug-treated, and diseased cells. Furthermore, cell movement (fission and
fusion) is measured to evaluate disease risk. The newly proposed drug-treated, normal, and diseased image segmentation (DNDIS)
algorithm can quickly segment mitochondrial cell images without supervision and further segment the highly drug-treated cells in
the picture, i.e., normal, diseased, and drug-treated cells. The proposed method is based on the ResNet-50 deep learning algorithm.
The dataset consists of 414 images mainly categorised into different sets (drug, diseased, and normal) used microscopically. The
proposed automated segmentation method has outperformed and secured high precision (90%, 92%, and 94%); moreover, it also
achieves proper training. This study will benefit medicines and diseased cell measurements in medical tests and clinical practices.

1. Introduction (ROS) are produced, which cause DNA/RNA mutations,

Alzheimer’s disease [1-3], ageing, and cell death, as shown
Mitochondria are powerhouses of cells that provide energy ~ in Figure 1. Image segmentation, a renowned term used in
for various functions. Oxidative stress means that during ~ medical imaging, refers to the partitioning of digital cell
multiple processes in mitochondria, reactive oxygen species ~ images into multiple subsegments intended to analyse an
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F1Gure 1: Oxidative stress: mitochondrial cell, powerhouse, normal and excessive level, oxidative stress, and damage to cellular components;
through image segmentation, mitochondrial cell image segmentation plays a vital role for stress; dataset was collected of mitochondria cell

images; and apply deep learning to identify the segment [34].

idea to get something meaningful. In biological sciences,
large amount of prints are produced microscopically, where
image segmentation plays a significant role in extracting
meaningful information from extensive image data. On the
other hand, drugs are used extensively in the clinic and help
produce new compounds and investigate the effects on cells
[4-6]. To examine the results of the mixture on cells, bulk of
cell images is generated by advanced microscopes during
experiments which persuade analysts toward image analysis.
Image segmentation is one of the critical aspects of image
analysis [7-9]. Cell culture and drug process and convolu-
tional neural network (CNN) [10, 11] have been applied to
cell biology. However, as there is a great demand to train a
large number of reliable training data, it is a vital problem;
it is critical to analyze drugs and pathological cells to obtain
high-quality labeled images. A well-segmented cell image
can help to quickly and accurately label the image. For fur-
ther phenotypical analysis, some cell images are extracted.
In the literature, different image segmentation algorithms
have been proposed. Among those, a critical and experimen-
tal way is extracting image features by using statistics. Statis-
tical methods are characterized by image modelling. Every
pixel in the image is considered the variable’s probability
distribution, where the probability of a pixel combination
is the greatest from a statistical point of view.

Previous studies, including three-dimensional morpho-
logical operations, threshold, statistical model, deformable
model, and image segmentation methods, have been applied
to magnetic resonance image segmentation [12-14]. These
methods of segmentation are based on a complex algorithm.
The accuracy of the deformation model is 1.44 + 1.1 for the
hip magnetic resonance imaging dataset. The statistical
model archiving accuracy was 1.21+0.53mm. These
methods have achieved reasonable femoral segmentation
on the MR image set. They have some limitations (making
time necessary for proximal femoral segmentation and
changing the height of the femoral shape). CNNs recognize
images, process natural languages, and recognize speech
[15-18]. In recent years, in-depth learning in medical imag-
ing, especially in computer-aided diagnostics and image seg-

mentation, has been successful. In the past, the manual
function was used in the MR image set, and the neural net-
work automatically learns complex functions from data. In
the first application of CNN in medical image segmentation,
the pyramid convolutional neural network architecture was
used [19]. The pyramid CNN structure segmented the prox-
imal femur to achieve a moderate segmentation effect [20].
The development of image segmentation technology based
on a complete network structure led to more accurate pixel
segmentation. These networks use an encoder-decoder type
architecture in which the decoder network functions project
low-resolution encoder mapping features to high-resolution
pixel classification features [21]. CNN architecture based on
encoder decoders has recently been widely used in biomedi-
cine, providing accurate image segmentation. For example,
the two-dimensional encoder-decoder network structure
and the 3-dimensional connection component analysis or
the 3-dimensional simple deformation models provide the
final 3-dimensional segmentation mask [22]. In addition, a
cascaded two-dimensional neural network with an interme-
diate statistical model for the segmentation of the knee
meniscus is proposed, which is used to generate smaller
patch input for the three-dimensional neural network
model. The author introduces cytological analysis computa-
tional tools such as cell segmentation deep learning techniques
capable of processing both free-floating and clumps of abnor-
mal cells from digitised images of traditional Pap smears with
a high overlapping rate, and cell image segmentation, in previ-
ous studies, no one proposed image segmentation for drug,
diseased, and mitochondria cell, and some authors proposed
image segmentation for medical, but no one proposed image
segmentation for drug-treated image cell, diseased cell image,
and mitochondria cell image, there is a gap in this area, that
is why we work in this area, and we proposed a new algorithm
for image segmentation, drug, diseased cell image, and mito-
chondria cell image [23, 24]. More research is needed in this
area, particularly in mitochondrial cells for measuring oxida-
tive stress using machine learning.

In this paper, we propose investigating convolutional
neural network architecture based on drug-treated images
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and comparing its automatic segmentation performance
with various methods for drug treatment [25-28] and dis-
ease affected by the image, as well as the reference standard
of expert manual segmentation [29, 30]. We experimented
with three different convolutional neural network architec-
tures: multiple initial feature maps, layers, and scalability
training. Using quadruple cross-validation, we tested their
segmentation performance and the golden standard of man-
ual segmentation. Different convolutional neural network
architectures are implemented by changing the number of
feature graphs and the coding and decoding layer. The influ-
ence of architecture design parameters on segmentation per-
formance is analyzed [31]. Furthermore, we extended the
convolutional neural network architecture to connect the
extended convolutions with different spreading rates at the
encoder-decoder architecture’s central layer. According to
theories, one of the causes of ageing is cumulative damage
to mitochondria and mitochondrial DNA (mtDNA) caused
by reactive oxygen species (ROS) [32]. While stress can be
an oxidative challenge for creatures, defensive mechanisms
such as overregulation of antioxidant defences and
decreased mitochondrial effectiveness appear to do so in
king penguins, allowing them to cope with their changing
and soothing environment [33]. In this study,

(1) we proposed a deep learning method for image seg-
mentation, mitochondrial, drug-treated, and dis-
eased image segmentation (DNDIS)

(2) our method can quickly segment mitochondrial cell
images without supervision

(3) our method can further segment the highly drug-
treated, diseased and mitochondrial cell images

(4) we used deep learning, Resnet-50, and convolutional
neural network (CNN)

(5) we input cell images and apply building block and
used ResNet-50 to detect the mitochondrial, drug-
treated, and diseased part from cell image

(6) the red box is the last detection image mark, false
positive, and genuinely positive and, finally, the seg-
mentation of the highly treated drug image part

(7) we segmented the cell position and detect the hetero-
geneity between cells

(8) mitochondrial cell image segmentation plays a vital
role for stress

2. Related Work

Volumetric computer division is a subfield of computer sci-
ence. Connectomics, the study of brain wiring outlines, has
primarily determined mitochondrial cell information, with
CNNs for cell limit division being proposed early [35, 36].
Furthermore, fruitful methodologies for the division of neu-
rotransmitters, a task similar to mitochondrial division, have
been proposed [37, 38].

Several strategies for programmed mitochondrial divi-
sion have been proposed based on previous research. Liu
et al. [39] suggested using the mask R-CNN [40] to separate
SEM images. Their primary focus is on postprocessing divi-
sion covers obtained through the extensive organisation. The
postprocessing is performed in three stages: first, a morpho-
logical opening activity is used to remove small areas and
large smooth areas; second, a multifacet (3D) data combina-
tion calculation is used to remove mitochondria that are
more limited than a set edge; and finally, a multifacet (3D)
data combination calculation is used to remove mitochon-
dria that are more limited than a set edge. Finally, an analy-
sis is used to work on the consistency in the adjacent
variables. Oztel et al. [41] also proposed combining a deep
CNN with postprocessing. They created their own CNN
design in which preparation is completed by removing 32
x 321 x 1 noncovering blocks from the preparation volume
in electron microscopy volumes. A common name is
assigned to each block based on the number of pixels from
the mitochondria and nonmitochondrial classes. The orga-
nization’s final completely associated layer generates two-
channel mitochondria versus nonmitochondrial class scores,
converted to double grouping. They also present three post-
processing stages: 2D fake discovery sifting, limit refinement,
and 3D separating. Each of the proposed methodologies pro-
duces promising results, but, unlike our strategy, they do not
use 3D spatial data in network planning.

While all presented methodologies use 2D convolutions,
Haberl et al. [42] introduced the CDeep3M, a 3D
convolution-based approach. A ready-to-use volumetric
division arrangement uses DeepEM3D, a cloud-based pro-
found CNN [43]. The results of mitochondrial division with
DeepEM3D do not outperform state-of-the-art results. Still,
the methodology is intriguing because it is exceptionally
robust and achieves excellent results on various objective
classes (cores, mitochondria, synaptic vesicles, and film).
Due to the scarcity of preparation datasets, new techniques
for area adaptation calculations have emerged. They do not
yet outperform current estimates for mitochondrial division,
but the results are promising. Bermudez-Chacon et al. [44]
proposed the area-flexible two-stream U-Net. This method
uses preparing information from one area with a lot of train-
ing information to work on the division in another space
with less preparation. They propose a technique based on
double U-Net engineering, in which one stream is used for
the source area and another for the objective space. The
streams are linked to share a portion of the loads. The Y-
Net design, proposed in [45], modifies the traditional
encoder-decoder format with an additional remaking
decoder to adjust the source and target encoder highlights.
They tested their findings by transferring data from isotropic
FIB-SEM to anisotropic TEM volumes and cerebrum EM
images to HeLa cells.

There are few datasets on the mitochondrial division
that are freely accessible to the public. The most commonly
used datasets were created by Lucchi et al. [46] and Xiao
et al. [47]. According to assessments on Lucchi’s dataset,
the best methodology for similar creators is the super
voxel-based technique [48]. A nonlinear RBE-SVM classifier



segmented mitochondria in 3D and 2D data. It is a unique
approach that does not rely on CNNs. According to evalua-
tions on the Xiao dataset, the DL approach, which uses 3D
spatial data and is proposed by similar creators, is the best
methodology. As a variation, they used a 3D U-Net with left-
over squares. To address the issue of evaporating inclina-
tions during preparation, they infused assistant classifier
layers into the hidden layers.

The segmentation of mitochondria was also attended to
for fluorescence microscopy data, where the objective
designs were labeled with the use of fluorescence differenti-
ating. The most recent advances are presented, where itera-
tive DL work processes consider the age of beginning great
three-layered divisions, which are then used as explanations
for preparing DL models. We discovered that no single arti-
cle segmented the drug, diseased, and mitochondria cell
movement-image datasets in related works. We used a new
dataset publicly available on Github, and our new model,
which is based on CNN, achieved good results. Our model
can be used for drug and diseased cell image segmentation
on any cell image dataset.

3. Method and Explanation

3.1. Drug Image Segmentation. Image segmentation is appli-
cable in many scenarios, ie., content-based image retrieval,
machine vision, medical imaging, object recognition, and
many other machine vision applications. This study proposed
a fully automated image segmentation method for drugs and
diseases, which detects highly drug-treated and diseased cell
parts from the whole-cell image. The accuracy of new deep
learning algorithms (i.e., ResNet-50) relies on extensive data-
sets for better prediction. Limited datasets have always
remained one of the main constraints in medical imaging.
To overcome the shortcomings, this study intended to apply
different deep learning methods (ResNet-50 and ResNet-
152) and finds that ResNet-50 has good performance. Usually,
in-depth learning needs a lot of data to be well generalized and
overcome the problem of overfitting. A three-dimensional
network becomes complex, especially in the case of limited
data for training and testing. In the case of two-dimensional
activity training, it has some advantages, such as low memory
consumption, fast speed, pretrained network, and fine-tuning.
In our segmentation method, we trained the model on two-
dimensional slices and processed each (drug, normal, and dis-
ease) slice independently in training, testing, and validation.
In this article, we used three types of datasets in the form
of images (drug-treated image, diseased image, and mito-
chondrial image). We fed these images to CNN to find seg-
mentation. We compared existing segmentation methods to
our proposed method. Our deep learning method is based on
Caffe [49], and it consists of two steps: highly treated drug, dis-
eased, and normal detection [50-52] from whole image data.
Second, acceptable drug, diseased, and normal segmentation
from ROI (region of interest) is localised. The DNDIS
(ResNet-50) network’s detection part provides ROI and candi-
dates containing the drug. In this method, we assume that
contextual information is essential to obtain accurate drug
segmentation; in the segmentation part DNDIS (ResNet-50)
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method, ROI plays a vital role to achieve better segmentation
results. This enables the segmentation network to distribute
the background pixels of drugs, diseased, and normal cells
more evenly and improves versatility and accuracy. In addi-
tion, by reducing the size and number of two-dimensional
slices introduced into the partitioning network, a more effec-
tive partitioning model is obtained.

In the segmentation stage, the proposed DNDIS outputs
a two-dimensional probability map and then processes it to
ensure consistency between consecutive slices to achieve the
final three-dimensional binary segmentation. A simple and
automatic postprocessing step based on three-dimensional
K-means is adopted in the output probability map to over-
come the limitation of two-dimensional approximation
and obtain a coherent and accurate three-dimensional
binary segmentation mask (see Figure 2). The pipeline con-
struction scheme is introduced, in cases, detection, and seg-
mentation. We used the ResNet-50. In the detection part,
our method detects the ROI (region of interest) and then
applies the ResNet-50 and finds true positive and true nega-
tive caught drug and diseased cell part. We applied the
binary mask on the seen part in segmentation parts and used
ResNet-50 to find the positive and negative samples and find
the correct amount of positive samples (drug and diseased
cell) by using the final counter (see Figure 2). Figure 2 shows
the architecture of our proposed DNDIS. The hyperpara-
meters for the model, learning rate 0.1, n-neuron 215, itera-
tions 100, N estimator, 1200, and study rate 0.01 were used.
The decision function is defined as the objective function of
cell image segmentation:

S=E[S|I] = JSP(SIL D) ds. (1)

The cross-entropy (Er), shape regularisation loss (Lh),
and weight decay terms are as follows:

2
2
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As in, the decision for class labels is computed using
pixel-wise softmax.
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3.2. Using Deep Detection Network to Detect Drug, Diseased,
and Mitochondrial Cell Part. Deep detection is the core
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F1GURE 2: The proposed method for drug, normal, and diseased image segmentation (DNDIS); as an input, drug-treated and diseased cell
images; in the second stage, detect that part of highly treated drug and highly diseased cells (ROI) by using ResNet-50 and reconstruct. In the
third step, segmentation is identified (binary mask) using ResNet-50; find the ground truth segmented part of drug and diseased part.

component of our DNDIS (drug, normal, and diseased
image segmentation) system. Figure 2 illustrates the archi-
tecture of DNDIS. In the deep detection method, the convo-
lutional features are mapped, and the reference box is called
anchor; the siblings are responsible for classifying regressing
bounding box and anchor. Two main things are done; the
first is the anchor box, which predicts the foreground object
using an anchor classifier, and the bounding box estimates
the thing’s location. Secondly, using the predicted coordi-
nates, the anchor’s box transforms to the region proposed
for each object, mapping features through the region of
interest (ROI), pooling layer extracts a fixed-length quality,
and feature vector feeds the part classification network.
The network has a sibling output layer, the softmax layer
and encoding bounding boxes. We sample the image
patches; the 16-pixel convolutional feature map is equivalent
to 8 pixels in the original image. The DNDIS used three
anchors with areas of (128 2, 256 2, and 512 2) pixels for dif-
ferent objects detection (see Figure 3). In Figure 3, the first
part of our method is the detection by using ResNet-50.

This deep detection and segmentation model is based on
the ResNet-50; in the first step, different types of cell images
are taken as input, and here, we illustrate the building blocks
in the second step where we used ResNet-50 to detect the
highly treated drug part from cell images. The red box is
the last detection image mark, false positive, and genuinely
positive. And finally, identified the segmentation of the
highly treated drug image part.

Drug and diseased detection task is an object detection
problem, so the proposed method is diseased, normal, and
drug image segmentation (DNDIS) by using ResNet-50 to

solve this problem; to the best of our knowledge, this is the
first study that applies deep learning, to detect and segment
drug-treated cell image problem. Redmon et al. [53] pro-
posed the region-based detection model. We adopted the
model to see the drug and diseased detection task. Our pro-
posed method of deep segmentation is illustrated in
Figures 2 and 3. Our approach has three main components:
the first is the deep segmentation method that produces the
estimated bounding box (see Figures 2 and 3). Secondly, the
localising drug and diseased part and ResNet-50 use deep
classification detection patches to improve accuracy. For
training of the deep detection model, it demands the bound-
ing box labels. We can train the detector on drug and dis-
eased datasets and give each pixel a title.

For the centre of mass of each tag, we infer the boundary
box by combining the segmentation result and the centre of
mass identification. Then, the depth detector is trained by
using the prediction box label (Figure 3). Firstly, we run a
depth detection model on mitochondrial images to generate
detection results and then input these detected image
patches into the depth verification model for further refine-
ment. The verification model is a ResNet-50, a robust classi-
fication network [54]. Finally, the weighted sum of the
detection model and verification model prediction was
obtained.

In short, this paper has at least four main contributions.
Firstly, we have obtained the latest results of three challeng-
ing drug, normal, and diseased detection datasets, which are
fast (see Figure 4(a)), and secondly a universal target detec-
tion framework for medicine and diseased detection (see
Figure 4(a)). As far as we know, this is the first time that
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FIGURE 4: (a) Drug, normal, and diseased detection system overview (DNDD), the deep segmentation, drug injected image, and second step
used deep segmentation model, using ResNet-50. And the third step finds the true positive and segmentation part. The fourth step is the
estimated bounding box. (b) See the segmentation, highly drug-treated or diseased detail, and verification.

CNN has been applied in depth detection technology to drug
and diseased detection. Thirdly, a training scheme for weak
monitoring of boundary box detectors has been proposed.
The boundary box label is estimated by depth segmentation
network (see Figure 4(b)). This soft supervised detector
learning method can significantly reduce the labeling work
of pathologists. Fourthly, the classification model verifies
the detection results further (see Figure 4(b)). The deep val-
idation model provides a bootstrapping mechanism for min-
ing hard and negative samples. Combining the depth
detection model with the depth verification model can
improve the system’s performance (see Figures 4(a) and
4(b)). Figures 4(a) and 4(b) show the architectural diagram
of drug, normal, and diseased detection system overview
(DNDD).

4. Experimental Results

This section evaluates the performance of the proposed
method: drug, normal, and diseased image detection (DNDIS)
on drugs, standard, and diseased image datasets. The whole
system deep learning drug segmentation (DLDS) is imple-
mented based on the Caffe using python [49].

4.1. Dataset. Images of drug, typical, and diseased cells were
captured by confocal microscopy. Ten pictures of normal
cells images are shown in Figure 5(a). Photos from 1 to 10
show minor variations in the position of normal cells.
Figure 5(a) shows normal cells that got damaged after some
time, normal cell apoptosis, and renewable cells. As shown
in Figure 5(b), ten pictures of diseased cells, which show
no variations, cell growth is continuous without any sign
of apoptosis or replacement of old cells by new healthy cells.
Ten pictures of drug-treated cells images are shown in
Figure 5(c). Photos from 1 to 10 show minor variations in
normal cells position. Table 1 shows a detailed description
of the dataset used for the experiments. Additionally, it also
represented the specifics of each type of image. We evaluate
our method on microscopy image, resolution of 0.2456 ym
per pixel, and image area is 512 x 512 ym and size of image
2084 x 2084 pixels [55-57].

4.2. Deep Detection Method Drug, Normal, and Diseased
Detection Dataset. On the basis of the ground truth of drug,
diseased, and normal cell dataset, through the DNDIS
method, we can quickly obtain an accurate bounding box
for the training of our model. The model can yield excellent
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FIGURE 5: Datasets which were used for experiments: (a) normal mitochondrial cell images, (b) diseased cell images, and (c) drug-treated

images.

TaBLE 1: Description of the dataset.
Image types Number of images Training Test
Drug treated [55] 138 100 38
Diseased [57] 38 30 8
Mitochondrial cell 142 100 1

movement [56]

performance, and we do not need a verification model on
this dataset.

4.3. Drug, Diseased, and Normal Cell Region of Interest
Detection. The proposed method DNDIS, ROI (region of
interest) detector, is based on the deep architecture; the main
aim of this method is to detect the absence or presence of the
drug, diseased, and normal cell in every slice of three differ-
ent types of data. To determine the bounding box around
the three other images and get the region of interest, gener-
ate the area of interest of upcoming segmentation. The two
main objectives are as follows: firstly, detect the initial and
final slices (A, and A_,.), where the drug, diseased, and
normal cells are visible from the whole dataset and the sec-
ondly, determine the rectangular region around the drug,
diseased, and normal cells in each slice. From a medical
point of view, when the cell wall expends more than 6 mm,
the presence of the drug and diseased cells can be assumed.
Through visual inspection, approximately the region of
interest will be determined in practice, and it has two
observers; intra- and interobserver variability exists. Regard-
ing the results of the normal, diseased, and drug cells in each
slice of the dataset, we have selected three different experts,
the first observer manually indicated the final and initial
drug and diseased slice, and it depends on the observer’s
judgment. So the interobserver variability (IOV) is measured
for the last and initial portions of the drug and diseased cells.

One main aim is the selection of pieces, and it is taken based
on the standard deviation of three observers.

Our interest depends on choosing a reduced area from
the whole drug, standard, and disease image dataset, includ-
ing medicines and diseases, even with some adjacent sec-
tions [58]. Therefore, we focus on minimising the false-
negative rate (FNR), i.e,, the ratio of undetected drugs and
normal and diseased slices to total drug, normal, and dis-
eased slices, taking into account the average of all previous
expert observers. The average FNR of all datasets and net-
works is 0.086 +0.107. The results are summarized in
Table 2. The maximum false-negative rates for M1 and M3
are due to datasets with special characteristics: one is a vast
drug that is diseased compared to the average size, which
also affects segmentation and will be explained later; the
other is that drugs and diseases extend to the iliac artery
and discards it because it is not considered in training.

The minimum and maximum X and Y coordinates of all
boundary boxes are selected for the two-dimensional bound-
ary boxes that divide the drug, normal, and diseased cells in
each slice. Then, we expand the area, including broader con-
text information necessary for good segmentation. There-
fore, we always get a three-dimensional region of interest,
which can correctly define the drug and diseased in X and
Y in all cases. Some visualization examples are given in
Figure 6.

4.4. Drug-Treated and Diseased Cell Image Segmentation.
Here, we present the results of our method and detect the
edges and preserve the appearance of drug and diseased
cells. For comparison of our method with other methods,
our methods has indeed improved the segmentation accu-
racy. And it is beneficial for the drug and diseased cells. In
this article, we have fine-tuned and tested the network.
Our method is compared to the results with the other two
approaches (see result section). We trained and tried our
method in the method section and got good segmentation
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TaBLE 2: Results obtained from different methods on the drug-treated dataset. Accuracy of different methods over mitochondrial cell images

slice of 10 cell types.

Cell type SSDMT LACM-BIC Proposed (DNDIS)

# Normal Diseased Drug Normal Diseased Drug Normal Diseased Drug
1 0.8092 0.8124 0.8536 0.8123 0.8233 0.8669 0.8559 0.8799 0.9533
2 0.8211 0.8422 0.8688 0.8567 0.8744 0.9011 0.8663 0.9057 0.9611
3 0.8122 0.8249 0.8465 0.8259 0.8438 0.9133 0.8547 0.8956 0.9025
4 0.7898 0.8129 0.8564 0.8012 0.8268 0.8561 0.8186 0.8519 0.9023
5 0.8521 0.8700 0.8845 0.8701 0.8897 0.9087 0.8894 0.8963 0.9469
6 0.8402 0.8630 0.8940 0.8599 0.8699 0.9123 0.9054 0.9146 0.9512
7 0.8356 0.8591 0.8816 0.8451 0.9036 0.9122 0.9011 0.9259 0.9615
8 0.8559 0.9025 0.9175 0.8644 0.9156 0.9328 0.8945 0.9265 0.9628
9 0.7999 0.8413 0.8527 0.8319 0.8524 0.8898 0.8749 0.9129 0.9314
10 0.8683 0.8871 0.9023 0.8721 0.8936 0.9082 0.9091 0.9283 0.9473

(@) (b)

FIGURE 6: Example of some detected bounding boxes in the three datasets (normal mitochondrial, diseased, and drug). (a) is the normal
mitochondrial cell image bonding box, (b) is the diseased cell image bonding box, and (c) is the drug-treated cell image bonding box.

FIGURE 7: Dataset of normal mitochondrial cell images. In this figure, the dataset of normal mitochondrial cell images, we just take four
image patches and normal mitochondrial image slices. We compared our method with nondeep learning methods. Segmentation results
of the real dataset. (a) Original image, (b) ground truth, (c) DRLSE, (d) proposed method, (¢) SSDMT, and (f) LACM-BIC.

accuracy (see Table 2). We used three different datasets
(routine mitochondrial [44, 45] cell, diseased, and drug).
And we compared our method with other two different
methods (SSDMT and LACM-BIC), and the result of seg-
mentation is presented in Figures 7-9 and Table 2. First, in
our approach, the learning parameters (biases and weight)
are reduced, the training and validation losses decreased,
and testing and training times are also lesser than other
methods. One more thing in our proposed method is fine-
tuning and finding the better results of improved segmenta-

tion of the normal, diseased, and drug cells. Table 2 com-
pares deep verses nondeep learning segmentation in deep
learning; network training and validation are shown in
Figure 10. We compared different methods and reached
our method (DNDIS) with some other methods; Table 2
and Figure 7-9 show the details. Our method achieves high
accuracy on drug data. As a result, our deep learning-based
method gives better results than other baseline methods.
Our method gives excellent results on the drug-treated
images (see Figure 9).
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F1GURE 8: Dataset of diseased cell images. In this figure, the dataset of diseased cell images, we just take six image patches and diseased image
slices. We compared our method with nondeep learning methods. The segmentation results of the real diseased dataset. (a) Original image,
(b) ground truth, (c) DRLSE, (d) proposed method, (¢) SSDMT, and (f) LACM-BIC.

FIGURE 9: Dataset of drug-treated cell images. In this figure, we just take six image patches and drug-treated image slices. We compared our
method with nondeep learning methods. The segmentation results of the real drug dataset. (a) Original image, (b) ground truth, (c) DRLSE,

(d) proposed method, (¢) SSDMT, and (f) LACM-BIC.

4.5. Model Validation in terms of Performance. The high
drug-treated count is critical in medical industries; when
medical organisations produce some new medicines, first
there is a need to test the effect of newly created treat-
ment, essential to measure how much it can damage the
normal cell, so the measurement of performance in high
drug-treated detection task is based on the number of cor-
rectly detected high drug-treated cells, rather than the
shape of detected high drug-treated cells. Similarly, in
the diseased, for identification of diseased (clinical medi-
cine, radiology, pathology, and cancer) [59-61], also mea-
surement of performance is based on the diseased
detection task, and correct detection of diseased cells, not
the shape. The correct detection criteria of drug and dis-
eased cells are a distance from the centroid of ground
truth drug and diseased cells. In this article, we defined
some measures of drug, diseased, mitochondrial, and nor-
mal cell accuracy. True-positive (TP) cells are those that
have been exposed to a drug, are diseased, have mitochon-
dria, or are normal. In contrast, false positive (FP) is
detecting positive not ground truth drug and diseased
cells, and undetected drug and diseased cells are false neg-
ative (FN). According to these measures, the false-positive

rate is calculated using the equation FP/FP + TN, where
FP represents false positives. TN represents true negatives
(FP + TN = total number of negatives). It is the likelihood
of a deception being set off, with a positive outcome when
the true worth is negative; we can calculate the precision,
recall, and f-score [35, 36, 62] using the following:

True Positive
Recall = — —>
True Positive + False Positive
= True Positive
Precision = — —,
True Positive + False Positive ( 4)
2 x Recall x Precision
F —score = —
Recall + Precision
False Positive False Positive

Total Number of Negative ~ False Positive + True Negative

5. Discussion

Image segmentation is the method to partition the image
into multiple segments; the main objective of segmentation
is to analyze meaningful image representation. In medical
imaging segmentation, the small image segments corre-
spond to different tissue (organs, classes, pathologies,
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FIGURE 11: Our own proposed method (DNDIS) results (high drug-treated and diseased part). (a) shows the segmentation of normal
mitochondrial cell image, (b) shows the diseased cell image segmentation, and (c) shows the drug-treated cell image segmentation.

normal, drug, and diseased cells) or other biologically
related structures. In this article, we have proposed a
method DNDIS (drug, normal and diseased images seg-
mentation) that fully automated segmentation of the drug
and diseased cells. Our method first detects the drug and
diseased cell region from the whole dataset. In this method,
there is no need for user interaction at any stage, and there
is no prior knowledge for the shape detection drug and dis-
eased cells, because our process is fully automated. In our
method, the following hyperparameters are used for train-
ing the network CNN (convolutional neural network),
weights (Xavier) and Bias (0.10), input image size 2D
(512 x512x3), optimiser (Adam), batch size (1), and
learning rate (5e°).

In some previous studies, automated segmentation tech-
niques were evaluated in authors who proposed mitotic cell

detection, multiregion image segmentation, greenhouse
image segmentation, MR image segmentation, brain [63,
64] image segmentation, and nuclear image segmentation
[40]. In the previous methods, some traditional machine
learning and deep learning methods were applied for image
segmentation in different fields like a tumour, MRI. Despite
this, no method for drug-treated image cell segmentation
was found in the literature. The authors propose a method
for segmenting drug-treated images, as well as diseased and
normal cells. We have compared our method with some pre-
vious traditional methods and found that the accuracy of our
method is better than other methods; especially, our method
gives excellent results on drug-treated image datasets. We
hope our method will be beneficial to drug-manufacturing
companies; they can check the new drug effect on normal
cells through segmentation. Because drug testing is the main
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problem in the modern age, sometimes medical companies
use animals to test their newly made drug. We believe that
our method is a small contribution to measuring the drug
effect. Figure 10 shows the training process of our proposed
method.

We compare two effective methods: SSDMT (single seed
delineation with multithresholding) and LACM-BIC (local-
ized active contour model with background intensity com-
pensation), and DRLSE was used for medical image for
both methods and used pixel-level image segmentation.
Our experiments explain that through CNN (ResNet-50),
to detect the highly drug-treated and diseased cell image
patches and improve the performance, in the second phase,
segmentation is done and gives true positive as a result (seg-
mentation). The automated segmentation using ResNet-50
has the potential to bring the use of the newly made drug
for any medicine company and cell diseased part measure-
ments into the clinical practice. Some results of our method
are shown in Figure 11.

6. Conclusion

The first analysis of cells using computer technology dates
back to fifty years. Now, image segmentation is primarily
used in cell imaging and is considered a substratum in image
analysis. Many machine learning techniques have been pro-
posed for analyzing image data, but deep learning methods
shepherd all state-of-the-art techniques. This article pro-
posed the drug, normal, and diseased image segmentation
(DNDIS) method for highly drug-treated part segmentation
in slide images. We adopted some general methods of seg-
mentation (i.e., SSDMT and LACM-BIC) and achieved
excellent performance on the drug image dataset. The data-
sets of drug and diseased cells do not provide acceptable
ground truth (bounding box); we exploit a segmentation
method to estimate the drug and diseased regions. The
experimental results revealed that our segmentation method
is better than traditional methods and improves the detec-
tor’s performance. The method’s effectiveness is demon-
strated by reducing the time spent manually labeling
images in a medical image analysis system. Compared to
other techniques, this method outperforms image data, and
this image segmentation technique can be applied to any
image dataset.

The proposed method for segmenting mitochondrial,
drug, and diseased cell images has been used in medicine
testing (newly developed drug), clinical medicine (cancer
and clinical pathology), and oxidative stress. Our method
is useful for drug testing, to test newly developed drugs;
in diseased cells, the proposed method is very useful to seg-
ment those parts of image that are diseased; it will be useful
in medical fields such as cancer detection and imaging; and
finally, our method is useful for mitochondrial cell image
segmentation, which is useful for measuring oxidative
stress. This task can be improved further by creating new
models for mitochondrial, diseased, and drug-treated image
segmentation, cell image localization, drug effect on cell
imaging, drug testing via deep learning and mitochondrial
cell segmentation applications, measuring oxidative stress
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more accurately, and finally creating a new dataset for
experiments.
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