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Abstract: Multimedia encryption innovation is one of the primary ways of securely and privately
guaranteeing the security of media transmission. There are many advantages when utilizing the
attributes of chaos, for example, arbitrariness, consistency, ergodicity, and initial condition affectability,
for any covert multimedia transmission. Additionally, many more benefits can be introduced with the
exceptional space compliance, unique information, and processing capability of real mitochondrial
deoxyribonucleic acid (mtDNA). In this article, color image encryption employs a confusion process
based on a hybrid chaotic map, first to split each channel of color images into n-clusters; then to
create global shuffling over the whole image; and finally, to apply intrapixel shuffling in each cluster,
which results in very disordered pixels in the encrypted image. Then, it utilizes the rationale of
human mitochondrial genome mtDNA to diffuse the previously confused pixel values. Hypothetical
examination and trial results demonstrate that the anticipated scheme exhibits outstanding encryption,
as well as successfully opposes chosen/known plain text, statistical, and differential attacks.

Keywords: hybrid chaotic; image; encryption; decryption; secured communications; DNA;
mitochondrial genome

1. Introduction

Owing to vast development in the modern digital era, the world has grown to be a worldwide
community sharing private information. Because of this, people use images instead of long texts for
sharing this kind of information securely and privately [1]. Therefore, the protection of such images
has become one of the vital concerns in medical, military, and many other areas. Recently, many
cryptographic algorithms depending on chaotic systems have been used in image encryption [2].
One of the recognized methods employed before image transmission is to convert an image into an
unintelligible form, so that the transmitted message of the distorted image will not be discovered
if it has reached an unsought end [3,4]. The encryption process is done with the help of a key,
which produces variation on the pixel values of the image and destroys the apparent image attribute.
Another encryption process is the scrambling image technique. In this technique, all pixel values
are repositioned between different pixels of the image to be different from the original plain image,
for example, Arnold transform, exponential transformation, geometry transform, and so on. These
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transformations have definite regularity, although the results of pixel distribution are different after
scrambling, due to changes in only the position of pixels, without changing gray values. Arnold’s
map has the property of periodicity. After running the algorithm for a certain number of times, the
original image can be restored. Therefore, it has a weakness for the system [5]. However, whilst [6]
demonstrated the powerful recovery of an image encryption system based on an Arnold map and
Lü map, their encryption system was susceptible to several attacks, such as plaintext and chosen-text
attacks when it depended on only the permutation of pixel values [7]. As a result, these attack pixel
values have to be rearranged and vary their position. Rearrangement of the values of pixels is called
the confusion process, while changing the pixel values is known as the diffusion process. Chaos
is a multi-disciplinary hypothesis which states that during the randomness of the chaotic complex
technique, the chaotic system generates sequences due to its initial parameters’ sensitivity, periodic
and pseudo randomness, and long-term volatility [8], which encouraged us to employ the chaos theory
in our new proposed scheme.

In recent years, several scientific papers have concentrated on researching chaotic image encryption.
In 2015 [9], S. S. Askar, A. A. Karawia et al. presented an image encryption system based on a chaotic
economic map, and the simulation outputs a display so that the proposed algorithm can utilize the
same secret keys to encrypt and decrypt the images successfully. The security analysis shows that the
encrypted images have a good performance, but cannot resist noise attacks. After one year, Abbas
proposed a new image encryption technique based on unconventional element analysis and Arnold’s
Cat Map [10], which was easily achieved and afforded an efficient and secure approach for image
encryption. However, the algorithm depends on the encryption of square images only, so the domain of
application is remarkably restricted. Later, in 2017, Shaikh, Chapaneri et al. [11] proposed a color image
encryption algorithm, which is a single round-based hyperchaotic system due to bi-directional pixel
diffusion that contributes towards an increased security and improved efficiency. Recently, in 2019,
Chenghai Li et al. used the “transforming-scrambling-diffusion” model to introduce a hyperchaotic
color image encryption algorithm that depends on converting the pixel values into gray codes before
scrambling [12]. In the same year, Priya Ramasamy et al. suggested an improved logistical map while
using a chaotic maps function and uncomplicated encryption techniques, such as block scrambling
and modified zigzag transformation, for encryption phases [13]. Recently, deoxyribonucleic acid
(DNA) was applied to an image chaotic cryptosystem [14–22], as a result of its numerous superior
characteristics, such as its enormous parallelism, vast storage, small power consumption, etc. In 2016,
Kulsoom et al. extracted the most significant bits and the least significant bits for each pixel of an
image and performed DNA computing for them. Kulsoom et al.’s algorithm has a low robustness
against noise because most digits of each pixel are not changed [23]. After that, in 2018, Ran Wei et
al. proposed an image cryptosystem that depends on the combination of DNA encoding and several
chaotic maps [24]. The performance analysis illustrated that the system could greatly enhance the
sensitivity of plain images and secret keys, but the algorithm was complex and the necessities for
hardware were comparatively high. In 2020, J. Wu, J. Shi, T. Li, proposed a novel image encryption
algorithm based on a hyperchaotic system and variable kernels for the confusion stage and a DNA
technique for the diffusion stage [25].

Mitochondrial DNA (mtDNA) is a small part of the DNA of organelle cells within eukaryotic
cells [26]. Eukaryotic cells are organisms that have a nucleus enclosed within membranes that are used
to transform chemical energy into a formula that cells can use [27]. In humans, there are 16,569 base
duos of mitochondrial DNA to code only 37 genes. The first major part of the human genome that can
be sequenced is human mitochondrial DNA [28]. mtDNA is congenital and uniquely from the mother
in several organisms, including humans. Since animal mtDNA develops more rapidly than nuclear
genetic symbols [29,30], it signifies a mainstay of phylogenetic and evolutionary biology. mtDNA
allows inspection of the kinship of inhabitants. Therefore, it has become vital in molecular biology
and biotechnology.
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In this article, a new image cryptosystem is presented to encrypt a color image using identical
encryption and decryption schemes. Both of these processes consist of confusion stages employing a
hyperchaotic system, diffusion stage, and mtDNA. The proposed encryption algorithm was applied
on three channels of a color plain image to increase uncertainty in the plain image. From the
numerical analysis, the proposed algorithm was seen to be robust against various attacks, for example,
chosen/known plain text attacks, brute force attacks, differential cipher image attacks, and entropy
attacks. It has a large key space and is sensitive to minimal change in the chosen secret key. The
encryption scheme was also compared with newly developed encryption techniques. The rest of the
article is organized as follows. Section 2 details a brief description of the hyperchaotic system, mtDNA,
and DNA encoding. The explanation and argument of the proposed encryption/decryption algorithm
are introduced in Section 3. Section 4 gives the numerical simulation results, while the security act of
the proposed scheme is analyzed in Section 5. Finally, Section 6 concludes the article.

2. Preliminaries

2.1. Hyperchaotic System

A hyperchaos system, technologically, advanced from chaos. Its dynamical structure is more
complicated compared with other chaotic systems. In addition, hyperchaos enhances a higher level of
randomization and uncertainty. By adding two or more positive Lyapunov exponents, the hyperchaotic
system can be distinguished from chaos. Hyperchaos exists in four-dimension nonlinear systems.
Owing to its simpler formula and higher effectiveness, the chaotic system has a smaller key space and
lower complexity. Consequently, the chaotic system has lower security protection. On the contrary, the
hyperchaotic system has more state variables, a larger key space, and complex nonlinear behavior,
resulting in higher security protection. The hyperchaotic system can be determined as follows [31]:

·
x1 = α(x2 − x1) + λ1x4,
·

x2 = ξx1 − x1x3 + λ2x4,
·

x3 = −βx3 + x1x2 + λ3x4,
·

x4 = −τx1,

(1)

where α, β, ξ, τ,λ1,λ2, and λ3 are the control parameters of the 4-D hyperchaotic system. The system
presents hyperchaotic behavior when the control parameters are α = 35, β = 3, ξ = 35, τ = 5,λ1 =

1,λ2 = 0.2, and λ3 = 0.3

2.2. Fundamentals of Mitochondrial DNA

Mitochondrial DNA is a type of DNA and is a small chromosome in a circular form found inside
organelles known as mitochondria. Mitochondria are found in cells and have been determined in
all unpredictable or eukaryotic cells, as well as plants, creatures, growths, and single-celled protists,
which include their own mtDNA genome. In several creatures, mtDNA is a two-fold stranded particle
that is shaped around the genome. Every mitochondrion can have several duplicates of the mtDNA
genome. In human embryonic advancement, the variety of mitochondria and the substance of mtDNA
in every mitochondrion have an impact on the creation of oocytes, preparation of the oocytes, and
early embryonic development and enchantment [32].

For example, a simple sequence for the human mitochondrial genome is as follows:

“GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCAT
TTGGTATTTTCGTCTGGGGGGTGTGCACGCGATAGCATTGCGAGACGCTG
GAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCTCATT
CTATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACCTACTAAAGT . . . ”
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2.3. DNA Encoding

DNA encoding has a huge data capacity, so it can be used in cryptography [33]. In the transmission
process, DNA can also be used to store data in image encryption. DNA computing depends on
the DNA logic word, and only two digits are used to create four nucleic acid bases. Therefore, the
information is stored in the form of these bases, which are Adenine (A), Cytosine (C), Guanine (G),
and Thymine (T) [34]. In DNA cryptography, the four bases are used to capture the information.
“A” and “T” are paired duos and the same is true for “C” and “G”. Table 1 displays the rubrics for
DNA encoding.

Table 1. Rubrics for DNA encoding [35].

Rule No.
DNA Nucleic Acids

A T G C

Rb1 00 11 01 10
Rb2 00 11 10 01
Rb3 11 00 01 10
Rb4 11 00 10 01
Rb5 10 01 11 00
Rb6 01 10 11 00
Rb7 10 01 00 11
Rb8 01 10 00 11

3. Proposed Cryptosystem

The structure of the proposed cryptosystem is demonstrated in Figure 1, and involves two main
phases. In the first phase, the confusion phase, the image pixels are shuffled based on the generated
hyperchaotic sequence discussed in the first part of Section 2. For more unpredictability and to increase
the efficiency of encryption, the pixels’ positions are scrambled over the entire image, without changing
the significance of the pixels, and the image becomes unknown. Hence, the primary and control factors
of utilized chaotic maps serve as the employed undisclosed key. To improve the security further, the
second stage, the diffusion stage, aims to diffuse the images’ pixel values with the decimal converted
values of the mtDNA sequence using the Exclusive OR (XOR) operation.
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3.1. Hyperchaotic Sequence Generation

We can use the hyperchaotic system discussed in Section 2.1 to generate the pseudorandom
sequence. This is necessary for the field of cryptography, as both non-linearity and random performances
make chaotic systems able to generate pseudorandom sequences. The following steps describe the
sequence generation:

1. To reduce the cross effects and raise the security, pre-iterate the hyperchaotic system N0 times;
2. The system is iterated another M × N times after N0 iteration times. In each iteration j, four state

values
{
x j

1, x j
2, x j

3, x j
4

}
are sorted, where j denotes the iteration index;

3. During each iteration, each state value of the four-state values
{
x j

1, x j
2, x j

3, x j
4

}
is used to generate

two different key values ((v1
i )

j
∈ [0, 255], i = 1, 2, 3, 4 and (v2

i )
j
∈ [0, 255],), which are calculated by

(v1
i )

j
= mod

{
f loor([(

∣∣∣∣x j
i

∣∣∣∣− f loor(
∣∣∣∣x j

i

∣∣∣∣)) × 1015]/108), 256
}
, i = 1, . . . , 4, (2)

(v2
i )

j
= mod( f loor(mod

{
[(
∣∣∣∣x j

i

∣∣∣∣− f loor(
∣∣∣∣x j

i

∣∣∣∣)) × 1015]/108
}
), 256), i = 1, . . . , 4, (3)

where mod (·) indicates the modulo process;
4. Concatenate Equation (2) with Equation (3) to get v j:

v j = [(v1
1)

j
, (v1

2)
j
, (v1

3)
j
, (v1

4)
j
, (v2

1)
j
, (v2

2)
j
, (v2

3)
j
, (v2

4)
j
]; (4)

5. These sequences are concatenated after the whole iteration with Equation (5) to obtain K:

K = [v1, v2, . . . . . . , vM×N]. (5)

One component in K can be represented by Ki, i ∈ [1, 8MN].

3.2. Image Encryption

1. Let M×N × 3 represent the whole dimension of the contribution color image P, as displayed in
Figure 2a;

2. Obtain the three channels R, G, and B from the input image;
3. Divide each channel for both the row and column into p × q clusters, where p = 2, 4, 8, 16 and

q = 2, 4, 8, 16 randomly depend on the generated chaotic sequence. For example, when p = 2 and
q = 4 the resulting image is split into eight clusters, as shown in Figure 2b;

4. Shuffle all the clusters using the generated chaotic sequence K, as illustrated in Figure 2c;
5. Apply a chaotic sequence for each cluster to shuffle the pixels within every cluster, as clarified in

Figure 2d;
6. Concatenate these permuted clusters to formulate the shuffled image with the same size of the

novel colored image illustrated in Figure 2e;
7. To get new values of pixels, apply the diffusion process as follows:

• Read the first 64 × 64 × 4 mitochondrial DNA sequence “gatcacaggtctatcaccctattaaccactca . . .
. . . ”;

• Convert it to a binary sequence using the rule discussed in Table 1:
“{0001101101110100001011100110110111111110011010010111110 . . . . . . }”;

• Divide the sequence into 8-bit slices: {00011011 01110100 00101110 01101101 11111110 . . . };
• Convert each slice into its decimal representation: [27 116 46 109 254 105 125 . . . ];
• Formulate a 64 × 64 rdDNAstring matrix with the above decimal sequences;
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• Generate a 3 × 64 × 64 matrix for the three channels R, G, and B, as in

DMat(:, :, i) = mod[i×mod[sum(sum
{
sum(Image)

}
), 256] × rdDNAstring, 256] f or i = 1, 2, 3;

(6)
• Generate 128 × 128 × 3 using

lDMat(:, :, i) = [DMat(:, :, i) DMat(:, :, i) ′; DMat(:, :, i) ′ DMat(:, :, i)′] f or i = 1, 2, 3, (7)

where [ ]’ is the transpose of the matrix;
• Generate 256 × 256 × 3 using

llDMat(:, :, i) = [ lDMat(:, :, i) lDMat(:, :, i) ′; lDMat(:, :, i) ′ lDMat(:, :, i)′] f or i = 1, 2, 3;
(8)

• Resize the generated matrix to the same size of the concatenated image;
• Apply the XOR operation between the concatenated shuffled pixel values and the decimal

converted values of mtDNA classification r1 and r2 to get the diffused encrypted image, as
shown in Figure 2f.
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4. Simulation Results

Experimentation was carried out on Lena and baboon images. The Matlab (R2015a) software
(MathWorks, Natick, MA, USA) was used to apply the proposed algorithm. In the hyperchaotic map,
the control parameters α = 35, β = 3, ξ = 35, τ = 5,λ1 = 1,λ2 = 0.2, and λ3 = 0.3 were used to
produce a chaotic sequence. The hyperchaotic sequences were arranged and the position of arranged
sequences was used to split the plain image into n-clusters, shuffle the whole clusters, and scramble the
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pixels of each cluster. The utilized colored plain images were Lena, with dimensions of 256 × 256 pixels,
as shown in Figure 3a, and Baboon, with dimensions of 512 × 512 pixels, as shown in Figure 3d. The
corresponding cipher image was generated using the encryption algorithm and is shown in Figure 3b,e.
Then, we decrypted the cipher image, as presented in Figure 3b,e, with correct undisclosed key K to
get the perfectly reconstructed image shown in Figure 3c,f.Entropy 2020, 22, 158 7 of 14 
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5. Performance and Security Analysis

5.1. Key Space

The key space of our new encryption algorithm consisted of the initial conditions of hyper-chaotic
systems x1, x2, x3, x4, r1, and r2. The value ranges were x1 ∈ (−40, 40), x2 ∈ (−40, 40), and x3 ∈ (1, 80),
each with a step size of 10−13, while the value range was x4 ∈ (−250, 250), with a step size of 10−12.
r1 and r2 are two 8-bit random numbers whose value range is [0, 255] with a single step size. These
factors were used as undisclosed keys for both the encryption and decryption process. Therefore, the
key space of the proposed algorithm is 1.6777 × 1064. The key space must be very large to restrict
brute-force attacks; hence, it would take 2.03451 × 1052 days to crack the system. Therefore, the
proposed cryptosystem is able to protect against brute-force attacks.

5.2. Histogram Analysis

Histogram analysis is an important statistical feature for estimating the enactment of an image
encryption cryptosystem. The histograms for the three channels of original images of Lena and
Baboon and their corresponding generated cipher images are presented in Figure 4. The original
image’s histogram is non-uniform and the characteristic peak is clear, and most of the image data were
achieved smoothly. On the other hand, the recovered image is a perfectly reconstructed form of the
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original image, and the cipher image is noise-like and not correlated with the original plain image. The
recovered image is a perfectly reconstructed version of the original image. In the cipher image, the
histogram is very stable and smooth, which proves that no statistical data from the original plain image
was included. Therefore, the proposed system can counterattack statistical and cipher image attacks.Entropy 2020, 22, 158 8 of 14 
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corresponding cipher image, and the third column includes histograms of the recovered colored image.



Entropy 2020, 22, 158 9 of 15

5.3. Correlation Factor Analysis

The correlation factor (CF) is an important metric for calculating two adjacent pixels in the three
directions of horizontal, vertical, and diagonal. N pairs of neighboring pixels are selected, and x, y are
two neighboring pixels. Then, the calculation formula of the correlation factor can be given by

CF =

∑N
i=1 (xi − x)(yi − y)√∑N

i=1 (xi − x)2
√∑N

i=1 (yi − y)2
. (9)

Now, let N = 2000. The results of the correlation of the original and cipher images were computed
and are presented in Table 2. The low value of the correlation factor for neighboring pixels in the
three directions indicates that the neighboring pixels are uncorrelated. Figures 5 and 6 display the
correlation distribution of each pair of horizontally neighboring pixels. The correlation factor of the
original image is high and close to 1. In contrast, the correlation factor calculated for the cipher image
is low and close to 0. Therefore, these results verify the strength of the proposed cryptosystem.

Table 2. The various calculated correlation factors.

Correlation Factors
Direction of Adjacent Pixels

Horizontal Vertical Diagonal

Plain 0.9706 0.9841 0.9639
Cipher 0.0058 0.0033 0.0010
Plain 0.9195 0.9005 0.8696

Cipher 0.0013 0.0025 0.0010
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Figure 6. Simulation of the correlation factor. (a) Correlation in the horizontal direction for baboon
plain images; (b) correlation in the horizontal direction for baboon cipher images.

5.4. Key Sensitivity Analysis

We can observe in the proposed algorithm the sensitivity of the generated secret key x1, x2, x3, x4, r1,
and r2 by modifying and changing one bit in it. The wrong key can be generated by changing any
element of secret key x1, x2, x3 by 10−13 or x4 by 10−12, or any value of r1 and r2 by 1. This small change
leads to a totally different ciphered image. Therefore, the ciphered image will be wholly dissimilar
from the original input image. In the proposed cryptosystem, we encrypted the original plain images
twice to exhibit the sensitivity of the generated secret key. In the first encryption process, the plain
images were encrypted with the original secret key, while in the second encryption process, the plain
images were encrypted with the wrong key. The wrong key was generated from the original key. We
ran the algorithm on the images of Lena and the baboon, and the effects are displayed in Figures 7
and 8. As can be seen in the figures, the encrypted images with the wrong key are totally different from
those encrypted with the exact key, which proves that the encryption algorithm has a high sensitivity
to secret keys.

Entropy 2020, 22, 158 10 of 14 

Figure 6. Simulation of the correlation factor. (a) Correlation in the horizontal direction for baboon plain images; 
(b) correlation in the horizontal direction for baboon cipher images. 

5.4. Key Sensitivity Analysis 

We can observe in the proposed algorithm the sensitivity of the generated secret key
1 2 3 4 1, , , ,x x x x r , and 2r  by modifying and changing one bit in it. The wrong key can be generated by 

changing any element of secret key 1 2 3, ,x x x  by 1310−  or 4x  by 1210− , or any value of 1r  and 2r  by 1. 
This small change leads to a totally different ciphered image. Therefore, the ciphered image will be 
wholly dissimilar from the original input image. In the proposed cryptosystem, we encrypted the 
original plain images twice to exhibit the sensitivity of the generated secret key. In the first encryption 
process, the plain images were encrypted with the original secret key, while in the second encryption 
process, the plain images were encrypted with the wrong key. The wrong key was generated from 
the original key. We ran the algorithm on the images of Lena and the baboon, and the effects are 
displayed in Figures 7 and 8. As can be seen in the figures, the encrypted images with the wrong key 
are totally different from those encrypted with the exact key, which proves that the encryption 
algorithm has a high sensitivity to secret keys.  

  

(a) (b) 
Figure 7. Key sensitivity analysis. (a) Encrypted Lena image using the exact secret key; (b) encrypted 
Lena image using the wrong key. 
 

  
(a) (b) 

Figure 8. Key sensitivity analysis. (a) Encrypted baboon image using the exact secret key; (b) 
encrypted baboon image using the wrong key. 

5.5. Differential Attack 

An opponent can get valuable information by altering several pixels of the original plain image. 
The number of changing pixel rate (NPCR) and the unified averaged changed intensity (UACI) are 
usually employed to evaluate the resistance of the encrypted plain image against differential raids. We 
utilized the presented encryption scheme to encrypt 1P  and 2P  to obtain their corresponding 

Figure 7. Key sensitivity analysis. (a) Encrypted Lena image using the exact secret key; (b) encrypted
Lena image using the wrong key.



Entropy 2020, 22, 158 11 of 15

Entropy 2020, 22, 158 10 of 14 

Figure 6. Simulation of the correlation factor. (a) Correlation in the horizontal direction for baboon plain images; 
(b) correlation in the horizontal direction for baboon cipher images. 

5.4. Key Sensitivity Analysis 

We can observe in the proposed algorithm the sensitivity of the generated secret key
1 2 3 4 1, , , ,x x x x r , and 2r  by modifying and changing one bit in it. The wrong key can be generated by 

changing any element of secret key 1 2 3, ,x x x  by 1310−  or 4x  by 1210− , or any value of 1r  and 2r  by 1. 
This small change leads to a totally different ciphered image. Therefore, the ciphered image will be 
wholly dissimilar from the original input image. In the proposed cryptosystem, we encrypted the 
original plain images twice to exhibit the sensitivity of the generated secret key. In the first encryption 
process, the plain images were encrypted with the original secret key, while in the second encryption 
process, the plain images were encrypted with the wrong key. The wrong key was generated from 
the original key. We ran the algorithm on the images of Lena and the baboon, and the effects are 
displayed in Figures 7 and 8. As can be seen in the figures, the encrypted images with the wrong key 
are totally different from those encrypted with the exact key, which proves that the encryption 
algorithm has a high sensitivity to secret keys.  

  

(a) (b) 
Figure 7. Key sensitivity analysis. (a) Encrypted Lena image using the exact secret key; (b) encrypted 
Lena image using the wrong key. 
 

  
(a) (b) 

Figure 8. Key sensitivity analysis. (a) Encrypted baboon image using the exact secret key; (b) 
encrypted baboon image using the wrong key. 

5.5. Differential Attack 

An opponent can get valuable information by altering several pixels of the original plain image. 
The number of changing pixel rate (NPCR) and the unified averaged changed intensity (UACI) are 
usually employed to evaluate the resistance of the encrypted plain image against differential raids. We 
utilized the presented encryption scheme to encrypt 1P  and 2P  to obtain their corresponding 

Figure 8. Key sensitivity analysis. (a) Encrypted baboon image using the exact secret key; (b) encrypted
baboon image using the wrong key.

5.5. Differential Attack

An opponent can get valuable information by altering several pixels of the original plain image.
The number of changing pixel rate (NPCR) and the unified averaged changed intensity (UACI) are
usually employed to evaluate the resistance of the encrypted plain image against differential raids. We
utilized the presented encryption scheme to encrypt P1 and P2 to obtain their corresponding encrypted
images, indicated by C1 and C2, with a unify secret key, where P2 is the change in one pixel of the
original plain image P1. Then, the NPCR and UACI could be given by

NPCR =
1
W

M∑
i=1

N∑
j=1

∣∣∣Sign(C1(i, j) −C2(i, j))
∣∣∣× 100%, (10)

UACI =
1
W

M∑
i=1

N∑
j=1

∣∣∣Sign(C1(i, j) −C2(i, j))
∣∣∣

256
× 100%. (11)

We chose randomly, changed the value of one pixel of the original input images 10 times, and
calculated the NPCR and UACI of Lena and the baboon, respectively. The outputs are summarized in
Tables 3 and 4, which clarify that our new cryptosystem is very sensitive to variation arising in only
one pixel value of the original image. In [36–38], NPCR and UACI are close to theoretical values, but
they have a reduced noise attack performance. Compared with the proposed cryptosystem, it is clear
that the proposed system achieves a high performance by exhibiting average performances very close
to their notional amount.

Table 3. Average performance of NPCR (number of changing pixel rate) (%).

Images
Lena Image Baboon Image

R G B R G B

Proposed System 99.615 99.62 99.617 99.6140 99.6073 99.6292
[36] 99.60 99.61 99.61 99.6083 99.6065 99.6094
[37] 99.60 99.60 99.60 99.6138 99.6053 99.6182
[38] 99.6119 99.6097 99.6136 99.5864 99.5864 99.5864
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Table 4. Average performance of UACI (unified averaged changed intensity) (%).

Images
Lena Image Baboon Image

R G B R G B

Proposed System 33.4732 33.3428 33.4647 33.4843 33.4690 33.4965
[36] 33.56 33.45 33.49 33.4939 33.4295 33.4856
[37] 33.369 33.43 33.37 33.4712 33.4265 33.4705
[38] 33.4811 33.4652 33.4907 33.4834 33.4639 33.2689

5.6. Information Entropy

The information entropy, which reflects the insecurity of image data, was denoted by E(m) of
matrix m, and evaluated by

E(m) = −
255∑
i=0

Pb(mi) log2(Pb(mi)), (12)

where Pb(mi) denotes the probability of mi. An accurate random image would yield 256-pixel values
with an identical probability. Therefore, the theoretical value of the information entropy is closer
to 8. Table 5 illustrates that the entropy values of cipher images of Lena and baboon are close to
the theoretical value. Therefore, the outcomes prove that the proposed cryptosystem can efficiently
counterattack the information entropy.

Table 5. Information entropy.

Images Lena Image Baboon Image

R G B R G B

Proposed System 7.9973 7.9975 7.9975 7.9970 7.9978 7.9987
[36] 7.9971 7.9971 7.9971 7.9926 7.9926 7.9926
[37] 7.9819 7.9814 7.9829 7.9881 7.9871 7.9863
[38] 7.9973 7.9973 7.9973 7.9896 7.9896 7.9896

5.7. Avalanche Effect

When minor variation in the plain image or the secret key occurs, it will influence variation in the
ciphered image. This influence is defined as the avalanche effect. To evaluate the avalanche effect of
the proposed cryptosystem, the mean square error was evaluated for the two different cipher images
C1 and C2 obtained from a slight change in the secret keys. The MSE can be given by

MSE =
1
W

M∑
i=1

N∑
j=1

((C1(i, j) −C2(i, j))2, (13)

where W = M×N is the dimension of cipher images.
From Equation (13), the MSE of the proposed encryption algorithm can be evaluated for cipher

images using the original secret key and cipher images obtained by changing each element in the
original secret key, as cited in Tables 6 and 7, for both the Lena and baboon images, respectively. Cipher
C1 is obtained by changing only key x1 and maintaining the other keys’ values. Similarly, ciphers C2,
C3, and C4 are generated by changing x2, x3, and x4, respectively. The large values of MSE in Tables 6
and 7 indicate that the proposed cryptosystem has a strong avalanche effect.
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Table 6. Mean square error (MSE) between cipher images of Lena.

Images x1 x2 x3 x4 MSE

Cipher C1 0.12 + 10−15 0.23 0.34 0.45 9.758
Cipher C2 0.12 0.23× 10−15 0.34 0.45 9.614
Cipher C3 0.12 0.23 0.34× 10−15 0.45 9.520
Cipher C4 0.12 0.23 0.34 0.45× 10−15 9.6729

Table 7. MSE between cipher images of the baboon.

Images x1 x2 x3 x4 MSE

Cipher C1 0.12× 10−15 0.23 0.34 0.45 10.869
Cipher C2 0.12 0.23× 10−15 0.34 0.45 10.725
Cipher C3 0.12 0.23 0.34× 10−15 0.45 10.8432
Cipher C4 0.12 0.23 0.34 0.45× 10−15 10.631

6. Conclusions

This article has presented a novel encryption and decryption algorithm for the purpose of
verifying picture transmission over information correspondence frameworks. Both of them are
indistinguishable with hybrid chaotic confusion procedures and the mtDNA diffusion process that
diminish the equipment usage intricacy and improve framework security. The exhibited algorithm
was shown to be powerful against chosen/known plain text attacks. The numerical investigations
demonstrated that the proposed cryptosystem has a very large key space for opposing brute-force
attacks and scrambled pixels appropriated haphazardly through the figured picture. Likewise, the
proposed framework is sensitive to insignificant changes in the covert encryption key and can oppose
the known plaintext, chosen plaintext, differential figure picture, and entropy attacks.

Finally, in terms of future research, we suggest additional simulation analysis of the chaotic
performance by using a cosine chaotic model and another confusion technique to generate a robust
chaotic image encryption technique with the addition of digital signature technology, for the sake of
achieving more secure authenticated data transmission.
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