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Spontaneous helix formation in non-chiral
bent-core liquid crystals with fast linear
electro-optic effect
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Marko Prehm3 & Carsten Tschierske3

Liquid crystals (LCs) represent one of the foundations of modern communication and

photonic technologies. Present display technologies are based mainly on nematic LCs, which

suffer from limited response time for use in active colour sequential displays and limited

image grey scale. Herein we report the first observation of a spontaneously formed helix in a

polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis

of helix lying parallel to the layer normal and a pitch much shorter than the optical wave-

length. This new phase shows fast (B30 ms) grey-scale switching due to the deformation of

the helix by the electric field. Even more importantly, defect-free alignment is easily achieved

for the first time for a BC mesogen, thus providing potential use in large-scale devices with

fast linear and thresholdless electro-optical response.
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L
iquid crystals (LCs) are of significant importance for display
applications, photonics, sensors, communication technolo-
gies and data processing systems. LCs used in industry, so

far, are predominately nematics that consist of simple rod-like
molecules1. Disadvantages of nematic devices are their limited
response time, failure to achieve RGB colour sequential display
and a limited image grey scale. Faster switching is achieved with
LC phases formed by chiral molecules, as, for example, blue
phases2, ferroelectric and antiferroelectric switching synclinic
tilted (SmC*, FLC) or anticlinic tilted smectic phases (SmCA*,
AFLC)3. A new class of compounds with ferroelectric and
antiferroelectric LCs is built from achiral bent-core (BC)
molecules and has engendered great scientific interest in recent
years4 due to a range of fascinating phenomena arising from the
interplay of polarity and chirality5–7. Unlike rod-like LCs,
the BC compounds, even being achiral, may exhibit
spontaneous polarization in the orthogonal (SmA–like)8 and
tilted (SmC–like) smectic phases4,9. In contrast to orthogonal BC
phases10,11, electro-optical effects can possibly be used for
applications in tilted smectic phases of BCLC have not so far
been reported, although electro-optical switching has been
observed4,9,12. A major reason is the impossibility to align these
BC SmC phases. Besides these technological relevant aspects,
spontaneous emergence of chirality in the tilted smectic phases of
achiral BCLC is of prime general scientific importance13,14.
Chirality in the LC phases of BCLC results from the combination
of tilt and polar order in the smectic phases (Supplementary
Fig. 1)9 and was found for the so-called dark conglomerate
phases5,13, representing strongly distorted smectic phases with
sponge-like structure15 or formed by helical nano-filaments16 and
nano-size crystallites17. However, formation of smectic phases
with helical superstructure having a helix axis parallel to the layer
normal was not yet observed in the LC phases of any achiral BC
mesogen5,6,18.

Here we report the first experimental confirmation of
formation of a helix in a polar SmC phase of achiral BC
molecules with a pitch much shorter than the optical wavelength,
showing fast (B30 ms) grey-scale switching due to the deforma-
tion of the helix by the electric field. In contrast to other BC
smectics, defect-free alignment is easily achieved, thus providing
potential use in devices with fast linear and thresholdless electro-
optical response.

Results
LC phases of compounds 1/n. BC materials under study are the
two compounds 1/n of the homologue series of 4-cyanoresorcinol
bisbenzoates with terephthalate-based wings and long n-alkyl
chains (n¼ 16, 18) on both sides (Fig. 1a)11,19–21. The synthesis
of these compounds was performed as described in the Methods
(Fig. 5). An identification of the phases, their transition
temperatures and the enthalpy values for the two investigated
compounds 1/n are given in Fig. 1a.

Transition temperatures were obtained on cooling under quasi-
equilibrium condition with a rate of B1 K min� 1, whereas DH
was taken from the DSC cooling curves (10 K min� 1,
Supplementary Figs 2 and 3). On cooling a non-tilted and non-
polar smectic (lamellar) LC phase (SmA) is formed first, which on
further cooling transforms into a smectic phase with uniform
(synclinic) tilt (SmCS). This phase transition is observed optically
by the occurrence of a birefringent Schlieren texture in the
homeotropically aligned (optically uniaxial) SmA phase. The
SmC phase is paraelectric and in the case of compound 1/16
changes into a SmCSPF

hel helical synclinic ferroelectric phase with
a short pitch and a helical axis lying parallel to the layer normal at
T¼ 110 �C. For 1/18, a polar switching (synclinic ferroelectric)

SmCsPF phase (Supplementary Fig. 1) without helical super-
structure is formed at this phase transition (at T¼ 111 �C); the
SmCSPF

hel phase is only formed after the application of an electric
field, whereas SmCSPF is the stable ground state structure in this
temperature range prior to the electric field having being applied.
On further cooling, an antiferroelectric switching polar SmC
phase (SmCPA) is formed for both compounds below T¼ 90 �C.
The polarization current curves recorded for the smectic phases
of 1/18 under an applied triangular wave voltage are shown in the
Supplementary Figs 6 and 10 and are discussed in detail in the
Supplementary Note 1.

X-ray diffraction (XRD) patterns of aligned samples of the
smectic phases of compounds 1/16 and 1/18 are shown in the
Supplementary Figs 4 and 5, respectively. The diffraction patterns
of both compounds are very similar and those of 1/18 are
described here as an example of the case. There is a diffuse wide
angle scattering with a maximum being shifted on cooling from
d¼ 0.47 nm in the SmA phase to d¼ 0.46 nm in the SmCsPF

phase (Fig. 1b, red dots). The diffuse character of the wide angle
scattering confirms the LC state of the phases under discussion
and the decreasing d-value indicates a growing packing density
with decreasing temperature. A sharp small angle reflection
corresponding to d¼ 5.2 nm appears in the SmA phase. It corres-
ponds to 0.7 molecular length (Lmol¼ 7.4 nm in the most
extended conformation between the ends of the alkyl chains in
all-trans conformation), in line with a monolayer smectic phase.
The d-value of the layer reflection increases with decreasing
temperature, due to the alkyl chain stretching with growing
packing density (Fig. 1b, black dots and Supplementary Table 2).
The d-value even continues its growth at the SmA–SmC
transition and in the SmCs-range, reaching d¼ 5.8–6.0 nm in
the SmCsPF phase. This means that, the effect of increasing
packing density by alkyl chain stretching on the layer spacing is
larger than the effect of developing the tilt. Indeed in the SmCs

phase an optical tilt of 18� is measured (Fig. 1c), which is
relatively small compared with other bent-core mesogens where it
is typically in the range of 35–45� (refs 5,6,18). Though the tilt is
clearly confirmed by optical investigations, it is not evident from
the XRD patterns, neither from the temperature-dependent
development of the layer spacing nor from the positions of the
wide angle with respect to the small angle scatterings in the
two-dimensional (2D) XRD patterns of aligned samples, which is
nearly orthogonal (90±5�) at all temperatures (Supplementary
Fig. 5). This indicates that the optical tilt of B18� in the SmCs

phases mainly results from the tilt of the aromatic cores, whereas
the more disordered aliphatic chains should be less tilted and
preferably oriented opposite to the tilt direction of the aromatic
cores. Similar results were obtained for compound 1/16
(Supplementary Fig. 4 and Supplementary Table 1), which have
an even smaller optical tilt of 14�. This small tilt is assumed to be
mainly due to the electron deficit terephthalate-based structure of
the two rod-like wings attached to the 4-cyanoresorcinol core
(Fig. 1a), which is known to support the formation of non-tilted
or weakly tilted smectic phases22,23.

Electro-optical investigations. Figure 2 presents the polarizing
microphotographs in planar cells for 1/16 in Fig. 2a–e and for
1/18 in Fig. 2f–i, these are taken on cooling from the isotropic
phase in the absence of an electric field. The planar cells were
rotated at an angle a¼ 45�, where a is the angle between the
rubbing direction, R and polarizer axis, P. The textures of the
homeotropic cells are shown in the insets of Fig. 2. At 140 �C
(Fig. 2a,f) typical textures of both samples in planar cells corre-
spond to a conventional uniaxial SmA phase with the optical axis
lying along the rubbing direction R. The homeotropic textures
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show perfect extinction, due to the orthogonal molecular orga-
nization in the layers (Fig. 2a,f, insets). On further cooling, the
uniform texture breaks down into two sets of domains with an
optical axis making an angle ±yapp with R (1/16: Fig. 2b; 1/18:
Fig. 2g), indicating the onset of a tilt which grows with a decrease

in temperature (Fig. 1c). The homeotropic textures show typical
Schlieren textures due to this tilt (insets in Fig. 2b,g), in line with
the formation of a synclinic SmCS phase. The SmCS phases,
occurring in the temperature range between 134 and 111 �C for
compound 1/18 and between 125 and 110 �C for the shorter
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Figure 1 | Molecular structure and LC phases of 1/n. (a) Molecular structure and the phase sequences with transition temperatures (T (�C)) and

transition enthalpies (DH (kJ mol� 1), in square brackets) as observed on cooling from the isotropic liquid state. Cr, solid crystal; Iso, isotropic liquid state;

SmA, non-tilted and non-polar smectic (lamellar) LC phase; SmCPA, antiferroelectric switching polar SmC phase; SmCS, paraelectric smectic phase with

uniform (synclinic) tilt; SmCSPF (synclinic ferroelectric LC phase, (Supplementary Fig. 1) and SmCSPF
hel helical synclinic ferroelectric phase with a short pitch

and a helical axis lying parallel to the layer normal; SmCPA, antiferroelectric switching polar SmC phase. For 1/18, the parentheses indicate that the

SmCSPF
hel phase is only formed after application of an electric field, whereas SmCSPF is the stable ground state structure in this temperature range prior to

the field being applied. (b) Dependence of the d-values of the small angle scattering (black, left; layer thickness d follows the de Vries-like behaviour in

tilted smectics) and the maximum of the wide angle scattering (red, right) on temperature in the XRD patterns of the smectic phases of compound 1/18.

(c) Temperature dependence of the optical tilt y in the SmCS phase of compound 1/18 as measured by rotating the LC sample in a 9 mm planar cell under

the polarizing optical microscope from the dark to the bright state (under an applied square-wave voltage of 40 V at 10 Hz, low frequency ac voltage is

applied to minimize the effects of ions during switching).
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Figure 2 | Field-induced textural changes. Polarizing microphotographs (a–e) of compound 1/16 and (f–i) compound 1/18 of 6.5 and 8mm planar cells,

respectively, taken on cooling from the isotropic phase. The insets show the corresponding textures of a 6.8 mm homeotropic cell under the same

conditions; a–i were taken in the absence of an external field, and (j) of 1/18 is obtained on the removal of the field after the cell was subjected to a square

wave field (40 Vpp, f¼ 110 Hz) at T¼ 110 �C (h) with a corresponding homeotropic texture shown in the inset; R is the rubbing direction.
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homologue 1/16, do not respond optically to the electric field.
However, under a triangular wave voltage a single polarization
current peak develops on approaching the phase transition at
T¼ 110/111 �C, indicating the continuous growth of polar
domains24, in line with dielectric results (Supplementary Fig. 7).
For both compounds, the colour of the texture of the planar cell
gradually changes due to an increase in the birefringence
following a typical increase in the orientational order parameter
on cooling. On further cooling the cell with the compound 1/16
shows a transition to a uniaxial texture at T¼ 110 �C (Fig. 2c,d),
which looks rather similar to SmA but with a lower birefringence
of the planar sample than in SmA (compare Fig. 2a,d). This
uniaxial phase, designated as helical SmCSPF

hel with a very short
pitch persists down to T¼ 90 �C. In the phase designation ‘PF’
stands for a uniform polar direction (ferroelectric order) and
superscript ‘hel’ indicates the helical superstructure.

In contrast to the compound 1/16, the textures of the planar
cell for 1/18 do not show any principal changes at the phase
transition at T¼ 111 �C, (Fig. 2g,h) while the colour of the planar
cell gradually changes (Fig. 2g–i) due to a continuous increase in
the birefringence. However, at 111 �C weak electro-optical
switching appears in response to the external electric field
(E¼ 0.9 Vmm� 1) similar to the observations reported by Eremin
et al.25. On applying positive electric field, the optical axis of one
type of domains switches to the right and the second domain
switches to the left. The opposite is valid when negative
electric field is applied. These features are typical for SmCSPF

phases (Supplementary Fig. 8j–m).
The application of a square-wave electric field of amplitude

3–4 Vmm� 1 to the SmCsPF phase of 1/18 causes an irreversible
structural transition, that is, on the removal of the electric field
the texture does not return to the initial state (Fig. 2h) but forms a
uniaxial, low-birefringence texture (Fig. 2j) similar to the
SmCSPF

hel phase (Fig. 2d) observed in the compound 1/16
without application of an electric field (Supplementary Fig. 8a–i
for details of the field-induced textures of 1/18). Both textures are
not only optically identical but also show similar electro-optical
and other characteristics. Subsequent results and discussions
are focused on 1/18 while at the same time these are applicable
to 1/16 as well. It should be noted that textures of both
samples on cooling in the absence of electric field show almost

perfect planar alignment (Fig. 2a,f) unlike textures obtained in
previous studies of BC mesogens5,6, where they consisted of focal
conic defects. Such a good alignment had not previously been
obtained.

Figure 3a–d shows the polarizing micrographs of 1/18 on a
8 mm planar cell in the field-induced helical SmCSPF

hel state,
which exhibits the so-called V-shape switching. On the applica-
tion of an electric field, the optical axis switches by a voltage-
dependent angle ±y (V) from the rubbing direction with
a corresponding gradual increase in the transmittance and
birefringence (Fig. 3a–e), which saturates at 5 Vmm� 1 with a
uniform texture (Fig. 3d). A large value of the birefringence Dn0

as in the non-helical virgin cell (Fig. 2h) is obtained.
Optical investigation of the switching process shows hysteresis-

free and fully continuous EO response (Fig. 3e,f), apparent
switching angle and the effective birefringence as a function of the
field (Supplementary Fig. 8). This kind of continuous and
thresholdless switching in tilted smectics was previously observed
in helix-free and high PS ferroelectric SmC* phases26, de Vries
materials27,28 and FLC materials with short helical pitch due to
electric field-induced deformed helix (DHFLC)29, all requiring
non-racemic chiral molecules, whereas the molecules considered
here are achiral.

The remarkable feature of the SmCSPF
hel phase is a texture of

the homeotropic cell (Fig. 2j, inset) which shows a perfect
extinction independent of the cell rotation angle between the
crossed polarizers. This texture is similar to the uniaxial SmA
phase (Fig. 2f), while all polar or non-polar SmC subphases show
Schlieren textures (Fig. 2g–i, insets). The optically uniaxial
structure in tilted phases is only possible for de Vries phases,
SmCa or helical structures with a helical pitch shorter than the
wavelength of light. Both, de Vries and SmCa phases, are very
unlikely to exist because they both exhibit a strongly temperature-
dependent saturation voltage27, while in our study this is almost
temperature independent over a relatively large temperature
range of 20 K (Supplementary Fig. 9). Thus, we conclude that the
texture in Fig. 3 corresponds to a short-pitch helical structure of
the SmCSPF

hel phase.
Let us consider the physical reasons for the formation of a helix

in non-chiral materials. According to the simple phenomenolo-
gical theory developed by Pikin and Indenbom30, the helical pitch
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Figure 3 | Electro-optics in the SmCSPF
hel phase of 1/18. Electro-optical investigations performed at 110 �C on a 8mm planar cell. a–d show polarizing

micrographs with sample in the field-induced SmCSPF
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in chiral SmC* phase can be expressed as:

q ¼ 2p
p0
¼ Lþ mPS=y

K
ð1Þ

where m is the flexoelectric coefficient, PS is the spontaneous
polarization, y is molecular tilt angle, K is the effective elastic
constant and L is Lifshitz invariant, which is responsible for the
formation of the helix of a certain sense due to the molecular
chirality. This means that chiral SmC* phase may form a helical
structure even in the absence of spontaneous polarization. The
existence of non-zero polarization shortens the helical pitch,
while the sense of the helix is determined by the sign of L. In case
of non-chiral molecules (L¼ 0), the helical structure can be
formed exclusively by soft matter with large spontaneous
polarization. In other words, the formation of the helix reduces
the electrostatic energy but increases the excess of elastic energy
and the formation of helix of pitch p0¼ 2pKy/mPS is a
compromise between these two competing terms. In the
absence of the Lifshitz invariant, the two helices of opposite
sense are equi-probable and this is being observed in our sample.
The formation of very short sub-optical pitch (Supplementary
Fig. 8) in our case can be explained by large PS value
(B300 nC cm� 2), a moderate tilt angle (B23�) (not shown in
the Figure) and a reduced effective elastic constant due to the
vicinity of anticlinic phase at a lower temperature.

It is known that the synchronization of helical conformers of
non-chiral (but transiently chiral) molecules leads to spontaneous
mirror symmetry breaking31, providing the chirality which
determines the sign of L. Therefore, once formed, the helical
structure stabilizes one of two possible molecular conformations
due to the diastereomeric coupling between the helix sense and
molecular conformations, that is, La0 and this additionally
strengthens the helical organization with q ¼ Lþ mPS=y

K
and together with next-nearest-neighbor interactions32 further
shortens the helix pitch, formed originally due to PS. The
existence of in-layer spontaneous polarization is also important in
other liquid crystalline systems, for example, formation of
ferrielectric subphases in AFLCs33.

The observed electro-optical response to the applied electric
field is similar to that of the deformed helical structure in SmC*
phases of highly chiral LCs (DHF effect)29, which had attracted
enormous interest at the time of its discovery for a potential
application to fast-response LC devices with a tunable grey-scale.
For compounds 1/n in the SmCSPF

hel phase, the switching time is
found to be B30–40ms and the contrast ratio of the electro-
optical switching was found to lie between 200 and 300. It should
be noted that all previously reported DHFLC studies were
conducted only on chiral SmC* phases of permanently chiral
molecules with a large enough strength of the chirality. In
contrast, the compounds used here are achiral and consequently
these are more easily accessible when compared with highly chiral
FLCs.

Due to the larger tilt, the layer coupling is stronger for 1/18,
which stabilizes the non-helical synclinic SmCSPF state where the
helix is suppressed. In this case, a sufficiently strong electric field
is required for its transition to the helical SmCSPF

hel structure. The
electric field improves ordering in the layers, leading to denser
molecular packing, which is thought to support chirality
synchronization of chiral conformers, thus supporting helix
formation31. The SmCSPF

hel state once formed appears to be stable
in both homeotropic and planar cells. For both compounds 1/16
and 1/18, the antipolar coupling increases with decreasing
temperature, reaching a critical value at B90 �C, when the
SmCPA phase is formed.

Atomic force microscopy. An evidence for the modulated helical
superstructure in the SmCSPF phase is provided by the scanning
of the sample by atomic force microscopy (AFM). The helical
(SmCSPF

hel) phase of 1/18 at 105 �C was super cooled to the glassy
state by immersing it into liquid nitrogen. Once super cooled, this
material stays in its glassy state34 even at room temperature thus
preserving its original structure. Then the glass plates of the LC
cell were separated to access the glassy material by the AFM
probe. Figure 4 shows an AFM image of the glassy 1/18 sample in
the SmCSPF

hel phase at room temperature. The vertical stripes

0 nm 100 nm 200 nm

R

Figure 4 | AFM image of the SmCSPF
hel phase in a planar cell. The 8mm

planar cell filled with 1/18 is used for AFM study. The helical (SmCSPF
hel)

phase at 105 �C was supercooled to the glassy state by immersing it into

liquid nitrogen. Once supercooled, this material stays in the glassy state

even at room temperature preserving the original structure of the phase

under study. Then the glass plates of the LC cell were separated to enable

the glassy material to be scanned by the AFM probe. The vertical stripes

perpendicular to the rubbing direction R and smectic layer normal reveal a

modulated structure corresponding to the helix.
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perpendicular to the rubbing direction R and smectic layer
normal reveal a modulated structure with a distance of B14 nm,
corresponding to approximately three layers. This provides a
direct evidence for the existence of short-pitch helical structure
with an angle B150� between the C-directors in neighbouring
smectic layers similar to the model suggested by Pikin et al.35.
This pitch is at least 1 order of magnitude smaller than the
minimal pitch detectable by optical techniques and this explains
why the textures appear uniaxial in both homeotropic and planar
geometries. This direct evidence supports our assumption of a
helical structure in the SmCSPF

hel phase.

Discussion
The structure of the SmCSPF phase in relation to possible
SmCAPA, SmCa and de Vries structures is being considered here.
It would seem that the SmCAPA–SmCSPF transition in polar
smectic phases of achiral BC mesogens is similar (structurally and
electrically) to the electric field-induced SmCA*-to-SmC* transi-
tion in chiral ferroelectric LCs of rod-like molecules. This process
occurs through appearances of ferroelectric domains as dark/
bright fringes parallel to the smectic layer normal. Such
fringes grow in size with an increase in the electric field applied
along the smectic layer normal to complete a uniform field-
induced ferroelectric state36, although there is a small linear
pre-transitional effect37. Therefore, the intermediate grey-scale
during SmCA–SmC transition is realized as a mixture of the
antiferroelectric and ferroelectric domains (fringes) and electro-
optic response must show both the voltage threshold and a strong
hysteresis in the transmittance versus field. Most of the work on
the BC systems as far as we are aware does not contain sufficient
data on the intermediate states during the optical switching, with
the exception of those given in refs 38,39, where the threshold,
hysteresis and the fringes have been observed. In contrast to these
observations our data show hysteresis-free (Fig. 3e) and complete
analogue response, fringe-less change in the switching and
hysteresis-free apparent optical tilt angle and the effective
birefringence with field. Blinov et al.39 have reported
anomalously large pre-transitional effect in BC materials
compared with the field-induced SmCA*–SmC* switching,
which gives about 20–25% of total apparent optical angle.
Nevertheless, the rest of switching goes through fringes-domains
and so on. Therefore, the continuous switching observed in our
study is unlikely to be due to the SmCAPA–SmCSPF transition as
was reported previously.

In the anticlinic SmCAP phase, value of the effective
birefringence is Dneff (y)¼Dn0 cos2 (2y), where Dn0 is the
birefringence of the field-induced synclinic SmCSP state and for
our case (y¼ 18�, Dn0¼0.1095), Dneff (y) equals 0.088. The
effective birefringence of short-pitch helix is the same as for the
de Vries type of SmA/SmC* phases and depends on the tilt angle
as: DnðyÞ ¼ Dn0

2 3 cos2ðyÞ� 1ð Þ (ref. 40) and this gives a value of
0.094. The experimental value of 0.091 is exactly in between the
two calculated values and hence both structures are plausible.
Another strong argument in favour of de Vries and short-pitch
helical structures is a texture of the homeotropic cell (Fig. 2j,
inset) which shows a perfect extinction independent of the cell
rotation angle between the crossed polarizers. This texture is
similar to the uniaxial SmA phase (Fig. 2a), while all SmCPA

subphases show Schlieren (Fig. 2b–d, insets) textures. The
optically uniaxial structure in tilted phases is only possible for
de Vries phase or helical structures with a short sub-wavelength
helical pitch. The first of the two, the de Vries phase is also ruled
out because it shows a strongly temperature-dependent saturation
voltage27, while in our study this is almost temperature
independent over a relatively large range of 20 �C in

temperature (Supplementary Fig. 9). In addition, the two
polarization peaks were also recorded in the SmC*a phases of
chiral rod-like molecules41, having a similar short helical pitch
superstructure as reported for the SmCPa phase reported here for
achiral BC molecules.

In conclusion, the spontaneous formation of a short-pitch helix
in a tilted smectic phase of achiral BC LC is observed for
the first time. This new helical LC phase (SmCsPF

hel) exhibits a
linear electro-optic effect and shows fast grey-scale switching due
to the deformation of the helix. The fast switching with
temperature-independent tilt angle makes these non-chiral BC
LCs not only perspective candidates for high-speed, grey-scale
application in LCDs, light modulators and electro-optical
shutters, but also it provides a new mode of spontaneous mirror
symmetry breaking. Helix formation emerges at the onset of long
range polar order in weakly tilted smectic phases. It is proposed
that developing layer chirality, being the result of the orthogonal
combination of tilt, polar direction and layer normal9, couples
with conformational chirality of the achiral, but transiently chiral
BC molecules13,31. Interlayer helix formation obviously requires
weak layer coupling as provided by compounds 1/16 and 1/18
having a relatively small synclinic tilt, whereas there is no
indication of helix formation in any of the previously known
polar SmC phases (B2 phases) of BC molecules, having much
larger tilt angles and thus a stronger tilt correlation between the
layers. Also in line with the proposed relation between layer
coupling and helix formation, the SmCsPF

hel phase is a stable
phase for 1/16, whereas 1/18, having a slightly larger tilt and
consequently a stronger layer coupling compared with 1/16,
forms the SmCsPF

hel state only after application of a sufficiently
strong electric field. Obviously, helix formation is associated with
the nearly simultaneous emergence of tilt and polar order at the
transition from the paraelectric SmCs to the SmCsPF phase.
Possibilities of this phase behaving similarly to de Vries tilted
smectic or tilted SmCa phase have been considered but these
possibilities are being ruled out.

Methods
Synthesis. Compounds 1/n were synthesized in-house according to the synthetic
procedure shown in Fig. 5. Column chromatography was performed with silica gel
60 (63–200 mm, Fluka). Determination of structures and purity of intermediates
and products was obtained by NMR spectroscopy (VARIAN Gemini 2000
and Unity Inova 500, VARIAN, all spectra were recorded at 27 �C). Microanalyses
were performed using a CARLO Erba-CHNO 1102 elemental analyzer and
MALDI-TOF MS measurements were performed on a Bruker Autoflex III system
(Bruker Daltonics) operating in reflection and linear modes; the matrix solution
was prepared by dissolving trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenyli-
dene]malononitrile (DCTB, purchased from Sigma-Aldrich) in THF with a con-
centration of 20 mg ml� 1. The purity of all products was checked with thin layer
chromatography (silica gel 60 F254, Merck). CHCl3/EtOAc mixtures and CHCl3/
MeOH mixtures were used as eluents and the spots were detected by UV radiation.

For the synthesis of compounds 1/n the appropriate 4-(4-n-alkylphenoxy-
carbonyl)benzoic acid (synthesized in analogy to the procedures given in ref. 42)
(0.8 mmol) was refluxed in excess thionylchloride (25 ml) under argon atmosphere,
after 1 h the excess thionylchloride was removed under vacuum, then 4-
cyanoresorcinol43 (54 mg, 0.4 mmol), triethylamine (0.07 ml, 0.52 mmol) and
pyridine (0.05 ml) were dissolved in anhydrous CH2Cl2 (50 ml) and added to the
acid chloride and stirring is continued under reflux for 6 h. The reaction mixture is
then poured into aqueous 1 N HC1 (10 ml). The organic layer was separated and
washed twice with saturated aqueous NaHC03 solution. The combined aqueous
layers were extracted with CH2C12 (30 ml). The organic extracts were dried over
anhydrous Na2SO4, filtered, and concentrated under vacuum. The crude products
were purified by column chromatography using CHCl3/n-hexane (9/1 V/V) as
eluent followed by two crystallizations from ethanol/chloroform (9/1 V/V) mixture
to give the desired final compound (1/n) as colourless crystals.

4-Cyano-1,3-phenylene bis[4-(4-hexaadecylphenoxycarbonyl)benzoate] (1/16).
Yield 83%. 1H-NMR (500 MHz, CDCl3): d/p.p.m. 8.40–8.30 (m, 8H, Ar-H), 7.84
(d, 3JH–H¼8.5 Hz, 1H, Ar-H), 7.61 (d, 4JH–H¼2.1 Hz, 1H, Ar-H), 7.38 (dd, 3JH–

H¼8.5 Hz, 4JH–H¼2.1 Hz, 1H, Ar-H), 7.27–7.21 (m, 4H, Ar-H), 7.15 (m, 2H, Ar-H),
7.14 (m, 2H, Ar-H), 2.67–2.60 (m, 4H, Ar-CH2), 1.67–1.60 (m, 4H, CH2), 1.37–1.22
(m, 52H, CH2), 0.88 (t, 3JH–H¼6.9Hz, 6H, CH3). 13C-NMR (101 MHz, CDCl3):
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d/p.p.m. 164.08, 163.04, 162.72, 154.52, 153.22, 148.56, 148.53, 140.95, 140.89, 134.91,
134.79, 134.06, 132.55, 132.16, 130.60, 130.45, 130.38, 129.39, 129.37, 121.09, 121.06,
120.09, 117.23, 114.51, 104.57, 35.53, 32.06, 31.58, 29.83, 29.81, 29.73, 29.64, 29.49,
29.43, 22.83, 14.25. MALDO-TOF MS (m/z) [MþNa]þ calcd. for C67H85NO8Na,
1054.6; found 1054.6; analysis (calcd. for C67H85NO8) C 77.72 (77.95), H 8.13 (8.30),
N 1.38 (1.36).

4-Cyano-1,3-phenylene bis[4-(4-hexaadecylphenoxycarbonyl)benzoate] (1/18).
Yield 58%. 1H-NMR (500 MHz, CDCl3): d/p.p.m. 8.40–8.25 (m, 8H, Ar-H), 7.82
(d, 3JH–H¼8.6 Hz, 1H, Ar-H), 7.59 (d, 4JH–H¼2.2 Hz, 1H, Ar-H), 7.36 (dd, 3JH–

H¼8.5 Hz, 4JH–H¼2.2 Hz, 1H, Ar-H), 7.23 (m, 4H, Ar-H), 7.13 (m, 2H, Ar-H), 7.12
(m, 2H, Ar-H), 2.67–2.54 (m, 4H, Ar-CH2), 1.71–1.54 (m, 4H, CH2), 1.38–1.18
(m, 60H, CH2), 0.86 (t, 3JH–H¼7.0 Hz, 6H, CH3). 13C-NMR (126 MHz, CDCl3):
d/p.p.m. 164.20, 163.13, 162.81, 154.56, 153.24, 148.57, 148.54, 141.01, 140.95,
134.89, 134.77, 134.12, 132.54, 132.15, 130.63, 130.48, 130.42, 130.42, 129.44,
129.42, 121.11, 121.08, 120.14, 117.26, 114.54, 104.51, 77.24, 35.39, 31.91, 31.46,
29.69, 29.67, 29.66, 29.59, 29.50, 29.35, 29.28, 22.68, 14.10. MALDO-TOF MS (m/z)
[MþNa]þ calcd. for C71H93NO8Na, 1110.7; found 1110.7; analysis (calcd. for
C71H93NO8) C 78.20 (78.34), H 8.57 (8.61), N 1.28 (1.29).

Optical and calorimetric investigations. Phase transitions were determined by
polarizing microscopy (Leica DMR XP) in conjunction with a heating stage
(FP 82 HT, Mettler) and controller (FP 90, Mettler) and by differential scanning
calorimetry (DSC-7, Perkin Elmer) at heating/cooling rates of 10 K min� 1

(peak temperatures).

X-ray diffraction. XRD patterns of the aligned samples were recorded with a
2D detector (HI-STAR, Siemens or Vantec 500, Bruker). Ni-filtered and pin
hole-collimated Cu-Ka radiation was used. Alignment was achieved by slow
cooling (0.1 K min� 1) of a small droplet of the compound on a glass plate and took
place at the sample–air interface. The sample to detector distance was 9.0 cm and
26.8 cm for the wide angle and small angle measurements, respectively, and the
exposure time was 15 min.

Sample preparation for optical and electro-optical studies. The substrates of
the planar cells for investigating the electro-optic response are coated with polymer
RN 1175 (Nissan chemicals, Japan) and the coated surfaces are subsequently
rubbed with a rotating commercial rubbing machine. The indium tin oxide
(ITO)-coated glass substrates for the homeotropic cells are further coated with
AL60702 polymer (JSR Korea). The gap between the electrodes for the in-plane
field is 80mm. The cell thickness was controlled by Mylar spacers of different
thicknesses and the cell separation was measured by the optical interference
technique. LC cells of these samples are studied using polarizing optical microscope
(Olympus BX 52) equipped with an INSTEC’s hot stage, temperature is controlled
by Eurotherm 2,604 controller. The system is designed to obtain a temperature
stabilization of the sample to within ±0.02�.

Dielectric spectroscopy. Dielectric relaxation measurements over a frequency
range 1 Hz–10 MHz were performed using a broadband Alpha High Resolution
Dielectric Analyser (Novocontrol GmbH, Germany). The glass substrates coated
with low sheet resistance (20O per square) ITO electrodes were used to make cells.
The sheet resistance of the cell substrates is relatively low and thus the peak
frequency due to the sheet resistance of the ITO in series with the capacitance of
the cell is shifted to a frequency much higher than 1 MHz. The experimental set-up
is calibrated by the prior measurements of the capacitance of the empty cell. The
measurement is carried out under the application of weak field 0.1 V mm� 1. The
temperature of the sample is stabilized within ±0.05 �C. The dielectric spectra are
analysed using Novocontrol WINDETA programme. Temperature dependence of
the dielectric strength (de) and the relaxation frequency (fR), are obtained by fitting
the dielectric spectra to the Havriliak–Negami (H–N) equation:

e�ðoÞ ¼ e0 � ie00 ¼ e1 þ
Xn

j¼1

dei

1þ iotj
� �ai

� �bi
� isdc

e0o
ð2Þ

Here eN is the high frequency dielectric permittivity depending on the electronic
and atomic polarizability, j is the number of relaxation processes required for the fit
and it varies from 1 to n, o¼ 2pf (frequency in Hertz) is the angular frequency, e0

is the permittivity in free space, tj is the relaxation time of the jth relaxation process,
dej is the dielectric relaxation strength and aj and bj, respectively, are the symmetric
and asymmetric broadening parameters of the jth process related to the distribution
of relaxation time. The sdc/e0o represents the contribution of dc conductivity to e0 0 .

Atomic force microscopy. The structure of helical phase was studied by AFM on
a Veeco Nanoscope-IIIa system (Digital Instruments). The samples for AFM study
were prepared by filling 1/18 LC material in planar cells. The helical (SmCSPF

hel)
phase at 105 �C was super cooled to the glassy state by immersing it into liquid
nitrogen. Once super cooled, this material stays in the glassy state even at room
temperature preserving the original structure. Then the glass plates of the LC cell
were separated to access the glassy material by the AFM probe.
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