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Abstract: Chelerythrine (CHE) is a majorly harmful isoquinoline alkaloid ingredient in Chelidonium
majus that could trigger potential hepatotoxicity, but the pivotal molecular mechanisms remain
largely unknown. In the present study, CHE-induced cytotoxicity and the underlying toxic mech-
anisms were investigated using human HepG2 cells in vitro. Data showed that CHE treatment
(at 1.25–10 µM)-induced cytotoxicity in HepG2 cells is dose-dependent. CHE treatment increased
the production of ROS and induced oxidative stress in HepG2 cells. Additionally, CHE treatment
triggered the loss of mitochondrial membrane potential, decreased the expression of mitochondrial
complexes, upregulated the expression of Bax, CytC, and cleaved-PARP1 proteins and the activities
of caspase-9 and caspase-3, and downregulated the expression of Bcl-XL, and HO-1 proteins, finally
resulting in cell apoptosis. N-acetylcysteine supplementation significantly inhibited CHE-induced
ROS production and apoptosis. Furthermore, CHE treatment significantly downregulated the ex-
pression of phosphorylation (p)-Akt (Ser473), p-mTOR (Ser2448), and p-AMPK (Thr172) proteins in
HepG2 cells. Pharmacology inhibition of Akt promoted CHE-induced the downregulation of HO-1
protein, caspase activation, and apoptosis. In conclusion, CHE-induced cytotoxicity may involve the
inhibition of Akt pathway and the activation of oxidative stress-mediated mitochondrial apoptotic
pathway in HepG2 cells. This study sheds new insights into understanding the toxic mechanisms
and health risks of CHE.
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1. Introduction

Traditional Chinese medicines (TCMs) usually exhibit multiple biological functions,
including antioxidant, anti-inflammatory, antimicrobial, and immune regulation activities,
and play a critical role in health care [1]. To date, the therapeutic effectiveness of TCMs has
been illustrated by multiple in vitro studies, animal experiments, and human clinical tri-
als [2]. However, due to the presence of several special ingredients or toxic compounds (e.g.,
aristolochic acids, anthraquinones, flavonoids, and glycosides), TCMs may cause potential
toxic effects to animals or humans, including neurotoxicity, nephrotoxicity, reproductive
toxicity, respiratory toxicity, hepatotoxicity, and immunotoxicity; this has raised concerns
worldwide [1,3,4]. Therefore, identifying the active ingredients, and understanding their
toxic effects and molecular mechanisms is necessary for the safety assessment of TCMs.

Chelidonium majus L. is an important medical plant and has a long history of being
used in the treatment of many diseases (e.g., infective diseases, cancer, chronic bronchitis,
and liver disorders) in China and several European countries [5]. It has been reported
that the extracts of Chelidonium majus L. possess a broad range of biological functions,
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such as anticancer, anti-inflammatory, antioxidant, antibacterial, immune regulation, and
others [5–11]. However, recent findings show that the extract of Chelidonium majus L.
may cause potential hepatotoxicity in humans and animals [12,13]. Chelerythrine (CHE),
sanguinarine, and coptisine have been identified as the main hepatotoxic components of
Chelidonium majus L. [14]. Notably, CHE is a benzophenanthridine alkaloid compound
and has potent toxic effects via several in vivo and in vitro studies [15]. CHE is a natural
inhibitor of the protein kinase C (PKC) isoenzyme, which is a critical regulator in controlling
cell proliferation, differentiation, growth, and survival [16]. Pharmacological inhibition of
PKC activity usually causes cell death or growth inhibition in most mammalian cells, and it
is a critical factor in explaining the toxicity of CHE [16]. In addition, it was also found that
CHE exposure could induce oxidative stress, mitochondrial dysfunction, cell cycle arrest,
endoplasmic reticulum stress, DNA damage, and cell apoptosis in various cancer cells
in vitro [17–21]. A recent study indicated that CHE could recognize human telomeric DNA
and RNA G-quadruplexes that play critical roles in maintaining chromosome stability,
finally directly causing DNA damage [22]. Recently, Zhang et al. found that CHE could
trigger cell autophagy and activate autophagy flux, and this process is partly dependent
on the production of reactive oxygen species (ROS) [23]. The toxic effects caused by CHE
severely limited its clinical application and product development. Unfortunately, the key
molecular mechanisms have so far remained unclear. Therefore, in the present study,
HepG2 cells, a classic human hepatoma cell line that is used to evaluate hepatotoxicity by
drugs or toxins, were used to study the cytotoxicity of CHE. Meanwhile, the underlying
molecular mechanisms involved in the mitochondrial apoptotic pathway and protein
kinase B (PKB, also named Akt) pathway were further analyzed. Our study will provide
more insights into understanding the toxic mechanisms of CHE and potential intervention
strategies against Chelidonium majus L.-induced toxic effects in clinical practices.

2. Materials and Methods
2.1. Chemicals and Regents

CHE (chloride form, purity ≥ 98%) was obtained from Aladdin Reagent Co., Ltd.
(Shanghai, China). Sodium dodecyl sulfonate (SDS), Tris hydroxymethyl (Tris-HCl), le-
upeptin, aprotinin, and pepstatin A were obtained from AMRESCO Inc. (Solon, OH,
USA). Phenylmethanesulfonylfluoride (PMSF), 1% (v/v) penicillin and streptomycin,
LY294002, dimethyl sulfoxide (DMSO), rhodamine (Rh)123, 0.05% Trypsin-EDTA, 2′,7′-
dichlorfluorescein-diacetate (DCFH-DA), N-acetylcysteine (NAC), and the Hoechst 33342
kit were all purchased from Beyotime (Haimen, China). CHE was prepared in DMSO as a
20 mM stock solution and stored at −80 ◦C for standby. All other regents used in the below
experiments were of analysis grade.

2.2. Cell Cultures

Human HepG2 cells (provided by the Cell Bank of the Chinese Academy of Sciences
in Shanghai, China) were employed in the present study. Cells were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) medium containing 10% fetal bovine serum (FBS) FBS
(v/v) (Gibco, Grand Island, NY, USA) and 1% (v/v) penicillin-streptomycin and maintained
in a cell incubator with 95% air and 5% CO2 at 37 ◦C.

2.3. Measurement of Cell Viability

To assess the cytotoxicity of CHE in HepG2 cells, a Cell Counting Kit-8 (CCK-8) kit
(Vazyme, Nanjing, China) was employed to test the changes in cell viability, according
to the previous study [24]. Briefly, 1 × 104 cells/well were seeded in a 96-well plate and
cultured for 20 h; then, cells were treated with CHE at different concentrations (i.e., 1.25,
2.5, 5, and 10 µM, respectively). Cells in the vehicle control group were treated with 0.2%
DMSO. After 24 h, cell viabilities were measured according to the instructions of the CCK-8
Kit. Finally, all OD values were recorded and normalized to those in the control group.
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2.4. Measurement of Cell Apoptosis

To measure the cell apoptosis rates, an Annexin V-FITC/PI Apoptosis Detection Kit
(Vazyme Biotech Co., Ltd., Nanjing, China) was employed, and the protocols were in
accordance with our previous study [25]. HepG2 cells were treated with CHE at 2.5, 5, and
10 µM for 24 h, cell apoptotic rates were measured. The detailed protocols are shown in the
Supplementary Materials.

To observe the nuclear morphological change, HepG2 cells were also stained with
Hoechst 33342, according to our previous study [26]. In brief, HepG2 cells were treated
with CHE at the various concentrations of 2.5, 5, and 10 µM for 24 h and were stained
with Hoechst 33342 dye (at the final concentration of 10 µg/mL) for 30 min in the dark
at room temperature. The morphological changes of cell nucleus were observed using a
fluorescence microscope (Leica Microsystems, Wetzlar, Germany). Cells showing chromatin
condensation or DNA fragmentation were defined as apoptotic death.

To assess the role of the PI3K/Akt pathway in CHE-induced apoptosis, HepG2 cells
were pretreated with LY294002 (at the final concentrations of 10 µM), a PI3K/Akt inhibitor,
for 2 h, followed by co-treating with CHE (at the final concentrations of 10 µM) for an
additional 24 h. Finally, cells were stained with Hoechst 33342 and cell apoptotic rates
were counted.

2.5. Measurements of ATP Levels

The ATP levels in HepG2 cells were measured with the Enhanced ATP Assay Kit (Bey-
otime, Haimen, China), according to the commercial kit instructions. Briefly, 2 × 105 cells/well
were plated into a 12-well plate, then cells were exposed to the different concentrations
of CHE (i.e., at 1.25, 2.5, 5, and 10 µM, respectively) for 24 h. After treatment, HepG2
cells were lysed using the 100 µL lysis buffer provided by the kit. Cells were centrifu-
gated at 14,000× g for 10 min at 4 ◦C, then supernatants were collected and mixed with
ATP detection working liquid for measurement. The values were read using a microplate
luminometer (Tecan Trading AG, Männedorf, Switzerland).

2.6. Determination of Intracellular ROS Generation, Malondialdehyde (MDA), Catalase (CAT)
and Superoxide Dismutase (SOD)

To assess the role of oxidative stress in CHE-induced cytotoxicity, intracellular ROS
production, and the biomarkers of oxidative stress, including the levels of MDA and the
activities of SOD and CAT, were measured. HepG2 cells were exposed to the various doses
of CHE (i.e., at 2.5, 5, and 10 µM) for 24 h. The intracellular ROS production, the levels of
MDA, and the activities of SOD and CAT were measured using commercially available
kits, respectively. The detailed protocol was followed by the descriptions in the previous
study [27] and shown in the Suppl. Materials and Methods.

2.7. Determination of Mitochondrial Membrane Potential (MMP)

Rhodamine-123 dye was employed to measure the changes in MMP, according to the
published descriptions [28]. Briefly, 2 × 105 cells per well were plated into a 12-well plate.
After 20 h of culture, cells were exposed to various doses of CHE (i.e., at 2.5, 5, and 10 µM,
respectively) for 24 h. Then, cells were washed twice with PBS and stained with Rh123 dye
(at a final concentration of 1 µg/mL) for 30 min in a cell incubator. Then, cells were washed
with PBS three times. Finally, a fluorescence microscope with an emission wavelength of
525 nm and an excitation wavelength of 488 nm was employed to observe the changes in
MMP. For the quantitative analysis, cells were digested with 0.25% trypsin-EDTA, then
cells were collected and analyzed using flow cytometry.

2.8. Determination of Caspase-9 and Caspase-3 Activities

The levels of caspase-9 and caspase-3 activities in HepG2 cells were examined using
commercial caspase-9 and caspase-3 kits (Beyotime, Haimen, China), respectively. The
detailed protocols were in line with our previous study [26]. In brief, HepG2 cells were
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treated with different doses of CHE (i.e., at 1.25, 2.5, 5, and 10 µM, respectively). After 24 h
of treatment, cells were washed twice with PBS and lysed with the lysis buffer provided by
the kits. Cell samples were then centrifuged at 14,000× g for 15 min, and the supernatants
were collected to measure the values. The protein concentrations were examined using a
BCA kit (Thermo Fisher Scientific Inc., Waltham, MA, USA). The activities of caspase-9 and
caspase-3 in each sample were normalized to their protein concentrations.

2.9. Western Blotting

The levels of protein expression were examined using Western blotting and the detailed
protocols were followed as per our previous descriptions [26]. In brief, HepG2 cells were
treated with various doses of CHE (i.e., at 1.25, 2.5, 5, and 10 µM, respectively) or were
treated with 0.2% DMSO as the vehicle control group. After 24 h, cells were washed twice
with PBS and lysed using the RIPA lysis buffer (Beyotime, Haimen, China) with several
protein inhibitors, including PMSF (at 10 µg/mL), leupeptin (at 1 µg/mL), aprotinin (at
1 µg/mL), and pepstatin A (at 1 µg/mL). All samples were lysed for 15 min and were
ultrasonicated for 2 min using an Ultrasonic Processor (Branson, MO, USA) at 4 ◦C. Then,
samples were centrifuged at 14,000× g at 4 ◦C for 15 min, and supernatants were collected.
Then, the protein concentrations were measured using a BCA kit (Thermo Fisher Scientific
Inc., Waltham, MA, USA). Western blotting, including protein isolation, electroporation,
transfer, and antibody incubation, was performed. Several primary antibodies, including
rabbit polyclonal antibodies against Bax, PARP1, HO-1, LC3, CytC, and Bcl-XL (1:1000
dilution; Proteintech, Chicago, IL, USA), phosphorylation (p)-Akt (Ser 473) (Sangon Biotech,
Shanghai, China), mitochondrial oxidative phosphorylation (OXPHOS) complexes (I to V)
(Abcam, Cambridge, MA, USA), p-mTOR (Ser2448), p-AMPK (Thr172) (CST, Danvers, MA,
USA), and mouse monoclonal antibody against β-actin (Santa Cruz, CA, USA) were used.
All antibodies were used at a 1:1000 dilution. In addition, the corresponding anti-rabbit or
anti-mouse secondary antibodies (both in 1:10,000 dilution, Santa Cruz, Inc., Dallas, TX,
USA) were used. Finally, the gray values of protein bands were analyzed using Image J
(National Institutes of Health, Bethesda, MD, USA), and the values of protein expression
were normalized to β-actin.

2.10. Statistical Analysis

Data in the current study are shown as mean ± standard deviation (S.D.) unless
specifically mentioned. A one-way analysis of variance (ANOVA), followed by an LSD post
hoc test provided by GraphPad prism 9.0 software (San Diego, CA, USA) was performed.
A value of p less than 0.05 was considered a significant difference.

3. Results
3.1. CHE Treatment Induces the Loss of Cell Viabilities in HepG2 Cells

CHE treatment induced a decrease in cell viabilities in HepG2 cells and was dose-
dependent. As shown in Figure 1, compared to the control group, CHE exposure at the final
concentrations of 1.25, 2.5, 5, and 10 µM for 24 h significantly decreased the cell viabilities of
HepG2 to 94.2%, 92.9%, 83.2% (p < 0.01), and 53.5% (p < 0.01) (Figure 1A), respectively. Cor-
respondingly, the marked decreases in cell number and abnormal morphological changes,
i.e., cell body spindle-like and shrinkage changes, were detected in the 5 and 10 µM CHE
treatment groups (Figure 1B).

3.2. CHE Treatment Induces Cell Apoptosis

CHE treatment induced apoptotic cell death of HepG2 cells, and it was in a dose-
dependent manner. As shown in Figure 2A, CHE treatments at the final concentrations
of 2.5, 5, and 10 µM increased the apoptotic rates to 4.7%, 8.4% (p < 0.05), and 27.4%
(p < 0.01), respectively, compared to that in the vehicle control group. Consistent results
were also detected using the Hoechst 33342 staining method. As shown in Figure 2B, CHE
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treatments at the final doses of 5 and 10 µM both increased the levels of condensed nuclei
and fragmented chromatin, compared to the control group.
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Figure 1. The cytotoxicity of chelerythrine (CHE) in HepG2 cells. (A) the effects of CHE treatment
on the cell viability. HepG2 cells were treated with the different doses of CHE (at 1.25, 2.5, 5, and
10 µM) for 24 h and cell viabilities were determined using the CCK-8 method. Data were presented as
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Figure 2. CHE treatment induces cell apoptosis in HepG2 cells. HepG2 cells were treated with
various doses of CHE (i.e., at 2.5, 5, and 10 µM, respectively) for 24 h, and apoptosis rates were
measured using Annexin V-FITC/PI (A) or Hoechst 33342 staining (B) methods. Data were shown
as mean ± S.D. (n = 3). In B, the white arrows indicate the apoptotic cells. * p < 0.05, or ** p < 0.01,
compared to the control group. Scale Bar = 25 µm.
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3.3. CHE Treatment Induces Oxidative Stress

CHE treatment significantly induced the production of ROS, increased intracellular
MDA levels, and decreased the activities of the antioxidant enzymes SOD and CAT. As
shown in Figure 3, CHE treatment at the final concentrations of 2.5, 5, and 10 µM for
24 h significantly increased the levels of intracellular ROS to 1.4-, 2.3- (p < 0.01), and 3.8-
fold (p < 0.01), respectively; significantly increased the intracellular MDA levels to 109.6%,
145.6% (p < 0.01), and 192.4% (p < 0.01), respectively; significantly decreased intracellular
SOD activities to 92.3%, 78.1% (p < 0.05), and 67.3% (p < 0.01), respectively; and significantly
decreased intracellular CAT activities to 91.1%, 76.9% (p < 0.05), and 62.7% (p < 0.01),
respectively, compared to those in the control group.
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Figure 3. CHE treatment increases intracellular ROS production and MDA levels and decreases
intracellular SOD and CAT activities in HepG2 cells. (A) The results of intracellular ROS production.
HepG2 cells were treated with different doses of CHE (at 2.5, 5, and 10 µM, respectively) for 24 h,
then cells were incubated the DMEM mediums containing 2,7-dichlorofluorescein diacetate dye.
The representative images (on the left) and the fluorescence intensities (on the right) are shown.
Bar = 50 µm. B-D, The levels of intracellular MDA levels, (B) and SOD (C) and CAT (D) activities.
Data were shown as mean ± S.D. (n = 3). * p < 0.05, or ** p < 0.01, compared to the control group.

3.4. CHE Treatment Induces Mitochondrial Dysfunction

Fluorescence microscope observations showed that CHE treatment significantly de-
creased the MMP of HepG2 cells (Figure 4A). Consistently, the quantitative analysis of
MMP showed that CHE treatment at the final doses of 2.5, 5, and 10 µM decreased the
MMP levels to 89.4%, 66.9%, and 36.9% (all p < 0.05 or p < 0.01), respectively, compared to
the control group (Figure 4B). The intracellular ATP levels were further assessed. As shown
in Figure 4C, CHE exposure at the final doses of 2.5, 5, and 10 µM decreased the ATP levels
to 83.9%, 74.1%, and 59.1% (all p < 0.05 or p < 0.01), respectively, compared to that in the
vehicle control group. In addition, the expression of CI–V respiratory chain subunits was
further examined. As shown in Figure 4D, data showed that CHE treatment at 1.25 µM
significantly decreased the expression of CII and CIV, and CHE at 10 µM significantly
decreased the expression of CII, CII, CIV, and CV. All CHE treatment groups did not affect
the expression of CIII.
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Figure 4. CHE treatment causes mitochondrial dysfunction in HepG2 cells. (A) the changes in
mitochondrial membrane potential (MMP) were observed using a fluorescence microscope and the
representative images are shown. Scale Bar = 50 µm. (B) the results of flow cytometry analysis.
(C) the levels of ATP content. (D) levels of expression of mitochondrial complexes I to V subunits
were measured by using western blotting (on the left). The corresponding quantitative analysis was
performed (on the right). Data are shown as mean ± S.D. (n = 3). * p < 0.05, or ** p < 0.01, compared
to that in the vehicle control group.

3.5. CHE Treatment Activates Mitochondrial Apoptotic Pathway

The expressions of proteins involved in the mitochondrial apoptotic pathway, includ-
ing pro-apoptotic proteins Bax, CytC, and cleaved-PARP1, and the anti-apoptotic protein
Bcl-XL, were examined. Compared to those in the vehicle control group, CHE treatment at
the concentration range of 1.25–10 µM upregulated the expression of Bax to 2.5-, 3.0-, 4.5-,
and 5.4-fold (all p < 0.05 or 0.01), respectively; upregulated the expression of CytC to 1.0-,
3.8- (p < 0.01), 4.0- (p < 0.01), and 6.3-fold (p < 0.01), respectively; and downregulated the
Bcl-XL expression of 0.98-, 0.86-, 0.72- (p < 0.05), and 0.43-fold (p < 0.01), respectively. In
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addition, the expression of cleaved-PARP1 protein significantly increased to 2.8-fold in the
10 µM CHE treatment groups, and its expression had no significant changes in the other
dose group, compared to the control group (Figure 5A). Meanwhile, significantly increased
activities of caspase-9 and caspase-3 were detected. CHE treatment at the concentrations
of 2.5, 5, and 10 µM upregulated caspase-9 activities to 1.6-, 2.3- (p < 0.01), and 3.5-fold
(p < 0.01), and upregulated caspase-3 activities to 1.8-, 2.2-, and 4.2-fold (all p < 0.05 or 0.01)
(Figure 5B,C), compared to those in the vehicle control group.
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Figure 5. CHE treatment activates the mitochondrial apoptotic pathway in HepG2 cells. (A) cells
were treated with various doses of CHE, i.e., 1.25, 25.5, 5, and 10 µM, respectively. After 24 h, the
expressions of Bcl-XL, Bax, CytC, and PRRP1 proteins were examined using the Western blotting
method. (B,C) the levels of caspase-9 (B) and caspase-3 (C) activities. Data are shown as mean ± SD
(n = 3 independent experiments). * p < 0.05 or ** p < 0.01, compared to those in the vehicle group.

3.6. CHE Treatment Inhibits AMPK/Akt Pathway

Compared to the control group, CHE treatment at the final concentrations of 1.25–10 µM
decreased the expression of p-AMPK to 0.97-, 0.89, 0.59- (p < 0.01), and 0.32-fold (p < 0.01),
respectively (Figure 6), and decreased the expression of p-Akt to 0.78-, 0.52-, 0.38-, and
0.18-fold (all p < 0.05 or 0.01), respectively. In addition, the significant increased expression
of p-mTOR and LC3II was also detected in the 10 µM CHE treatment group, compared to
the untreated group (Figure 6).
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Figure 6. CHE treatment downregulated the expression of p-Akt, p-AMPK, and p-mTOR proteins
and upregulated the ratio of LC3II/LC3I in HepG2 cells. The representative images of Western
blotting are shown on the left, and the quantified analysis is shown on the right. Data were presented
as mean ± S.D. (n = 3 independent experiments). * p < 0.05 or ** p < 0.01, compared to those in the
vehicle control group.

3.7. NAC Supplementation Improved CHE-Induced the Production of ROS and Apoptosis

The role of oxidative stress in CHE-induced cytotoxicity was further assessed. As
shown in Supplementary Materials Figure S1, compared to the CHE alone treatment group,
NAC supplementation significantly decreased the ROS production from 3.2-fold to 1.4-fold
(p < 0.01). Meanwhile, NAC supplementation significantly decreased cell apoptosis rates
from 43.3% to 17.6% (p < 0.01), compared to the CHE alone treatment group.

3.8. Inhibition of Akt Pathway Promotes CHE-Induced Cytotoxicity and Apoptosis

As shown in Figure 7, pharmacological inhibition of Akt expression by LY294002
significantly promoted CHE-induced loss of cell viability and apoptosis. As shown in
Figure 7A,B, LY294002 in cotreatment with CHE significantly decreased the cell viability
from 52.6% to 39.3% (p < 0.05) and increased the cell apoptotic rates from 28% to 42%
(p < 0.01), compared to the CHE alone treatment group. Moreover, LY294002 cotreatment
significantly decreased the expression of p-Akt protein, then further decreased the expres-
sion of HO-1 protein and increased the expression of the cleaved PARP1 protein. In the
LY294002 combination with the CHE group (i.e., LY29402 + CHE group), the expression of
HO-1 protein decreased to 0.47-fold, while the expression of cleaved PARP1 increased to
5.6-fold, compared to the CHE alone treatment group (Figure 7C). Consistently, LY294002
cotreated with CHE also significantly increased the activities of caspase-9 and caspase-3
(both p < 0.05), compared to those in the CHE alone treatment group (Figure 7D,E).
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1 
 

 
Figure 7. Effects of Akt inhibition on the cell viability, apoptosis, and protein expression in HepG2
cells exposed to CHE. (A) HepG2 cells were pretreated with LY294002 (at a final concentration of
10 µM) for 2 h, followed by treatment with CHE at 10 µM for an additional 24 h. The morphological
changes (on the left) were observed and the changes in cell viability (on the right) were measured.
(B) measurement of cell apoptosis. The representative images (on the left) and the quantitative
analysis (on the right) are shown. (C) the expressions of p-Akt, HO-1, and PRAP1 proteins were
performed by using the Western blotting method. (D,E) The levels of caspase-9 and caspase-3
activities. Data are shown as mean ± S.D. (n = 3 independent experiments). * p < 0.05, ** p < 0.01 or
*** p < 0.001, indicated the significant differences between the two groups. Scale Bar = 50 µm.

4. Discussion

As a useful medicinal plant in treating many chronic or infective diseases, Chelidonium
majus L. has been used for more than 30 years in China and several European countries [5].
Its main active ingredients contain isoquinoline alkaloids, several flavonoids, and phe-
nolic acids, and these compounds usually exhibit multiple biological functions, such as
anti-inflammatory, antioxidant, anti-tumor, and antimicrobial properties [5,29]. Recent
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studies showed the consumption of Chelidonium majus L. may cause potential hepatotox-
icity and acute hepatitis in humans, which has raised concerns worldwide [12,13,30,31].
Several isoquinoline alkaloids, including sanguinarine, CHE, chelidonine, coptisine, and
berberine, were detected in the extract of Chelidonium majus L. [5]. Among these several
alkaloids, sanguinarine, CHE, and coptisine were more toxic than the others, and these
three compounds were also considered potential toxic compounds [14]. Ulrichova and
colleagues showed that a signal dose of sanguinarine or CHE (i.e., 10 mg/kg/day) could
cause acute necrosis in the liver tissues of rats [32]. It was also found that intravenous
injection of CHE at a dose of 5 mg/kg could induce the production of ROS and apoptosis
in the cardiac myocytes of rats [18]. CHE has been considered as one of the most powerful
toxin compounds in the extract of Chelidonium majus L. Therefore, deeply understanding
the precise toxic mechanisms of CHE is required for the clinical application of Chelidonium
majus L. in humans and animals.

In this study, data showed that CHE treatment in the dose range of 1.25–10 µM
exhibited marked cytotoxicity and it is dose-dependent (Figure 1). Similarly, several
previous studies showed that CHE at the dose ranges of 2.5–20 µM exhibited potent
cytotoxicity in various cell lines, including HL-7702 cells (i.e., a liver cell line derived from
normal human liver cells, also called L02 cells), human renal cancer cell lines (i.e., Caki
and 786-O), HeLa, murine embryonic fibroblasts, H1299 cells, and A549 cells (i.e., a human
epithelial cell line derived from lung carcinoma tissue) [14,20,23,33]. Furthermore, our
current study found CHE could induce oxidative stress, mitochondrial dysfunction, and
cell apoptosis in HepG2 cells (Figures 2–5). Mechanistically, our data from Figures 6 and 7
showed CHE-induced cytotoxicity and apoptosis may be partly attributed to the activation
of the mitochondrial apoptotic pathway and the inhibition of the Akt pathway.

Oxidative stress could be induced by the imbalance between the production of intracel-
lular ROS and antioxidant systems and it plays a critical role in the process of cytotoxicity
caused by various exogenous compounds, such as mycotoxins (e.g., T-2 toxin), heavy
metals (e.g., copper), or drugs (e.g., quinocetone, colistin, and furazolidone) [26,27,34–36].
It is well known that intracellular ROS contains the superoxide anion (O2

•−), hydroxyl
radicals (OH·), and hydrogen peroxide (H2O2) [37]. Corresponding, intracellular antiox-
idant enzyme SOD could catalyze the dismutation of O2

•− into oxygen and H2O2, and
the H2O2 molecule was further decomposed into water and oxygen, which had no toxic
effects to cells [37]. In this study, our data found that CHE treatment significantly increased
intracellular ROS production in a dose-dependent manner (Figure 3). In the 5 µM and
10 µM CHE treatment groups, the activities of SOD and CAT were also significantly down-
regulated (Figure 3). Consistently, CHE treatment also significantly increased the levels
of MDA (Figure 3), a biomarker of oxidative stress and an indicator of the peroxidation
of membrane lipids [37]. Similarly, Xie et al. showed that CHE treatment at >3 µM could
induce a significant increase in ROS in H1975 cells [38]. The previous study also found that
CHE-induced oxidative stress and cell cytotoxicity are partly dependent on its effect on
glutathione (GSH) depletion, which was therefore partly reversed by NAC (i.e., a precursor
to GSH) supplementation [19]. Indeed, in the present study, NAC supplementation could
also significantly reduce CHE-induced cell death (Supplementary Materials Figure S1).
Taken together, our results indicated that CHE could trigger the production of ROS and
induce oxidative stress in HepG2 cells.

Excessive ROS production in mammalian cells could directly damage DNA, proteins,
lipids, and other biomolecules, resulting in cell death, which finally results in toxic damage
in tissues or organs of humans or animals [39]. Kemény-Beke et al. demonstrated that
CHE at the lower concentration (i.e., 1 µg/mL for 24 h) could induce marked apoptosis in
human OCM-1 cells, but not necrosis [40]. Consistently, CHE-induced apoptotic cell death
could be reversed by NAC supplementation, a special ROS inhibitor [20]. In the present
study, marked apoptotic cell death and DNA damage in CHE-treated HepG2 cells (i.e.,
CHE treatment at the doses of 5 or 10 µM for 24 h) were detected by Annexin V-FITC/PI
Hoechst 33342 methods (Figure 2), respectively. Our results also showed that inhibition of
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oxidative stress by NAC supplementation significantly inhibits CHE-induced apoptosis
(Supplementary Materials Figure S1). This evidence indicates CHE-induced cytotoxicity
and apoptosis is partly dependent on the production of ROS.

Mitochondria are the major producers of ROS and they are also the main target of ROS-
induced signaling [41]. Mitochondria are also critical “players” in apoptosis [37]. Several
studies have shown that CHE exposure could induce mitochondrial dysfunction, which is
charactered by decreased MMP, the formation of membrane permeability, and the suppres-
sion of the mitochondrial respiratory chain in cells [19,33,42]. An earlier study reported that
low concentrations of CHE could inhibit energy transfer and coupled respiration in rat liver
mitochondria [43]. Similarly, Yang et al.’s study found that CHE could induce apoptosis
may involve the dysfunction of mitochondrial ETC and did not involve the production of
ROS [44]. In the study, data found that CHE treatment significantly decreased the protein
expression of mitochondrial CI, CII, CIV, and CV (Figure 4). Mitochondrial complexes are
also called oxidative phosphorylation complexes, which play a critical role in maintaining
the activities of the mitochondrial electron transport chain (ETC) and the production of
ATP [45]. Not surprisingly, significantly decreased ATP levels were detected in CHE-treated
HepG2 cells (Figure 4). Notably, significant decreases in the levels of mitochondrial CII and
IV in the 1.25 µM CHE treatment group, more sensitive than other mitochondrial complexes
(Figure 4). The previous study showed that mitochondrial CII-deficiency could cause a
significant increase in mitochondrial ROS [46,47]. Taken together, these data indicated that
CHE-induced mitochondrial dysfunction involved the inhibition of mitochondrial ETC
and ATP production. Mitochondrial complexes II and IV may be the important targets of
CHE-induced cytotoxicity. The precise molecular mechanisms involved in the crosstalk
between mitochondrial ETC and apoptosis still need further investigation.

The imbalance of the expressions between anti-apoptotic and pro-apoptotic proteins
(such as the increase of Bax/Bcl-XL ratio) could increase the formation of mitochondrial
permeability transition pore and trigger the releases of CytC from mitochondria into the
cytosol, cascading to induce the activation of caspase-9 and caspase-3, finally resulting
in apoptotic cell death [48]. The activation of caspase-3 could also induce the cleavage
of PARP1 protein, a critical factor in regulating cell death or cell survival after DNA
damage [49]. A previous study found that CHE treatment significantly upregulated the
expression of pro-apoptotic proteins of Bax, Bad, and Bak proteins and downregulated the
expression of anti-apoptotic proteins of Bcl-2, Bcl-XL, and Mcl-1, resulting in cell apoptosis
in HeLa cells [33,50]. CHE is also considered a natural inhibitor of Bcl-XL [51]. The Zhang
et al. study also found CHE exposure could induce cell apoptosis in SMMC-7721 cells
by activating the mitochondrial apoptosis pathway [52]. In line with these findings, our
results showed that CHE treatment significantly induced the loss of MMP, upregulated
the expression of Bax, CytC, and cleavage of cleaved PARP1, and downregulated the
expression of Bcl-2 protein (Figure 5). Taken together, the data from our current study
indicated CHE-induced apoptotic cell death in HepG2 cells involves the activation of the
mitochondrial apoptosis pathway.

CHE treatment could upregulate the expression of autophagy proteins and activate
autophagy flux, and it was partly dependent on the production of ROS [19]. mTORC1 is
a central regulator of autophagy [53]. Akt is an important regulator of mTOR, which is
usually considered to be a critical autophagy suppressor [53]. In addition, Akt signaling
also plays a critical role in the processes of cell growth, proliferation, senescence, and
death [54]. It has been demonstrated that the inhibition of the Akt/mTOR pathway plays
an important role in several drugs (i.e., colistin, ivermectin, and furazolidone) or toxins
(e.g., T-2 toxin, arsenic, and cadmium)-induced cytotoxicity and autophagy [26,55–58]. A
previous study reported that CHE treatment at 2 µM for 2 h could significantly abolish
the expression of p-Akt protein [19]. In the present study, our results showed that CHE
treatment significantly downregulated the expression of p-Akt and p-mTOR (Figure 6).
CHE also significantly upregulated the expression of LC3II protein, a protein marker
of autophagy (Figure 6). Furthermore, pharmacological inhibition of Akt by LY294002
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significantly increased CHE-induced expression of cleaved PARP-1 and apoptotic rates
(Figure 7). Meanwhile, inhibition of Akt exacerbated the inhibition of HO-1 protein and
increased the levels of caspase-9 and caspase-3 activities caused by CHE (Figure 7). In
addition, our results showed that the changes of Akt were earlier than mTOR, indicating
the other functions of Akt that are not dependent on mTOR were activated (Figure 6). It has
been demonstrated that the activation of Akt could upregulate the expression of HO-1 via
activating the transcriptional activity of Nrf2 [59], and the induction of HO-1 protein could
effectively protect against CHE-induced cytotoxicity, oxidative stress, and apoptosis [19].
Therefore, these data indicate that the inhibition of Akt signal-mediated loss of cell viability
may involve the mTOR-dependent and independent pathway.

In addition, our present study also found that CHE treatment significantly down-
regulated the expression of the serine/threonine kinase AMP-activated protein kinase
(AMPK) protein (i.e., phosphorylation at Thr172) (Figure 6). Under low energy stress,
AMPK expression could be upregulated, and it could phosphorylate several specific en-
zymes and growth control nodes to increase ATP generation through promoting OXPHOS
or decrease ATP consumption [60]. Therefore, the inhibition of AMPK by CHE treatment
may exacerbate CHE-induced ATP deficiency in HepG2 cells. Very recently, Cai et al. found
that CHE treatment upregulated the expression of p-AMPK protein and downregulated the
expression of p-mTOR, finally inducing autophagy in HFLS-RA cells [61]. Taken together,
these data indicate the regulatory effects of CHE in the different cell lines may be different.
To address the precise molecular mechanisms of CHE, more investigations are required in
the future.

In the present study, we just studied the toxic effects and underlying molecular
mechanisms of CHE. This is the limitation of this present study. Although CHE is the
most toxic compound in the extract of Chelidonium majus, it cannot completely mimic its
toxic effect. Because other compounds in the extract of Chelidonium majus may provide a
protective role or offer a synergistic toxic effect. The toxicity of the extract of Chelidonium
majus is more complex than any single ingredient. Therefore, the integrative and contrastive
combinations of monomeric components and extracts of Chelidonium majus are required in
the next studies.

5. Conclusions

Our current study reveals that CHE exposure could induce excessive ROS produc-
tion and trigger oxidative stress and mitochondrial apoptotic pathways, finally resulting
in apoptotic cell death in HepG2 cells (Figure 8). CHE exposure could also inhibit the
expression of mitochondrial complex proteins and the production of ATP, resulting in
mitochondrial dysfunction, which may be further exacerbated by CHE-caused inhibition
of AMPK (Figure 8). Additionally, CHE treatment could downregulate the Akt pathway,
then promote CHE-induced oxidative stress, caspase activation, and apoptosis (Figure 8).
Our current study sheds new insights into understanding the toxic mechanisms and health
risks of CHE and Chelidonium majus-related products.
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stress, caspase activation, and apoptosis via the inhibition of HO-1 expression or triggered autophagy
via the mTOR pathway.
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