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While the abundance and phenotype of tumor-infiltrating lymphocytes are linked with clinical survival, their spatial coordination
and its clinical significance remain unclear. Here, we investigated the immune profile of intratumoral and peritumoral tissue of clear
cell renal cell carcinoma patients (n= 64). We trained a cell classifier to detect lymphocytes from hematoxylin and eosin stained
tissue slides. Using unsupervised classification, patients were further classified into immune cold, hot and excluded topographies
reflecting lymphocyte abundance and localization. The immune topography distribution was further validated with The Cancer
Genome Atlas digital image dataset. We showed association between PBRM1 mutation and immune cold topography, STAG1
mutation and immune hot topography and BAP1 mutation and immune excluded topography. With quantitative multiplex
immunohistochemistry we analyzed the expression of 23 lymphocyte markers in intratumoral and peritumoral tissue regions. To
study spatial interactions, we developed an algorithm quantifying the proportion of adjacent immune cell pairs and their
immunophenotypes. Immune excluded tumors were associated with superior overall survival (HR 0.19, p= 0.02) and less extensive
metastasis. Intratumoral T cells were characterized with pronounced expression of immunological activation and exhaustion
markers such as granzyme B, PD1, and LAG3. Immune cell interaction occurred most frequently in the intratumoral region and
correlated with CD45RO expression. Moreover, high proportion of peritumoral CD45RO+ T cells predicted poor overall survival. In
summary, intratumoral and peritumoral tissue regions represent distinct immunospatial profiles and are associated with
clinicopathologic characteristics.
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INTRODUCTION
Clear cell renal cell carcinoma (ccRCC) constitutes the most
common form of kidney cancer [1]. In ccRCC, Von Hippel-Lindau
gene mutation and dysregulation lead to vascular endothelial
growth factor (VEGF) and platelet-derived growth factor (PDGF)
overproduction and constitutive oncogenic signaling [2, 3].
Moreover, genetic aberrations affecting the SWItch/Sucrose
Non-Fermentable (SWI/SNF) chromatin remodeling complex
such as the commonly mutated gene polybromo 1 (PBRM1)
hamper multiple signaling pathways enhancing oncogenesis
[3]. Nephrectomy represents the primary treatment modality
for localized disease. Metastasis is detected in 20% of patients
at diagnosis and manifests in another 20–30% at later
timepoints [4]. Advanced disease is managed with systemic
therapies, such as immune checkpoint inhibitors, tyrosine
kinase inhibitors (TKIs) as well as mechanistic target of
rapamycin complex 1 (mTORC1) inhibitors, and occasionally
with metastasectomy [1, 4].

Among solid tumors, the highest lymphocyte infiltration
quantified as transcriptomic cytolytic activity has been described
in kidney cancers, notably ccRCC [5]. Upon activation, T cells
produce CD25, sensitizing them to the mitogenic IL-2 cytokine
and increase the cytolytic granzyme B (GrB) as well as immune
checkpoint receptors programmed cell death protein (PD1), tumor
necrosis factor receptor superfamily member 4 (OX40) and
lymphocyte-activation gene 3 (LAG3) [6]. PD1 counter-regulates
responses of activated lymphocytes, while LAG3 competes with
the costimulation of helper T cells by binding class II human
leukocyte antigen (HLA) [7, 8]. Persisting adaptive immune
responses eventually become suppressed in processes known as
immune senescence and exhaustion, which are translated into
CD57 and T cell immunoglobulin and mucin-domain containing-3
(TIM3) expression, respectively [9, 10].
Immune topographies consist of spatial immune infiltration

patterns defined by histological examination [11, 12]. The immune
hot topography represents an inflamed phenotype characterized
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by high intratumoral immune infiltration contrary to immune cold
tumors, which are devoid of immune cells. In turn, immune
excluded tumors are defined by high peritumoral but low
intratumoral immune cell accumulation. Previous studies have
shown that the baseline immune profile such as the immune
topography predicts immunotherapy response [13–16]. More
precisely, immune cold ccRCC with mutated PBRM1 and immune
hot tumors with del(9p21.3) have retrospectively been shown to
predict superior responses to anti-PD1 blockade [17]. Yet, the
significance of immune topographies and separate intratumoral
and peritumoral tumor regions in RCC remain unclear.
In this study, we aimed to characterize and compare the spatial

profile of the intratumoral and peritumoral tissues. We classified
RCC patients into immune topographies and combined these
classes with phenotype-based immune profiles defined with
quantitative multiplex immunohistochemistry (mIHC). We com-
puted intercellular distances to combine immunologic spatiality
with immunophenotypes, immune topographies and clinical
characteristics. Finally, we studied how immune cell abundance,
location and interaction-dependent immunophenotypes are
associated with prognosis.

MATERIALS AND METHODS
Patient selection
A total of 136 clear cell RCC patients underwent nephrectomy at diagnosis
and received TKI sunitinib as first-line systemic therapy for advanced
disease either at diagnosis or after disease progression at the Helsinki
University Hospital (HUH) Comprehensive Cancer Center between October
18, 2006 and December 31, 2014 [18]. Fresh nephrectomy samples were
formalin-fixed and paraffin-embedded along routine clinical diagnostics in
the Department of Pathology, HUSLAB. From these, we included only
patients (n= 64) with a nephrectomy sample extending from the
intratumoral tissue over the peritumoral margin (Supplementary Fig. 1A
and Table 1). As control, we analyzed normal renal tissue extracted
macroscopically apart from IT and PT regions of 11 nephrectomy samples.
The study complied with the Declaration of Helsinki and the HUH ethics
committee.
Overall survival was defined as the time from diagnosis to death by

censoring patients alive at their last follow-up date. Sunitinib treatment
response was evaluated according to Response Evaluation Criteria in Solid
Tumors 1.0 (RECIST) with computed tomography at 8–12-week intervals
after treatment start until censoring or end of treatment.

Lymphocyte detection
Nephrectomy tissue slides stained for H&E were digitized at 0.22 µm/pixel
resolution with the Zeiss Plan-Apochromat 20x objective and Pannoramic
P250 Flash II histological scanner (3DHistech). Intratumoral (IT) and
peritumoral (PT) regions were manually annotated. The PT region was
defined as the stromal border interiorly limited by the cancerous IT
parenchymal tissue and exteriorly by normal renal glomerular and tubular
tissue. A lymphocyte-detecting classifier was trained with the random trees
algorithm using examples from 10 H&E-stained nephrectomy images and
applied to all detected cells in both IT and PT regions. The lymphocyte cell
proportion correlated with the lymphocyte proportion by area (Supple-
mentary Fig. 1B). Tissue annotation, cell detection and lymphocyte
classification were performed in the graphical image analysis environment
QuPath [19].

Color normalization
To validate the proportions of immune topographies, we analyzed H&E
stained digital images of The Cancer Genome Atlas (TCGA) ccRCC
pathology dataset. As these originate from multiple clinical centers with
different tissue processing, H&E staining and slide digitization protocols,
the color distribution varied substantially between samples. Therefore, we
employed a structure-preserving color normalization pipeline based on
sparse non-negative matrix factorization that has been modified from the
original method described by Vahadane et al. (Supplementary Fig. 2A, B)
[20, 21]. Briefly, each pixel represents a mixture of hematoxylin and eosin.
These are first separated and then adapted to the stain concentration of a
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reference image. After careful assessment, we selected TCGA
sample TCGA-B0-4691-01Z-00-DX1 as reference (Supplementary Fig. 2C).
As the normalization does not perform well to image with highly deviant
color distributions, we manually verified results and included only
successful normalized images (Supplementary Fig. 2A). Immune cell
proportions and topographies for the Helsinki and TCGA ccRCC datasets
are provided in Supplementary Table 1 and results in Supplementary
Fig. 2D.

Somatic mutation data
We collected somatic exome mutation for most commonly altered genes
from the supplementary data deposited part of the landmark TCGA pan-
renal study [22]. Owing to limitations in sample size, we focused only on
genes mutated ≥5% of patients of the TCGA ccRCC dataset with immune
topography data. The sequencing data was available for 97/113 of these
patients. The data included single nucleotide variants and indels, which
had been called based on the results of six algorithms (MuTect, MuSE,
Pindel, Somatic Sniper, VarScan2 and Radia).

Tissue microarrays (TMAs)
TMA blocks were mounted using 2 mm cores from the invasive margin of
FFPE nephrectomy tissue blocks consisting of both PT and IT regions.
Additional dual cores from 11 macroscopically and microscopically
confirmed non-malignant regions of nephrectomy samples were selected
to represent healthy kidney tissue (Fig. 1A).

Multiplex immunohistochemistry (mIHC)
The mIHC method is founded on an iterative application of antibody-based
stainings, resulting in 5-plex fluorescence and 3-plex chromogenic IHC
(Fig. 1A). Primary antibody mIHC panels included a total of 23 different
markers to detect cancer, T, NK and CD16+myeloid cells and their
immune checkpoint and activation phenotypes (Supplementary Tables 2–
3). Technical details are described in previous publications [23, 24].

General. TMA blocks were cut in 4 µm sections on Superfrost objective
slides (Kindler O Gmbh). After peroxide block, antibody application, and
fluorochrome reaction, slides were washed three times with 0.1% Tween-
20 diluted in 10mM Tris-HCL buffered saline pH 7.4.

Tissue preparation. After tissue deparaffinization in xylene and rehydra-
tion in graded ethanol series, heat-induced epitope retrieval (HIER) was
performed in 10mM Tris-HCl–1mM EDTA buffer (pH 9) in +99 °C for 20
min (PT Module, Thermo Fisher Scientific). Peroxide activity was blocked
with 0.9% H2O2 for 15min, and subsequently applied with 10% normal
goat serum (TBS-NGS) for 15min.

Antibody testing. Antibodies were evaluated based on their occurrence in
previous studies and we prioritized monoclonal antibodies. For each
marker, we assessed the staining patterns of one or multiple antibodies in
lymphoid and hematopoietic tissues (lymph node and bone marrow), non-
immunogenic tissue (brain tissue) and epithelial tissue (gut, healthy kidney
tissue and renal cell carcinoma). We required that antibodies detecting
immune markers are enriched in lymphoid and hematopoietic tissues and
are colocalized in immune cells. We ensured that antibodies detected with
fluorescent probes denatured in HIER to use them in multiplex setting.
Moreover, for CD3, CD8, PD-L1, PD1, TIM3, LAG3, GrB and OX40 markers
the proportion of antibody-stained cells have been correlated with their
gene expression in previous studies in diffuse large B-cell lymphoma and
testicular lymphoma tissues [25, 26]. We also confirmed that IHC staining
with chromogen or fluorescent probes produced consistent results
(Supplementary Fig. 3A).

Staining. Primary antibodies diluted in protein blocking solution accord-
ing to Supplementary Table 3, and secondary anti-mouse or anti-rabbit
horseradish peroxidase-conjugated (HRP; Immunologic) antibodies 1:1 in
washing buffer were applied for 1 h 45min and 45min, respectively.
Tyramide signal was amplified (TSA; PerkinElmer) for 10min. Primary
antibodies and HRP activity were inactivated with HIER. The peroxide and
protein block steps were repeated. The primary antibody and its matching
HRP-conjugated secondary antibody diluted 1:5 in washing buffer were
added and TSA signal amplified. We repeated HIER, peroxide block and
protein block as before and incubated the slides with two additional
primary antibodies immunized in different species overnight in +4 °C.

AlexaFluor647 and AlexaFluor750 fluorochrome-conjugated secondary
antibodies (Thermo Fisher Scientific) diluted 1:150 in washing buffer (45
min) and 4′,6-diamidino-2-phenylindole counterstain (Dapi, Roche) diluted
in 1:250 in TBS (15min) were applied. Last, ProLong Gold (Thermo Fisher
Scientific) was used to coverslip slides.
After fluorescence imaging, atraumatic coverslip detaching was ensured

by incubating slides in washing buffer overnight in +4 °C. HIER, peroxide
block and protein block were repeated as previously. We added primary
antibodies immunized in separate species and species-matching alkaline
phosphatase (AP) and HRP-conjugated secondary antibodies (Immunolo-
gic). Antibodies were detected with VinaGreen (Biocare Medical), then with
Liquid Permanent Red (Dako) chromogens. To counterstain nuclei, Mayer’s
hematoxylin diluted 1:10 in H2O was applied for 1 min. Slides were washed
in H2O (30 s) after each staining reaction. Finally, slides were coverslipped
with Pertex mounting medium.

Imaging
Fluorescent and brightfield mIHC images were acquired with the
AxioImager.Z2 (Zeiss) microscope supplemented with Zeiss Plan-
Apochromat 20x objective, and CoolCube1 CCD camera (MetaSystems).
Scanned images were converted to JPEG2000 format (95% quality).

Image preprocessing
RGB colors were deconvolved from brightfield chromogen stainings [27].
Mean fluorescent and brightfield images were 8-fold downscaled and each
spots registered using two-dimensional phase correlation method [28]. The
staining quality was visually assessed, and a few unfocused images were
eliminated from the analysis.

Image analysis
Spots were manually separated into IT and PT regions guided by
hematoxylin counterstain (Fig. 1A). Cell segmentation and intensity
measurements were carried out using adaptive Otsu thresholding and
upper quartile intensity of grayscaled dapi-stained images with the image
analysis platform CellProfiler 2.1.2 (Fig. 1A) [29]. Clumped cells were
separated based on staining intensity. Tissue cores with fewer than 1500
cells were eliminated from the analysis.
Cell classification was carried out by means of marker intensity and co-

localization of multiple antibodies (Supplementary Table 4). Immune cell
types were quantified as proportion to all cells (e.g., CD3+CD8+ cell count
to total cell count) or as proportion to an immunophenotype defined by
1–2 markers to the cell type of interest (e.g., CD3+CD8+/PD1+LAG3+
corresponds to PD1+LAG3+ cell proportion of CD3+CD8+ cells). Immune
spatial analysis was performed by computing the Euclidean distance
between CD3+, CD3+CD4+, CD3+CD8+, CD2+CD3- and CD16+ cell
centrum. Cells within a distance of 100 pixels equaling to 22 μm were
defined as interacting cells [30]

dajbk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xaj � xbk
� �2þ yaj � ybk

� �2
q

;

where dajbk represents the spatial distance of cell aj and bk located at
(xaj ; yaj ) and (xbk ; ybk ) respectively. The cell interaction values for cells aj and
bk were categorized as iajbk into values 0 or 1 as follows

iajbk ¼
1; dajbk � 100

0; dajbk > 100

(

;

In a sample with m number of cells a and n number of cells b, the
interaction frequency for cells a and b is the sum of their categorized
cellular interaction vectors

iab ¼
X

m

j¼1

X

n

k¼1

ij;k ¼ i1;1 þ i1;2 þ ¼ þ im;n;

where iab represents the sum of all interactive cell pair a and b in one
sample, and j; k belong to index sets j 2 1; ¼ ;mand k 2 1; ¼ ; n. The
sample-level interaction index Iab normalizes interaction frequencies by the
proportion of the examined cell pair a and b, defined as

Iab ¼ iab
ffiffiffiffiffiffiffiffiffi

Pab
q

=
Pc

;

in a sample with total cell number c.
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Statistical analysis
We used the unpaired two-tailed Wilcoxon signed-rank test to compare
continuous variables in two groups, and Kruskal–Wallis test in three
groups. Benjamini–Hochberg’s method was used to correct for p-values
[31]. Categorical variables were compared with the chi-square test
(frequency for each variable >5) or Fisher’s exact test (frequency for any

variable ≤5). Continuous variables were correlated with Spearman’s rank
correlation coefficient. Heatmaps and immune topographies were
clustered by Spearman correlation distance and Ward D2 linkage. For
heatmaps, data were normalized with median-centering and max-scaling.
Cox regression analysis (log-rank test) was used for survival analyses. All
statistical analyses were performed with R v3.3.3.
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RESULTS
Clustering of immune cell quantities by their location defines
immune topographies
By examining H&E stained tumor slides from RCC patients that
underwent nephrectomy (n= 64), we observed recurrent IT and
surrounding PT entities by their distinct tissue textures (Fig. 1A,
Supplementary Fig. 1A, and Table 1). We developed a classifier
detecting lymphocytes based on their conspicuous dark nuclei
and little cytoplasm (Supplementary Fig. 3B). We observed a
median PT lymphocyte proportion of 11.2% from all cells
compared to 7.6% inside the IT regions (p < 0.001; Supplementary
Fig. 3C). To determine immune topographies, we performed an
unsupervised two-phase clustering on IT immune cell infiltration
using Euclidean distance to first define patients with an immune
hot topography (n= 14, Fig. 1B–D). Immune cold (n= 38) and
excluded (n= 12) samples were distinguished by computing the
Euclidean distance on the subtraction of PT and IT lymphocyte
densities (Fig. 1C).
To validate the unsupervised immune topography classification

platform, we examined H&E stained digital slides from TCGA
diagnostic ccRCC pathology archive (Supplementary Fig. 2A). We
selected only slides with distinct intratumoral and peritumoral
tissue regions (n= 194). The cell detection and classification
algorithm we employed did not perform well on slides with
markedly deviant color distribution. Therefore, we normalized
these with a structure-preserving color normalization method
where deconvoluted colors are matched to a reference staining
(Supplementary Fig. 2B, C). We performed then unsupervised
immune topography clustering for the final 113 images for which
normalization was successful. While the proportion of immune hot
tumors was higher in the TCGA dataset (36.3% vs. 21.9%) and the
proportion of immune cold tumors lower (43.4% vs. 59.4%), no
significant differences were observed (Chi2= 0.09, Supplementary
Fig. 2D).
To further interrogate the pathogenomic background of

immune topographies, we associated these with the somatic
variants in genes altered in ≥5% of TCGA ccRCC patients. First, we
demonstrated that genes VHL (62%) and PBRM1 (43%) were the
most commonly altered in line with previous reports (Supple-
mentary Fig. 4A) [3, 32]. The total number of mutations was not
associated with any particular immune topography (Supplemen-
tary Fig. 4B). When examining individual genes, we observed
altered PBRM1 to be associated with a cold immune topography
(25/42 vs. 17/55, p= 0.009, X2 test; Fig. 1H and Supplementary
Fig. 4C). The finding is consistent with previous reports indicating
deficient PBRM1 in ccRCC to induce a non-immunogenic tumor
and resistance to immune checkpoint inhibitors [17, 32]. Patients
with an immune excluded topography harbored less mutations in
gene VHL (8/60 vs. 12/37, p= 0.04, Fisher’s test) and more in the
BAP1 gene (4/20 vs. 7/72, p= 0.08, Fisher’s test; Fig. 1H and
Supplementary Fig. 4D). Instead, tumors with a hot immune
topography lacked mutations in the BAP1 gene (1/10 vs. 34/88,
p= 0.15, Fisher’s test) but were enriched with mutations in the
STAG2 gene (5/6 vs. 30/91, p= 0.08, Fisher’s test; Fig. 1H and
Supplementary Fig. 4E). In summary, the findings emphasize

that rather than the total mutation burden, alterations in
distinct genes are associated with the formation of immune
topographies and could help to identify patients benefitting from
immunotherapies.
Next, we studied prognostics related to immune cell infiltration

and topography. Immune cell infiltration in the IT and PT regions
did not stratify patients by survival (Supplementary Fig. 5A).
However, patients with an immune excluded contexture were
observed to share strikingly superior overall survival (HR 0.11,
0.015–0.82 95%CI p= 0.031, Cox regression) but not progression-
free survival compared to immune hot and cold patients (Fig. 1E
and Supplementary Fig. 5B). Patients with immune excluded
tumors were observed to have fewer metastatic organs explaining
their survival benefit and none of them were grouped into poor
Memorial Sloan Kettering Cancer Center (MSKCC) risk score
(Fig. 1F, G). Yet, no differences were noted in the histological
grade, tumor stage, nor patient age, suggesting prognostic
advantage independent from other previously known risk factors
(Supplementary Fig. 5C–E). We also compared IT and PT tumor-
infiltrating lymphocyte (TIL) fractions by histological grade, tumor
stage, patient age, number of metastasis and MSKCC score, and
observed low PT TIL proportion to be associated with low MSKCC
score (Supplementary Fig. 5F, G).

Quantitative immunohistochemistry reveals location-
dependent lymphocyte immunoprofiles
Next, we hypothesized that IT and PT regions could be
immunologically distinct from each other and healthy renal tissue
(n= 11). We designed panels consisting of 6 antibodies to
quantify T, NK, and CD16+ myeloid cells and their immunophe-
notypes (Fig. 1A and Fig. 2A, B). By applying mIHC panels on
consecutive TMA slides and analyzing separately IT, PT, and
control tissue regions, we classified a total of 7.6 million cells with
high interslide reproducibility (R= 0.83, p < 0.001 for CD3+CD8+
cytotoxic T cells in sequential slides).
When examining average-aggregated immune profiles, we

noted an enrichment of T (helper and cytotoxic) and NK cells in
the PT region (Fig. 2C). All immune cell populations and
immunophenotypic markers were upregulated in both IT and PT
areas compared to normal renal tissue, except for CD45RO,
possibly representing tissue-resident memory T cells of the normal
kidney tissue immune homeostasis (Fig. 2C) [33]. Multiple T-cell
markers associated with immune activation or exhaustion, such as
GrB, OX40, PD1, CD57, and LAG3 were concentrated in the IT
region compared to the PT region [34]. Contrarily, the highest PD1,
LAG3, and OX40 expression in NK cells and total PDL1 expression
were observed in the PT region.
To quantify the similarity between immune contextures, we

correlated IT and PT immune profiles at the patient-level (Fig. 2D).
The median Spearman correlation coefficient of individual
immune subtypes between IT and PT regions was 0.37. Higher
correlations were observed for T-cell phenotypes (R= 0.45) and
immune ligands (R= 0.46), contrary to NK cell markers (R= 0.04).
As expected, correlation between proportions of IT and PT T-cell
phenotype was driven by multiple markers (Supplementary

Fig. 1 Defining immune topographies. A Overview of the study. Nephrectomy samples of renal cell carcinoma (RCC) patients were
reconstructed into tissue microarrays (TMA) and stained with H&E and multiplex immunohistochemistry (mIHC). The intratumoral (IT),
peritumoral (PT) and normal control tissue were examined separately. A cell classifier was developed to detect lymphocytes from H&E
morphology. Cells were detected and classified in mIHC images based on marker intensity and co-localization. B Representative H&E images
of different immune topographies (upper row) and corresponding cell detection and classification results (bottom row). Lymphocytes are red-
colored and non-lymphocytes yellow-colored. C Two-phase clustering of (1) IT lymphocyte proportion and (2) the arithmetic difference of IT
and PT lymphocyte proportion with Euclidean distance. D Linear regression of IT and PT lymphocyte proportions (plot) and Spearman
correlation (left upper corner). E Kaplan–Meier visualization of overall survival from diagnosis by immune topographies. F Characterization of
excluded immune topography by number of metastases and G MSKCC risk group with barplots and Fisher’s test. H Barplots of genetic
alterations in most commonly mutated genes and tumors with an immune hot, immune excluded, and immune cold topography.
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Fig. 6A). However, only the fraction of OX40+ and CD16+ NK cells
correlated between IT and PT regions.
Next, we examined individual patients in detail. LAG3 expres-

sion in T cells was observed to drive hierarchical clustering notably
in the IT region, but did not share mutual expression patterns with

PD1, TIM3 or OX40, possibly reflecting a difference in regulation
(Fig. 2E and Supplementary Fig. 6B–D). Antigen-presenting class I
HLA-ABC was upregulated both in PT and IT regions compared to
control tissue (Fig. 2E). While HLA-G expression was unnoted in
control and PT tissues, ~1/3 of tumors stained positive for HLA-G
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representing a potentially unique mechanism to escape immune
surveillance (Fig. 2E). High HLA-G expression was enriched in
patients of poor MSKCC risk class but did not associate with
patient age, histological grade, metastasis status, TNM status, or
immune topographies (Supplementary Fig. 7A–H). When examin-
ing immune cell populations, high HLA-G expression was affiliated
with elevated IT NK, helper, and cytotoxic T-cell proportion but not
with corresponding PT cell quantities (Supplementary Fig. 8A, B).
Similar positive association between PD-L1 expression and high IT
but not PT NK, helper, and cytotoxic T-cell proportion were noted
(Supplementary Fig. 8C, D). In line, the expression of HLA-G and
PD-L1 co-occurred potentially reflecting common regulatory
pathways (Supplementary Fig. 8E) [35, 36].

Immune topographies are characterized by distinct immune
profiles
We hypothesized that immune topographies would differ by their IT
and PT phenotypic composition. PD-L1+HLA-G+ cancer cells were
enriched in IT immune cold samples, while depleted from IT
immune excluded samples (Fig. 2F). Immune cold tumors were also
observed to harbor PT CD16+ myeloid cells, which have been
characterized as the principal cell-of-origin expressing PD-L1 in non-
small-cell lung carcinoma and promoting immune evasion [37].
Immune hot and cold tumors differed in multiple immunophe-

notypes (Fig. 2F). IT cytotoxic T cells and CD45RO+ memory
helper T cells were more numerous in immune hot tumors.
Moreover, these tumors were characterized by T and NK cells
expressing immune checkpoint receptors PD1, TIM3, OX40 and
LAG3 as opposed to immune hot tumors. Both immune excluded
and hot topographies were characterized with high PT immune
infiltrate in the H&E staining analysis (Supplementary Fig. 9A). Yet,
the PT T-cell immunophenotype of immune excluded tumors was
marked with low expression of TIM3 and OX40 checkpoint
receptors and CD45RO, potentially reflecting an unprimed
immune signature (Fig. 2F).

Interaction indexes reveal common spatially adjacent cell
pairs
We hypothesized that studying the spatial hot spots of immune
cells would indicate the location of occurring immune responses.
Intercellular distances between T and myeloid cells <25 μm or the
equivalent of 2–3 cell diameters have been associated with
adaptive T-cell responses [30]. Therefore, interaction was defined
as cell pairs within a radius of 100 pixels corresponding to 22 μm
(Fig. 3A). We developed an algorithm calculating cell interaction
indexes defined as the inclination of distinct cell pairs to occur in
close spatial proximity. Indexes were normalized by the propor-
tions of interacting cell pairs to avoid bias due to differences in
immune cell proportions. Given the design of the cell panel, we
calculated the interaction of all T, helper T, cytotoxic T, NK, and
CD16+ myeloid cells (Fig. 3B).
Interaction indexes between IT and PT contextures demon-

strated regionally distinct spatial conformation (Fig. 3C). Interac-
tion indexes of T, NK, and CD16+ myeloid cells were observed to
correlate negatively, signifying that their interactions in either the
IT or PT region would imply a lack of interaction in the other

region. Moreover, the IT region was associated with a higher
interaction index than PT or healthy regions (Fig. 3D). CD16+ cells
interacted more avidly with IT lymphocytes compared to PT and
healthy areas. Furthermore, T and NK cells were observed to
interact more commonly with each other in the IT than in the PT
region.
The PT interaction index was lower between lymphocytes and

CD16+ myeloid cells, as well as between cytotoxic T cells and
other T cells than in the normal tissue (Fig. 3D). Given its high
lymphocyte content, immunophenotypically non-exhausted pro-
file, and lack of interaction, PT lymphocytes could be physically
hindered from recognizing cancer cells and represent an
immunologically inoperative reserve. By examining H&E tissue
texture, we frequently observed prominent perpendicular orienta-
tion and deeper eosinophilic staining in the PT fibrous stroma,
suggesting possibly denser, or qualitatively distinct collagen fibers
(Supplementary Fig. 9B). We also compared the frequencies of
interacting IT or PT immune cells in immune cold, hot and
excluded tumors, but did not discern any differences (Supple-
mentary Fig. 9C, D).

Memory T cells frequently engage in cellular interaction
Next, we investigated the association of immunophenotype
expression with cellular interaction. The design of panels 1–5
helped us to compare the immunophenotypes of interacting and
non-interacting immune cells separately by their tissue region and
tumor immune topography (Fig. 3B). We observed consistent
positive correlation between IT and PT immunophenotype
proportions when comparing immune cells by their interaction
status, signifying that if an immunophenotype is positive in
interacting IT cells, then a similar phenotype would also occur in
interacting PT cells (Supplementary Fig. 10). Interacting PT T cells
expressed higher levels of TIM3 than non-interacting T cells
(Fig. 3E). T cells in control tissue adjacent to NK and helper T cells
were associated with lower TIM3 expression. To demonstrate the
physical proximity associated with PT TIM3 expression, we digitally
reproduced the mIHC stainings by mapping cells according to
their phenotype and location (Fig. 3F). The findings suggest that
the tissue contexture imposes diverse effects on immune profiles
depending on their interaction status.
Higher CD45RO expression was noted especially in IT and PT

helper T cells interacting with cytotoxic T cells but not in control
tissue (Fig. 3E). The isoform switch from CD45RA to CD45RO
reflects the differentiation of primed T cells into avidly proliferat-
ing and cytolytic memory subtypes [6]. When comparing
immune topographies, we observed that CD45RO expression
was elevated in T cells interacting with NK cells notably in
conjunction of immune hot tumors indicating a link between
immune cell phenotype, interaction and immune topography
(Fig. 3G, H).

T-cell infiltration and checkpoint expression are characterized
by contexture-dependent immunologic signatures
Next, we studied immune profiles associated with high T-cell
infiltration and immune checkpoint expression as these have been
suggested to predict response to immuno-oncological therapies [38].

Fig. 2 Characterization of immune contextures. A Panel design used in multiplex immunohistochemistry (mIHC). GFP, Cy3, Cy5, and Cy7
represents fluorescence channels and Chromo1 and Chromo2 chromogenic channels. B Representative fluorescence and chromogen staining
between intratumoral (IT) and peritumoral (PT) tissues. C Contexture-level heatmap of immunophenotypes in IT, PT, and control tissues with
median-averaged immune cell proportions. Clustering has been computed with the Euclidean distance of immunophenotype correlations
(Spearman). D Spearman correlation between IT and PT immunophenotypes. Significance: ***p < 0.001, **p < 0.01, *p < 0.05. E Patient-level
heatmap of immunophenotypes in IT and control tissues. Clustering has been computed with the Euclidean distance of immunophenotype
correlations. F Balloonplot visualizing the log10 fold-change difference of immunophenotype proportions between immune topographies.
Each topography has been compared to the pooled group of other topographies. The balloon size corresponds to the p-value (Wilcoxon test).
Only immunophenotypes differing in any comparison (p < 0.05) are shown.
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In the IT region, T-cell infiltration was associated with more frequent
NK, CD16+ myeloid cell and CD45RO+ and PD1+ T-cell proportions
and higher expression of PD-L1 and HLA-G (Fig. 3I). Conversely, high
PT T-cell enrichment correlated with high PT NK and CD16+ cell
densities but low PT lymphocytic LAG3 expression. We also observed

associative patterns between T-cell infiltration and spatial immune
network. Abundant PT T cells correlated with low PT T-cell interaction
(Fig. 3J). Elevated PT T cells were also linked with T and CD16+
myeloid cell proximity in the PT region. However, similar patterns
between IT T-cell density and cell interaction were not noted.
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Next, we examined immunologic profiles associated with PD1+
TIM3+ and LAG3+TIM3+ T cells previously suggested to
represent states of terminal exhaustion [39]. We observed multiple
phenotypic associations to be distinct for PD1+TIM3+ and LAG3+
TIM3+ subtypes (Supplementary Fig. 11A). IT and PT PD1+TIM3+
T cells were more frequent in tumors with CD45RO+ T cells and
PDL1+ expression. Instead, LAG3+TIM3+ T-cell phenotypes
correlated with higher proportion of IT and PT GrB+ NK cells
and CD57+ helper T cells.
When studying spatial coordination of immune cells, we

observed that higher proportion of PT exhaustion T-cell markers
was associated with increased NK cell interaction in the PT region
(Supplementary Fig. 11B). However, both IT and PT PD1+TIM3+
and PD1+LAG3+ expression correlated with lower T-cell interac-
tion in the IT region. In summary, these observations suggest that
T-cell infiltration and immune checkpoint expression are char-
acterized by distinct spatial and immunophenotypic signatures.

Immune profiles and cellular interactions associate with
clinical variables
We hypothesized that immunophenotypes could be linked with
clinical factors. Immune cell proportions and location-dependent
phenotypes were first examined in the IT region. Increasing tumor
size was associated with lower levels of TIM3 expression in T cells,
notably when not interacting with other T cells (Fig. 4A). Tumor
necrosis was also associated with increased TIM3 expression in
interacting helper T cells. In line with previous reports on age-
related immune cell dysfunction, CD57 expression was more
pronounced in NK cells of elderly patients [40]. Fuhrman grade
and the presence or extent of metastasis were not reflected on IT
cellular or spatial parameters.
Conversely, we observed distinct associations between tumor

extent and immune microenvironment parameters in the PT
region. Mixed LAG3+ and TIM3+ immunophenotypes were
increased in PT T cells of larger tumors possibly reflecting an
immunophenotypic continuum (Fig. 4A). PT GrB+ NK cells were
more numerous in tumors characterized with high histological
grade. Moreover, elevated TIM3 expression was noted notably in
non-interacting helper T cells. However, patient age, metastasis
status or necrosis were not reflected on PT spatioimmunological
phenotypes.
To further study the clinical significance of T and NK cells and

their spatial localization, we investigated their association with
overall survival (OS). Memory helper and cytotoxic T cells were
enriched in the PT but not IT region of patients with poor OS
(Fig. 4B, C). Consistent with the survival benefit reported with
excluded immune topography, increased PT CD3+ T-cell propor-
tion predicted also improved prognosis (Fig. 4B). When examining
cell interaction patterns, spatial proximity between T and NK cells

in both IT and PT regions was associated with poor OS (Fig. 4B). By
examining the prognostic impact of immune subtypes in
interacting and non-interacting immune cells separately, we
found multiple biomarkers of poor OS in the IT region (Fig. 4B).
TIM3 and CD25 expression in interacting T cells whereas OX40 and
CD27 expression in non-interacting NK cells predicted poor
survival. In summary, both spatial dissection of the immunological
microenvironment and observation of cell interaction status
broadens the potential to discover novel prognostic biomarkers.

DISCUSSION
In the current study, we applied in situ immunoprofiling coupled
with image analysis to study lymphocyte fractions, phenotype and
spatial location in IT and PT regions of RCC specimens.
Lymphocyte infiltration was quantitated in whole-slide H&E-

stained images to determine immune hot, cold and excluded
topographies. The immune topography proportions were vali-
dated with TCGA ccRCC digital images. We estimated that our
lymphocyte classifier would perform better in cell detection and
classification after color normalization possibly as it was devel-
oped with a random trees algorithm. However, convolutional
neural network-based image analysis could improve classification
due to lower sensitivity for technical color variations [41].
Moreover, we found immune excluded tumors to associate with
fewer metastatic organs and superior overall survival in our
primary dataset, representing a potential clinical biomarker in RCC
patients. While this constitutes a promising link between tumor
immunology and oncogenic aggressiveness, we note that further
validation is needed. TCGA images were not used in this dataset
for prognostication due to missing information on systemic
treatments.
Recently, Braun et al. [17] investigated the association of

immune topographies defined by the spatial quantity of CD8+
cells with anti-PD-1 treatment response in ccRCC patients and
found no prognostic impact. However, essential differences in
patient cohorts (first-line TKI vs. second-line anti-PD-1), selection of
immune cells (lymphocytes vs. CD8+), image analytical approaches
and the definition of immune topographies hampers reliable
comparison of these studies. The varying results might be due to
the lack of guidelines in determining immune topographies. Based
on our study and the study of Kather et al. [11], neither the
proportion of all immune cell subsets nor the expression of all
immunophenotypic markers are elevated in immune hot tumors,
suggesting that more robust methods such as CD45 IHC staining
should be investigated to define immune topographies. While the
unsupervised approach used in this study enabled unbiased
immune topography classification in the Helsinki and TCGA ccRCC
datasets, independent validation in other tumors is required.

Fig. 3 Spatial immune cell network. A Visualization of the Euclidean distance computed for each cell pair. B Visualization of the quantitative
lymphocyte cellular (upper) and phenotypic (lower) network. Arrows in the cellular network represents individual computed comparisons, and
in the phenotypic network the immunophenotypes compared between (non-)interacting immune cells. C Spearman correlation of interacting
immune cell pairs between IT and PT regions. D Panel of comparisons of the cellular interaction frequency by intratumoral (IT), peritumoral
(PT), and healthy (H) tissues. E Comparison of immunophenotypes by immune contexture (H, IT, PT) and interactive immune cell pair.
Immunophenotypes are reported for the first immune cell by order. The fold-change (FC) has been calculated as the 10-fold logarithmic
immunophenotype expression difference between interacting and non-interacting cells. For instance, “PT T-NK” represents immunophe-
notypes calculated for T cells interacting with NK cells in peritumoral renal tissue, and the red circle visualizes higher proportion of TIM3
expression in interacting vs. non-interacting T cells. F Digital staining for visualizing the location of TIM3+ T cells in PT and healthy renal tissue.
IT tissues have been omitted for clarification. G Comparison of immunophenotypes by immune topography and interactive immune cell pair.
The FC represents the 10-fold logarithmic immunophenotype expression difference between interacting and non-interacting cells.
Immunophenotypes are reported for the first immune cell by order. H Digital staining for visualizing the location of CD45RO+ T cells and NK
cells in immune hot and excluded renal tissues. I Spearman correlation matrix of intratumoral (IT) and peritumoral (PT) T-cell subsets. J
Spearman correlation matrix between the proportion (rows) of IT and PT cytotoxic (Tc) and helper T cells (Th) and proportions of cell
interactions (columns). The color scaling represents the correlation coefficient (red positive, blue negative). p-values have been adjusted with
Benjamin & Hochberg correction. Only significant correlations (adjusted p-value < 0.05) are color-labeled. Significance: ***p < 0.001, **p < 0.01,
*p < 0.05.
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The total mutation burden was not associated with any immune
topography. However, we could replicate the association of PBRM1
mutation and a non-immunogenic tumor phenotype, which has
been caused to be related to the downregulation of IFNγ target

genes [32]. PBRM1 deficiency has also been associated with poor
response to immune checkpoint inhibitors [17, 32]. Here, we
demonstrate that altered STAG2, which encodes a subunit of the
cohesion complex, is associated with an immune hot topography.

Fig. 4 Association of immune cells and clinical variables. A Association of clinical factors with IT and PT immunophenotypes (upper) and
immunophenotypes based on interaction status (lower). Clinical factors have been categorized into two classes based on median. The color
scale represents the log10 fold-change between each subgroup such as high vs. low patient age. Only immunophenotypes significant in any
correlation (p < 0.05) are shown. B IT and PT immunophenotypes, immune cell interaction, and spatial immunophenotypes have been
analyzed with Cox regression analysis (log-rank test) for overall survival. C Kaplan–Meier visualization of overall survival by IT and PT CD45RO+
cytotoxic T cells.
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Moreover, the gene BAP1 encoding a tumor-suppressor deubiqui-
tinase protein was more frequently deficient in tumors with an
immune excluded topography while less frequent for immune hot
tumors. Somatic mutations in the VHL gene were also less
frequent in immune excluded tumors. The analyses did not
incorporate methylation or transcriptomic data, which could help
to further understand the link between genetic alterations and
immune topographies. While these findings require independent
validation, these could indicate that individual genes may regulate
the organization of tumors into distinct topographies and induce
sensitivity or resistance to immunotherapy.
Cellular immunophenotypes were defined with quantitative

mIHC. Despite the general interest for immune topographies,
separate dissection of IT and PT regions has rarely been
conducted, and previously in ccRCC once with a smaller cohort
using flow cytometry [42, 43]. Consistent with these results, we
showed that the IT region is distinguished by high expression of
immune checkpoint receptors in lymphocytes. By studying
patient-level immune profiles, we discovered that LAG3 expres-
sion in IT T cells drove the unsupervised clustering of RCC patients.
Larger renal tumors were associated with reduced IT TIM3+ and
more pronounced PT TIM3+ and LAG3+ T cells. PD1 and LAG3
have been reported as the most prevalent T-cell immune
checkpoint receptors in RCC, and their blockade to increase IFNγ
signaling was considered crucial for successful anti-cancer
immunosurveillance [44]. Given the described findings, LAG3+
T cells may represent both a prognostic and therapeutically
targeted subset requiring further evaluation. Currently, therapeu-
tic anti-LAG3 antibodies are under clinical investigation for safety
and efficacy (NCT01968109, NCT04370704).
HLA-G is highly expressed in placental cytotrophoblasts and at

low levels in corneal, endothelial and pancreatic tissues but not in
normal kidney tissue [45]. The elevated HLA-G expression
observed in RCC patients is consistent with previous publications
reporting inferior HLA-G-mediated in vitro immune responses [46].
We did not find associations between HLA-G expression and
tumor characteristics. As HLA-G is not expressed in healthy renal
tissue, its transcription might be induced due to epigenetic
regulation [45]. We reported common expression patterns
between HLA-G and PD-L1, which were linked with higher
lymphocyte infiltration, and potentially regulation by type I IFN
[35, 47]. Therefore, the immunologic targeting of HLA-G may be
promising, notably in conjunction with anti-PD1 blockade.
We computed intercellular distances to separately examine

interacting and non-interacting cells. While the total proportion of
immune cells was lower in the IT region, these were more densely
localized and expressed higher levels of immune checkpoint
receptors than PT immune cells, in line with the notion that
physical proximity is needed for the formation of immunological
synapses. T-cell infiltration was characterized with fewer interac-
tions between cytotoxic T cells and CD16+ myeloid cells, elevated
PD-L1 and HLA-G expression as well as enrichment of activation-
related CD45RO+ and PD1+ lymphocytes. Abundant lymphocyte-
lymphocyte and myeloid-myeloid cell interactions, as well as
higher PD-L1 and HLA-G expression were observed instead in the
context of an immune exhausted profile. In summary, lymphocyte
infiltration and immune checkpoint expression are associated with
distinct phenotypic compositions.
Comparison of T-cell profiles between IT and PT regions

revealed that these represent unique immune contextures. The
difference was even more remarkable when examining cellular
interaction networks than immune phenotype proportions. The
distinct immunophenotypes and interaction indexes may be
attributed to the restriction of malignant cells to the IT area and
diverse cytokine and stromal microenvironments. Moreover, we

identified higher CD45RO expression in interacting compared to
non-interacting IT T cells, particularly in conjunction with immune
hot tumors. Interestingly, PT CD45RO+ T-cell proportion predicted
poor OS suggesting that CD45RO+ T-cell quantity may represent
a surrogate marker for T-cell interaction or prognosis depending
on the analyzed region in question. We envision that a
similar approach combining spatial immunoprofiles with genomic
alteration data and immunotherapy treatment response could
deepen our understanding of tumor immunology and ccRCC
pathology.
We combined whole-slide lymphocyte quantification with

tissue microarray-based immune cell immunophenotypes and
cellular neighborhoods, highlighting the multifaceted potential
of in situ data and spatial analysis. Our study underlines the
fundamental priority to dissect both the intratumoral parench-
yma and its adjacent peritumoral stroma as these might reflect
different immunological profiles and are independently asso-
ciated with clinicopathologic characteristics. Similar studies
based on spatial RNA sequencing will likely emerge. However,
collection of large cohorts required to identify biomarkers of
aggressive disease or treatment sensitivity might be currently
easier to conduct with proteomic methods. In summary, the
consideration of tissue contexture and spatial location during
tissue sampling is crucial to understand the role of immuno-
surveillance in cancer.

DATA AVAILABILITY
Tissue material and image data are available upon reasonable request by contacting
the corresponding author. TCGA immune topography classes and lymphocytes
proportions are reported in Supplementary data.
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