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Abstract: Objective: Increasing efforts are being made towards pharmacologic activation of brown 
adipose tissue (BAT) in animals and humans for potential use in the treatment of obesity and diabe-
tes. We and others have reported a number of animal studies using either experimental or therapeutic 
drugs. There are now efforts to translate these findings to human studies. The goal of this review is to 
evaluate the various drugs currently being used that have the potential for BAT activation. 

Methods: Drugs were classified into 4 classes based on their mechanism of action. Class 1 drugs in-
clude the use of �3 adrenoceptor agonists for BAT activation. Class 2 drugs include drugs that affect 
norepinephrine levels and activate BAT with the potential of reducing obesity. Class 3 includes acti-
vators of peroxisome proliferator-activated receptor-� in pursuit of lowering blood sugar, weight loss 
and diabetes and finally Class 4 includes natural products and other emerging drugs with limited in-
formation on BAT activation and their effects on diabetes and weight loss. 

Results: Class 1 drugs are high BAT activators followed by Class 2 and 3. Some of these drugs have 
now been extended to diabetes and obesity animal models and human BAT studies. Drugs in Class 3 
are used clinically for Type 2 diabetes, but the extent of BAT involvement is unclear. 

Conclusion: Further studies on the efficacy of these drugs in diabetes and measuring their effects on 
BAT activation using noninvasive imaging will help in establishing a clinical role of BAT. 

Keywords: Brown fat, molecular imaging, diabetes, obesity, brown adipose tissue, BAT, PET. 

1. INTRODUCTION 

Brown adipose tissue (BAT) in mammals helps to main-
tain body temperature during prolonged exposure to cold 
temperature by generating heat using energy in the body. 
This extraordinary metabolic capacity has the potential of 
regulating body fat stores and holds promise in combating 
obesity and diabetes [1-3]. Mitochondria in the brown adipo-
cytes express uncoupling protein-1 (UCP1) which uses lipids 
and carbohydrates to generate heat by uncoupling electron 
transport from oxidative phosphorylation [4]. Activation of 
brown adipocytes results in unrestrained oxidation by draw-
ing lipids and carbohydrates from outside the cell [5]. The 
role of BAT in understanding the mechanism of insulin sen-
sitivity [6], lowering adiposity and improving type-2 diabe-
tes [7], are being pursued and therefore make it a valuable 
target to study pathogenicity of obesity and diabetes. 

Norepinephrine contained in neuronal fibers in BAT in-
teract with �3 adrenoceptors (�3AR) present in the adipocyte 
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cell surface [8]. This results in an increase in cyclic AMP 
(cAMP) which subsequently results in overexpression of 
UCP1 resulting in the enhancement of glycolysis [9]. Thus, 
agonist-mediated activation of �3AR on brown adipocytes 
has been evaluated as a strategy for studying BAT biology, 
and as a potential therapeutic approach for diabetes and obe-
sity. Studies on presynaptic proteins which can elevate nore-
pinephrine levels (e.g. norepinephrine transporter, NET) or 
at the level of secondary messenger changes (e.g. adenylyl 
cyclase) and peroxisome proliferator-activated receptor-�
(PPAR-�) are limited and less understood. Other potential 
modulating factors of UCP1 levels have been recently re-
viewed [10]. 

Due to the growing incidence of obesity and diabetes 
globally, studies on BAT across different species are being 
pursued with great urgency. Several recent reviews have 
evaluated the potential role of BAT in energy use. These 
reviews have summarized the various approaches of imaging 
BAT and their shortcomings [11]. Other reviews have 
pointed to the value of diet-induced thermogenesis [12]. 
More recently, pharmacological strategies for BAT recruit-
ment have been reported as a target of obesity and insulin 
sensitivity [13, 14]. 

1875-6417/16 $58.00+.00 © 2016 Bentham Science Publishers
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We have previously reported several studies on drug-
induced BAT activation [15]. This review summarizes our 
findings on BAT activation by various drugs used in the ex-
perimental and therapeutic approaches along with other pub-
lished findings. It is by no means exhaustive, and at the time 
of writing this review, there were more than 9000 citations 
on “brown adipose tissue” in Pubmed and over 2200 oc-
curred in the last 5 years. 

2. COLD-INDUCED BAT ACTIVATION 

Thermogenesis has been known for several decades and 
various studies have been reported on increased metabolic 
activity of BAT. Assessing the potential of BAT received an 
impetus from resolving the uptake of 2-deoxy-2-18F-fluoro-
D-glucose (18F-FDG) in human BAT positron emission 
tomography/computed tomography (PET/CT) studies [16-
18]. Around this time, BAT was visualized in rats using 123I-
MIBG, an analog of norepinephrine [19], and more recently, 
norepinephrine transporters were visualized in BAT using 
11C-MRB and 11C-TAZA [20, 21]. Additional studies have 
also included the use of 11C-acetate, 11C-palmitate and radio-
labeled fatty acids as metabolic substrates [22, 23]. Measur-
ing metabolic activity of BAT and assessing factors that in-
fluence BAT activity are important for the development of 
novel strategies in the regulation of body weight. BAT is 
active when its thermogenic function is stimulated [24], and 
accumulation of metabolic substrates such as 18F-FDG, 11C-
acetate and 11C-palmitate is a consequence of UCP1 activity 
[9]. Activated BAT may thus have therapeutic potential to 

combat both diabetes and obesity with its ability to reduce 
plasma triglyceride levels [25]. The well-established litera-
ture of BAT biology in humans and animal models is now 
supported by quantitative analysis of 18F-FDG PET/CT im-
aging data [15, 27-29]. 

Cold temperatures increase 18F-FDG uptake in activated 
rodent BAT [30], and studies have been performed in both 
humans (~16 oC) [31] and rodents (~4 oC) [28], with some 
degree of success in demonstrating BAT activation [26]. 
Long-time exposure to cold temperature prior to PET was 
the only method until recently to study BAT in humans--a 
function mediated by the �-adrenergic system [31]. The BAT 
prevalence from these studies ranged from 30% to 95%, 
which is higher than those of the retrospective studies [26, 
31, 32]. 

3. DRUG-INDUCED BAT ACTIVATION 

In order to activate BAT at ambient temperatures, several 
pharmacological agents have been reported [27, 33-35] and 
some of these findings have been reviewed recently [13, 14, 
36]. In this review, the various experimental and therapeutic 
drugs used for BAT related studies have been divided into 4 
major classes. The classification is primarily based on the 
most probable site of action of the drugs. Fig. (1) depicts 
classification of the drugs based on their site of action. Class 
1 drugs are the �3AR agonists which act on the �3AR lo-
cated on the adipocyte cell surface. These drugs have been 
used in animal and human studies. Class 2 consists of drugs 
that have an effect on altering the norepinephrine levels or 

Fig. (1). Schematic of Sites of Drug Action: Class 1 drugs act on the adipocyte cell membrane bound �3 adrenergic receptor (�3AR) trig-
gering a cascade of events via cAMP. Class 2 drugs act on the norepinephrine transporter (NET) on the sympatheic nerve terminal and in-
crease norepinephrine (NE) levels which then stimulates �3AR. Class 3 drugs activate peroxisome proliferator-activated receptor gamma 
(PPAR�). Class 4 drugs act on various pathways within the adipocyte. Abbreviations: AC: adenylate cyclase; Gs: stimulatory G-protein;
ATP: adenosine triphosphate; cAMP: cyclic adenosine monophosphate; PKA: protein kinase A; TG: triglycerides; FFA: free fatty acids; 
UCP-1: uncoupling protein-1(found in mitochondria); Glu: glucose.  Norepinephrine. 
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directly mimicking norepinephrine effect or by blocking the 
norepinephrine transporter (NET) located on the sympathetic 
nerve terminal. Class 3 drugs are activators of peroxisome 
proliferator-activated receptor-� (PPAR-�) and act within the 
adipocyte. Class 4 are other drugs including natural products 
on which information is limited or is now emerging. 

3.1. Class 1 Drugs: �3 Adrenoceptor Agonists  

Agonists for �3AR are currently used clinically for over-
active bladder (OAB) [37]. The �3AR are G-protein coupled 
receptors (GPCR) and are found in significant levels on 
brown adipocytes [38-41]. BAT is innervated by sympathetic 
nerves containing norepinephrine which activate �3AR. A 
significant effort has been made to evaluate �3AR selective 
agonists as possible therapeutic agents for the treatment of 
obesity [42].  

Table 1 shows a list of �3AR selective agonists which are 
derivatives of the “2-hydroxyethylamino” backbone mimick-
ing norepinephrine. BRL 37344, an active metabolite of 
BRL 35135 is known to be selective for adipocyte lipolytic 
response [43]. Furthermore, 2-deoxy-[3H]-glucose has been 
used to investigate glucose utilization index (GUI) of BRL-
35135. It has been shown that chronic treatment with BRL 
37344 causes a 34 fold increase in basal GUI of BAT with 
no effect on GUI of other tissues [44]. BRL 35135 was also 
effective in improving glucose tolerance in genetically obese 
(ob/ob) mice and obese Zucker (fa/fa) rats at doses that had 
no significant anti-obesity activity [45]. 

CL316,243, (R,R)-5-[2-[2,3-(3-chlorphenyl)-2-hydroxy-
ethyl-amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate, di-
sodium salt is a �3AR selective agonist [34,46]. CL316,243 
activated interscapular BAT (IBAT), cervical, periaortic and 
intercostal BAT, which were clearly visualized by PET (Fig. 
2) [29]. Because of the selective nature of CL316,243, it may 
be inferred that the increase in 18F-FDG uptake occurred due 
to stimulation of the �3AR. This is consistent with the re-
ported effects of CL316,243 on overall energy expenditure 
in BAT [33]. CL316,243 promotes BAT mitochondrial pro-
liferation and energy expenditure in brown fat is capable of 
ranging over many orders of magnitude, controlled primarily 
by sympathetic stimulation mediated by rapid changes in 
UCP1 intrinsic activity [47]. In initial human studies with 
CL316,243 energy expenditure after 8 weeks in young lean 
males did not differ from baseline [48]. Human studies using 
CL316,243 were discontinued due to poor bioavailability of 
the drug. 

Three closely related derivatives, rafabegron, mirabegron 
and solabegron are being pursued for clinical use in OAB 
and irritable bowel syndrome (IBS) [37]. Rafabegron exhib-
ited some increase (~50 kcal/ day) in 24-h energy expendi-
ture (EE) at highest dose in obese men and women [49]. 
Solabegron which is being pursued for IBS has not been 
studied for effects on EE. Mirabegron, a �3AR selective 
agonist [50] is approved for use in OAB [51]. Mirabegron 
was shown to activate rat [52] IBAT and human [53] BAT 
metabolic activity as measured by 18F-FDG PET/CT. Thus, 
mirabegron-induced  increased  glucose metabolism in BAT  

Fig. (2). PET Images from Class 1 Drug Effects on Rat BAT: CL316,243 induced activation of BAT is seen in the PET image (B) and 
regional localization confirmed by PET/CT (A). Interscapular, periaortic, cervical and intercostal BAT regions are evident. The bilateral 
structure of activated interscapular BAT (IBAT) is evident in the ventral (C), dorsal (D) and caudal (E) views of IBAT (Figure adapted from 
Mirbolooki et al., 2011) [29]. 
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Table 1. Class 1 Drugs: �3 Adrenoceptor Agonists. 

R1
N
H

R2

R3

OH

Drug R1 R2 R3 Status

BRL37344

*Cl
CH3

O CO2H

* Increases glucose utilization 
index [44]. No human studies 

reported.

CL316,243

*Cl
CH3

* CO2
-Na+

CO2
-Na+

Animal studies continue. Hu-
man studies discontinued due 
to bioavailability [29, 33, 46, 

48].

Rafabegron

*Cl
CH3 O CO2H

NH

*
Potential to treat overactive 

bladder [49].

Mirabegron

*Cl
H

O

*
O

N

S

NH2

Clinically used for overactive 
bladder [37, 52, 53]. BAT 

activated in rats and humans.

Solabegron

*Cl
H

H
N

CO2H
*

Clinically used for overactive 
bladder [37].

Amibegron

*Cl
H

* O
O

O Initial clinical trial for depres-
sion discontinued [61].

ICID7114

O
*

H

O

O

*

N
H

OCH3

O
BAT activation in dogs. No 
effect on humans [57, 58].

ZD7114

O
*

H N
H

OCH3

O

O

O*

No effect on energy expendi-
ture. No further studies re-

ported [54-56].

Talibegron 

(ZD2079)

*
H

CO2H

O*

Little effect on energy expen-
diture. No further studies re-

ported [56].
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Table 1. contd… 

Drug R1 R2 R3 Status

L-796568
N

*
H

*

N
H

S

O

O S

N
CF3

Little effect on energy expen-
diture. No further studies re-

ported [59].

across species is of potential interest for obesity and diabe-
tes. 

ZD2079 (talibegron) and ZD7114 are selective �3AR 
drugs which increase EE via non-shivering and reduced 
weight gain and activated thermogenesis [54]. ZD7114 also 
has been reported to have antagonist properties at �3AR in 
isolated rat ileum [55]. ZD7114 had no effect on 24 h EE in 
obese women and men, while ZD2079 had a very small 
stimulatory effect on EE [56]. Their value is for weight loss 
or diabetes is therefore questionable. The structurally similar 
ICID7114 has been reported to stimulate BAT and oxygen 
consumption in canine studies [57, 58]. However, no further 
reports on its effects on weight loss or diabetes have ap-
peared. In the case of the somewhat larger molecule, L-
796568, after a 28-day treatment with L-796568 in nondia-
betic men no major effect was observed on lipolytic or ther-
mogenic measures [59]. 

Other clinically used �3AR agonists, amibegron (SR 
58611A) [60, 61] have been pursued as antidepressants in 
clinical trials, but have now been discontinued. �3 adreno-
ceptors are mostly found in BAT, white adipose tissue, myo-
cardium, skeletal muscle, and liver [40, 62]. Expression of 
�3 adrenoceptor mRNA in the brain is lower than in BAT 
[63]. It is unclear if the low brain concentration of �3AR 
affected the poor outcome with amibegron. 

3.2. Class 2 Drugs: Norepinephrine Altering Drugs 

Norepinephrine activates �3AR and cold temperatures 
may promote metabolism indirectly by elevating norepineph-
rine levels [64, 65]. Uptake of 2-[3H]-DG (glucose metabolic 
index) in BAT was elevated with increasing doses of norepi-
nephrine [66]. Thus, the capacity of BAT thermogenesis is 
increased with norepinephrine [67]. In UCP1 ablated mice, 
addition of norepinephrine in brown adipocytes resulted in 
no increase in oxygen consumption rate. It has been shown 
that BAT activity increases with ephedrine (structurally re-
lated to norepinephrine, Table 2) in lean but not in obese 
participants. The change in BAT activity after ephedrine 
compared with placebo was negatively correlated with vari-
ous indices of body fatness [68]. Chronic ephedrine treat-
ment reduced body fat content, but this was not associated 
with an increase in BAT activity; chronic ephedrine sup-
pressed BAT glucose disposal, suggesting that treatment 
decreased, rather than increased, BAT activity [69]. 

Atomoxetine is a potent and highly selective blocker of 
presynaptic NET that is used for treatment of attention 
deficit hyperactivity disorder (ADHD) [70]. Atomoxetine 
leads to increased synapse concentrations of norepinephrine 
and therefore an increase in adrenergic neurotransmission 
[71]. Uptake of a highly selective NET ligand, 11C-MRB, 

Uptake of a highly selective NET ligand, 11C-MRB, suggests 
the existence of these transporters in BAT [20]. Uptake of 
11C-TAZA via the NET in the IBAT as well as other BAT 
regions was also very evident as can be seen in the Supple-
mentary (Fig. 1) using PET [21]. Atomoxetine effects on 
BAT metabolism in rats were quantified by 18F-FDG PET 
and have recently been reported [72]. This increase is sub-
stantially higher than that of ephedrine [27]. Propranolol 
inhibited atomoxetine-induced BAT activation to control 
levels and confirmed the likelihood of action of atomoxetine 
via the �3AR. There are few reports introducing atomoxetine 
as a weight loss agent. A preliminary study to evaluate short-
term anti-obesity efficacy demonstrated modest short-term 
weight loss in obese women [73]. In a trial on outpatients 
with binge-eating disorder, atomoxetine was found to be 
efficacious [74]. However, it was not effective for weight 
loss in those who have gained weight on either clozapine or 
olanzapine [75]. 

Nisoxetine, another potent and selective inhibitor of NET 
uptake was shown to bind IBAT [76]. Increased IBAT bind-
ing density from angiotensin II infusion led to promising 
results of body weight reduction due to increased sympa-
thetic neurotransmission [77]. Sibutramine another NET 
reuptake inhibitor exhibited thermogenic effects but had car-
diovascular side effects [78]. Fibromyalgia patients on an-
other NET reuptake inhibitor, milnacipram showed an ap-
proximately 5% weight loss in 3-6 months [79].  

3.3. Class 3 Drugs. PPAR-�  Activators 

Activation of PPAR� by the glitazone class of drugs (also 
referred as thiazolidinediones) affects carbohydrate and lipid 
metabolism by several mechanisms and have been pusued 
for type 2 diabetes [80]. Given the role of brown adipocytes 
in the enhancement of energy expenditure, promotion of 
brown fat adipogenesis by thiazolidinediones could contrib-
ute to the beneficial effects of these drugs on insulin sensitiv-
ity in humans. Table 3 shows the structural similarities of the 
thiazolidinediones.  

Rosiglitazone (BRL-49653), has been shown to promote 
differentiation of the brown pre-adipocyte cell line and to 
increase rat IBAT mass. Rosiglitazone treatment of human 
pre-adipocytes prepared from all depots resulted in increased 
levels of UCP1 mRNA [81]. Previous studies have shown 
that rodents treated with high doses of troglitazone, another 
type of thiazolidinedione, increased IBAT [82]. 

Ciglitazone decreased blood glucose, triglycerides, and 
food intake without affecting body weight in obese hyper-
glycemic mice. It did show a decrease in human blood sugar 
but is not currently used in any medication form [83]. Trogli- 
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Table 2. Class 2 Drugs:  Norepinephrine Elevators. 

Drug Name Specific Target(s) Structure Current Status

Norepinephrine Increases NE
HO

HO

NH2

OH
Treatment of critically low blood 

pressure. BAT activation reported in 
rats [64-67].

Ephedrine Increases NE-like activity (from 
natural product ephedra)

CH3

HN
CH3

OH

BAT activation reported in rats. BAT 
activated in lean humans [68].

Atomoxetine NET blocker increases NE 
levels

H
N O Rodent BAT activation [72]. 

Small change in weight in obese 
women [73].

Nisoxetine NET blocker increases NE 
levels

HN

O
O

H BAT activation reported in rats 
[76,77]. No human studies on BAT 

activation.

Sibutramine Serotonin-norepinephrine up-
take inhibitor

N

Cl

Used to reduces apetitte and promote 
weight loss.  Cardiovascular effect 

concern [78, 128].

Milnacipram Serotonin-norepinephrine up-
take inhibitor

NH2

N

O

Reduces body weight in fibromyalgia 
patients [79].

Table 3. Class 3 Drugs: PPAR-� Activators. 

O
S

O R1HN
O

Drug R1 Status

Rosiglitazone 
N

*
Enhanced BAT lipogenesis. Human studies have been reported. Still available 

in US, but with serious side-effects [81]. 

Ciglitazone * Decreased blood glucose, triglycerides, and food intake affecting body weight 
in obese hyperglycemic mice [83]. Not currently used in any medication form.

Troglitazone 

OH

O
*

Was clinically used as an anti-diabetic drug, now discontinued. In-
creases insulin sensitivity in non-insulin-dependent diabetes mellitus but with 

serious liver side effects [84]. 

Pioglitazone 
* N

Currently used to treat diabetes mellitus 2, with bladder side-effects in some 
cases [85, 86]. 
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Table 3. contd… 

Drug R1 Status

Balaglitazone N

N

O

*

Lowered glucose levels.  Effects on glucose levels and HbA(1c) in type 2 
diabetes patients [85, 86]. 

Rivoglitazone 
N O

N
*

Lowers glucose levels by improving insulin resistance in diabetic animal mod-
els [87]. Undergoing trials in treatment of type 2 diabetes mellitus [88]. 

Darglitazone 

replaces the ether side chain 

N

O
*

O
BAT size increased with altered morphology in rats. No human studies re-

ported. Serious side-effects [89]. 

tazone improves GLUT4 expression in obese type 2 diabetic 
rat model and increases insulin sensitivity in non-insulin-
dependent diabetes mellitus but with serious liver side ef-
fects [84]. It was used as an anti-diabetic, but has now been 
discontinued. Pioglitazone is currently used to treat diabetes 
mellitus and has urinary bladder side-effects in some cases 
[85,86]. It has been shown to play a role in remodeling of 
adipocytes in the rat model [87]. Balaglitazone lowered glu-
cose levels and did not affect fluid retention or bone forma-
tion in obese rats. It had effects on blood glucose levels and 
HbA1c in type 2 diabetes patients [85, 86]. Rivaglitazone 
also lowers glucose levels by improving insulin sensitivity in 
diabetic animal models. Improved glycemic control in type 2 
diabetic patients short time. Rivoglitazone is undergoing 
trials in treatment of type 2 diabetes mellitus to asses poten-
tial health risks with this drug [87, 88]. Darglitazone exhib-
ited an increase in BAT with altered morphology in rats [89]. 
Clinical development of darglitazone has been discontinued.  

Thus, pioglitazone is currently the most promising agent 
in this class of drugs. Although blood sugar has been low-
ered by pioglitazone, its ability to induce browning of adipo-
cytes and assist in weight loss has yet to be demonstrated, 
No PET imaging studies to study BAT activation (either 
animal or human) using pioglitazone have been reported. It 
may be useful to evaluate if BAT is activated in vivo using 
pioglitazone and compare these findings with those of mira-
begron from class 1 drugs. 

3.4. Class 4 Drugs. Other Products/Natural Products 

Intraperitoneal injection of nicotine causes the release of 
catecholamines, including norepinephrine, which stimulates 
thermogenesis in BAT for energy expenditure [90]. Nicotine 
causes increases in 18F-FDG uptake in BAT, and the effect is 
further enhanced when nicotine is combined with ephedrine 
[27]. These results suggest that nicotine stimulates norepi-
nephrine turnover and BAT thermogenesis while also pro-
moting resting metabolic rate, all of which contribute to the 
mitigation of obesity [91]. 

Forskolin is known as an inducer of thermogenic re-
sponse in BAT [92]. It activates the adenylyl cyclase enzyme 
directly and increases the intracellular levels of camp [93]. 

Thus, forskolin is capable of enhancing BAT metabolism as 
measured by 18F-FDG PET/CT [15]. 

Caffeine significantly elevated BAT temperature with 
less effect on core temperature, and oxygen consumption in 
BAT mitochondria suggesting caffeine activates BAT ther-
mogenesis [94]. Adenosine receptors, A2A have been sug-
gested to play a role in BAT activation [95]. It remains to be 
demonstrated if interaction of caffeine with adenosine recep-
tors plays a role on its effects on BAT. 

Previous studies have shown a significant reduction in 
adiposity after prolonged ingestion of capsinoids (capsacin) 
in humans. BAT is involved in the capsinoid-induced in-
crease in energy expenditure, as presented in small rodents. 
Increased UCP1 expression was also shown in rats treated 
with capsinoids for 2 weeks [96]. Capsinoid ingestion in-
creases energy expenditure through the activation of brown 
adipose tissue in humans [97]. 

Curcumin is a yellow pigment found in turmeric and has 
been investigated as a treatment for obesity-related diseases. 
It interacts directly with adipocytes, pancreatic cells, hepatic 
stellate cells, macrophages, and muscle cells. Curcumin has 
been used to reverse insulin sensitivity, hyperglycemia, hy-
perlipidemia, and other symptoms linked to obesity. It also 
has the capability of binding to PPAR-� in order to stimulate 
differentiation of human adipocytes [98]. It has been further 
demonstrated to improve cold tolerance in mice and to pro-
mote �3 adrenoceptor gene expression in inguinal WAT. 
Elevation of plasma norepinephrine levels were enhanced 
with curcumin treatment [99]. 

Rimonabant, a cannabinoid CB1 receptor drug caused 
weight loss which was thought to due to elevated BAT tem-
perature mediated by the peripheral endocannbinoid system 
which was confirmed by the peripheral CB1 receptor an-
tagonist AM6545 [100, 101]. However, rimonabant has been 
withdrawn from the market due to side effects [102]. Use of 
peripherally acting CB1 receptor drugs, such as AM6545 in 
PET imaging may be useful for further evaluation of the role 
of this target receptor. 

ShK-186, a selective Kv1.3 peptide inhibitor, exhibits 
robust therapeutic effects in a mouse model of diet-induced 
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obesity and insulin sensitivity [103]. ShK-186 activated BAT 
as evidenced by increased glucose uptake, enhanced �-
oxidation, and elevated transcription of the UCP1 gene in-
volved in BAT thermogenesis. In mice fed an obesity-
inducing diet, ShK-186 reduced weight gain despite vora-
cious calorie consumption. These beneficial changes may be 
associated with elevated membrane remodeling and a simul-
taneous increase in PPAR� expression and the metabolites 
that activate PPAR�. Since PPAR� agonists improve insulin 
sensitivity and diabetes control [104], enhanced PPAR� sig-
naling in ShK-186-treated mice may contribute to the pep-
tide’s therapeutic effects. 

4. THERAPEUTIC POTENTIAL 

4.1. Class 1 Drugs 

The presence of �3AR in human BAT allows for a tar-
geted therapeutic strategy [62]. However, concerns such as 

selectivity and bioavailability of the drugs as well as meas-
ureable effects on weight loss have yet to be fully understood 
for class I drugs. CL 316,243 has only a 10-fold selectivity 
for human �3 over �2 adrenoceptor and �3AR mRNA is also 
expressed in the human heart [105], which increases the con-
cerns regarding its cardiovascular side effects. However, CL 
316,243 has not been reported to affect heart rate, systolic 
and/or diastolic blood pressures, ECG intervals or to cause 
development of tremors [48]. Newer drugs such as mirabe-
gron, targeting this receptor have now been approved for 
clinical use in OAB but their potential for the treatment of 
type 2 diabetes has yet to be established [39]. 

Chronic CL316,243 administration has been shown to 
have an anti-obesity effect in mice and rats [33,106,107]. 
Quantitative analysis of 18F-FDG uptake in rats treated with 
CL316,243 has provided evidence on the ability of acute 
�3AR stimulation by CL316,243 to increase BAT metabo-
lism in vivo using PET. In the early stages of exposure to 

Table 4. Class 4 Drugs: Natural and Other Products. 

Drug Name Specific Target(s) Structure Current Status 

Nicotine 
Agonist at nicotinic  

receptors 
N

H

N

BAT activated in rats [90, 91]. 

Forskolin 
Adenylate cyclase activator 

to produce cAMP 

O

O

O

OH
O

HO

H

HO
BAT activated in mice [15]. 
Extracts of forskolin used for 

obesity [139]. 

Caffeine 
Potential mechanism via

adenosine receptors 

N

NNO

N
H3C

O

CH3

CH3

Activates BAT thermogenesis 
[94]. 

Capsacin 
(Capsinoids) 

Increases UCP1 expression 

O

H
N

O

HO

Increases EE by activation of 
BAT [97]. 

Curcumin 
Various mechanisms in-

cluding PPAR�
O

O

HO

O

OH

O

CH3CH3

Stimulates human adipocyte 
differentiation [98]. 

Rimonabant 
(SR141716) 

Cannabinoid CB-1 receptor 
inverse agonist 

Cl

Cl

N N

Cl

N
H

N
O

May promote weight loss 
[100,101]: problems with CNS 
side effects. Drug discontinued 

[102]. 

SHK186 
Kv1.3 potassium ion-

channel blocker; may act 
via PPAR�

35-amino acid peptide derivative 
BAT activation reported in DIO 
mice [103]. Human trials ongo-

ing for MS [146]. 

Fibroblast Growth Factor 
21 (FGF21) 

Endocrine factor present in 
liver, pancreas and adipose 

tissue 

Secreted protein, 210 amino acid (mouse), 209 amino 
acids (humans) 

Energy expenditure may be 
associated with BAT [135, 149]. 
Analogs pursued as antidiabetic 

agents [150]. 
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cold temperatures, mobilization of fatty acids from WAT is 
also known to be a primary source for activation of BAT 
rather than the breakdown of fat depot stored in BAT 
[108,109]. Our histology studies showed that the number of 
lipid vacuoles in BAT was substantially decreased after 
stimulation by CL316,243, while there was no significant 
change in WAT lipid content between the two conditions 
[29]. Therefore, in acute administration of CL316,243, glu-
cose metabolism and lipolysis of stored lipids in BAT are 
primary sources for activation of the tissue rather than the 
mobilization of fatty acids from WAT. Although its in vitro 
binding to the human �3AR is similar to that of the rodent 
receptor, it is only a partial (60%) agonist at the human 
�3AR —in contrast to the rodent receptor, where CL 
316,243 is a full agonist— and its bioavailability is poor, 
with ~10% of an oral dose being absorbed [48]. 

�3 adrenoceptor agonist mediated BAT activation using 
18F-FDG PET/CT has been investigated in Zucker lean (ZL) 
and obese (ZF) rats. Brain 18F-FDG PET studies in the ZF 
model have been reported to study the central effects of 
leptin-receptor deficiency [110,111]. CL316,243 activated 
BAT in ZL up by 4-fold and in ZF up by two-fold compared 
to saline [112]. The decreased activation was consistent with 
lower �3 adrenoceptor levels in ZF rats [113]. Despite the 
lower �3 adrenoceptor levels and reduced G-protein cou-
pling in the ZF rat model, the agonist CL316,243 showed 
some measureable effects on BAT. The CT scans showed a 
significantly low opacity in ZF compared to ZL, suggesting 
low abundance of brown adipocytes in the IBAT region.
There is renewed focus on the development of therapeutics 
to restore leptin receptor function in order to address human 
obesity [114]. Thus, the leptin-receptor deficient fa/fa rat 
model demonstrates that the residual �3AR conserved in this 

rat model are functional with respect to enhancing metabolic 
activity. In addition, the coupling of the �3AR with the G-
protein is reportedly reduced in white adipocytes [115]. Ab-
normalities in central metabolism regulation and neuroendo-
crine metabolism may also contribute to BAT thermogenesis 
impairment [113]. Chronic �3AR drug treatment studies of 
this rat model may be of value to study restoration of brown 
adipocytes.

In an early study done on type 1 diabetes mellitus 
(TIDM) streptozotocin-treated rat model, results show that 
the metabolic capacity of IBAT in streptozotocin-diabetic 
rats is decreased [116]. Our recent findings confirmed the 
loss of metabolic activity in streptozotocin-diabetic rats 
[117]. Comparing the two diabetic models, it appears that 
the reduction in IBAT activity in the Zucker fat rat may be 
driven by impaired �3AR signaling, whereas for the reduc-
tion in the streptozotocin-treated rats, the impairment may 
be driven by mitochondrial dysfunction. Our results also 
suggest that IBAT is activated by stimulation of �3AR in 
this T1DM rat model and is able to enhance metabolic activ-
ity. However, attempts to alter norepinephrine levels using 
atomoxetine had little effect, possibly due to impaired nore-
pinephrine turnover. Blockage of the insulin receptors in 
BAT transplant streptozotocin-treated mice lead to impaired 
glucose tolerance, similar to what is seen in nondiabetic 
animals, indicating that insulin receptor activity plays a role 
in reversing diabetes [118]. 

Since mirabegron is a selective �3AR agonist in clinical 
use for OAB, studies in diabetes rodent models as described 
above may be worthwhile. Compared to CL316,243, mira-
begron has better agonist potency for human �3AR [29, 51]. 
Amibegron is another selective �3AR agonist that crosses 
the BBB and has anti-depressant like properties such as its 

Fig. (3). Class 1 Drug Effects on Obesity and Type1 Diabetes Model: Graph showing effects of CL316,243 (CL) in the two rodent mod-
els. In Zucker rat obese models (and T2DM), uptake of 18F-FDG in Zucker lean (ZL) increased by +231% with CL316,243 while Zucker fat 
(ZF) were reduced by -44% with little effect of CL316,243. In T1DM streptozotocin (STZ) model, uptake of 18F-FDG in Sprague-Dawley 
normal (SD Nor) increased by +624% with CL316,243, whereas SD STZ was reduced by -70%. An increased uptake of 18F-FDG was seen 
SD STZ upon CL316,243 treatment, suggesting some recovery of BAT function. 
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ability to increase serotonin synthesis [61]. Thus, further 
studies are warranted on the various disease models using 
the newer, human translatable �3AR drugs.  

4.2. Class 2 Drugs 

Atomoxetine is a selective norepinephrine reuptake in-
hibitor and has low abuse potential [70]. Atomoxetine, struc-
turally related to the antidepressant fluoxetine acts by elevat-
ing synaptic norepinephrine levels with few side effects 
[119, 120]. Cardiovascular side effects in adult placebo-
controlled trials showed increased heart rate (3.0%) and in-
creased blood pressure [121, 122]. It has been used in psy-
chiatry for the treatment of both adult and pediatric ADHD, 
with relatively benign side effects [123, 124]. Under fasting 
conditions, atomoxetine initiated extensive 18F-FDG increase 
in BAT compared to control rats [72]. 

BAT in patients with pheochromocytoma (excess release 
of epinephrine and norepinephrine from adrenal gland) has 
been reported to exhibit very intense 18F-FDG uptake [125, 
126]. Due to the adrenergic interaction with �1 and �2
adrenoceptors serious cardiovascular side effects were noted 
in in these patients [127]. Thus, any potential adrenergic 
agonist for BAT activation should be highly specific for 
�3AR. 

Sibutramine is a combined norepinephrine and serotonin 
reuptake inhibitor. It is used as an anti-obesity agent to re-
duce appetite and promote weight loss in combination with 
diet and exercise. It improves insulin sensitivity and glucose 
metabolism; however it is believed that most of these effects 
result from weight loss rather than from an intrinsic effect of 
the drug [128]. Milnacipran is another serotonin-norepine-
phrine reuptake inhibitor anti-depressant. It has been used in 
co-morbid depression which is common in patients with dia-
betes mellitus. It improves blood glucose and HbA1c levels 
in type 2 diabetics. It is suggested that the effective treatment 
of depression results in higher sense of self-care which leads 
to improvement in the metabolic parameters [129], and BAT 
activation is protective against hyperglycemia [130]. 

4.3. Class 3 Drugs 

Of the many thiazolididiones investigated as agents af-
fecting adipogenesis [131, 132] serious side effects have 
hampered studies in humans in order to investigate BAT 
activation [13, 80]. Pioglitazone is currently the one PPAR�
activator used for type 2 diabetes [133]. A recent study in-
cludes pioglitazone in a India-specific algorithm for man-
agement of type 2 diabetes [134]. The role of BAT in the 
glucose lowering effect of pioglitazone remains to be dem-
onstrated, since UCP1 in human epicardial adipose tissue 
remained unaltered after pioglitazone treatment [135]. Thus, 
thermogenic effect of thiazolidinones via PPAR� remains to 
be demonstrated [136]. Measurements of the effect of piogli-
tazone on animal or human BAT using 18F-FDG imaging 
methodology would be useful to confirm increased meta-
bolic activity. 

4.4. Class 4 Drugs 

Nicotine has been shown to activate BAT [137]. How-
ever, the effect on weight loss/gain associated with smoking 
has been attributed to the effect of nicotine in brain regions 
such as the hypothalamus [138]. Forskolin directly activates 
adenylyl cyclase and raises cAMP levels in a wide variety of 
cell types [139]. Forskolin increased BAT 18F-FDG SUV 
1.6-fold compared to control mice [15]. On the other hand, 
forskolin increases heart myocardium 18F-FDG, with side 
effects including headaches, decreased blood pressure, and a 
rapid heart rate. It has inotropic and vasodilatory properties 
both in vitro and in vivo, and changes in contractility parallel 
an increase in cAMP concentration as well as calcium trans-
port into the myocardium [140]. Evidence for a role of 
forskolin in weight loss in humans is limited [141]. Caffeine 
appears to have some small effects on increasing fat metabo-
lism which is enhanced when used in combination with 
ephedra [141]. Anti-obesity effects of capsacin may occur 
through activation of brown and beige adipocytes [142, 143]. 
Curcumin has been shown to promote browning of white 
adipose tissue [144]. A bioavailable form of curcumin was 

Table 5. Therapeutic Potential of BAT Activators. 

Drug Class 
Observed Physiological 

Effects 
Effect on Caloric Consumption;  

Weight Loss or Gain 
Current Therapeutic Status 

Class 1 

Selective �3 Adreno-
ceptor Agonists 

Increase in BAT activation in 
animal and human studies. 

Burns calories by consuming glucose.  Weight loss in
animals—no human data.  

Significant loss of �3AR activation in obese models. 
Chronic treatment studies needed to demonstrate 
regeneration of BAT. 

Mirabegron used clinically in OAB. 
Use in IBS of related drugs being 
pursued. Use for weight loss unclear.

Class 2 

Norepinephrine  
Elevators 

Lower blood glucose;  
Increase BAT activation and 
thermogenesis. 

Weight reduction shown in obese women. Atomoxetine used clinically for 
ADHD. Potential for small weight 
loss. 

Class 3 

PPAR-� Activators 

Increased energy expenditure 
and improved cold tolerance. 

Does not affect caloric intake. 

Pioglitazone shown to aid in weight loss. 

Pioglitazone used clinically for 
T2DM. Other analogs have side 
effects and not used. 

Class 4 

Natural and Other 
Products 

Increased energy expenditure 
and UCP1 gene expression. 

Increases fat metabolism and reduces weight gain. 

ShK-186 reduced weight gain in DIO mice. 

No clinically approved product for 
obesity or diabetes. ShK-186 under-
going trials for MS. 
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recently shown to increase weight loss in overweight people 
with metabolic syndrome [145]. Interesting findings on the 
role of the cannabinoid receptor system in weight loss have 
been reported [146, 147]. Although rimonabant has CNS 
side effects, other agents targeting the peripheral receptor 
may have promise. ShK-186, a selective Kv1.3 peptide in-
hibitor, is undergoing clinical trials as a therapeutic for auto-
immune diseases [148]. It exhibited robust therapeutic ef-
fects in a mouse model of diet-induced obesity and insulin 
sensitivity [103]. Fibroblast growth factor 21 (FGF21) has 
been the focus of recent studies for obesity and may have the 
ability, at least in part to activate BAT [149]. Recent reviews 
have focused on therapeutic potential of engineered FGF21 
analogs [150]. 

4.5. BAT Transplantation 

Transplantation of BAT in obese subjects will be advan-
tageous over pharmacological drug effects due to the signifi-
cantly lower levels of BAT in the obese subjects. Several 
reports have been published and recent reviews have summa-
rized their findings. Efforts have focused on BAT transplan-
tation as a potential therapeutic tool for obesity by improving 
control over body composition and metabolism and were 
recently reviewed [151]. In order to overcome issues related 
to transplanting harvested BAT, tissue-engineering path-
ways, including stem cells to develop adipose tissue implants 
is currently underway in order to provide BAT for human 
therapeutic purposes [152, 153]. These pathways offer alter-
natives to pharmacological approaches or may be used in 
conjunction with pharmacological approaches in order to 
tackle obesity and diabetes. 

5. SUMMARY 

Currently, the prevalence of BAT in the adult population 
is reportedly low [154-157], which dampens its potential 
significance for altering adult human metabolism. BAT is 
only active when its thermogenic function is required or 
pharmacologically stimulated [24, 27], and 18F-FDG uptake 
is a direct consequence of tissue activity [9]. Thus, inactive 
BAT would not be visible on PET scans. Due to the potential 
role of BAT in obesity [158, 159] efforts towards pharma-
cological activation have increased [160, 161]. Pharmaco-
logically induced brown adipocyte biogenesis along with 
engineered tissue transplantation is now possible thus raising 
the possibility for drug development in combating diabetes 
and obesity. 
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