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Engineering entangled microwave 
photon states through multiphoton 
interactions between two cavity 
fields and a superconducting qubit
Yan-Jun Zhao1, Changqing Wang1, Xiaobo Zhu2 & Yu-xi Liu1,3

It has been shown that there are not only transverse but also longitudinal couplings between microwave 
fields and a superconducting qubit with broken inversion symmetry of the potential energy. Using 
multiphoton processes induced by longitudinal coupling fields and frequency matching conditions, 
we design a universal algorithm to produce arbitrary superpositions of two-mode photon states of 
microwave fields in two separated transmission line resonators, which are coupled to a superconducting 
qubit. Based on our algorithm, we analyze the generation of evenly-populated states and NOON states. 
Compared to other proposals with only single-photon process, we provide an efficient way to produce 
entangled microwave photon states when the interactions between superconducting qubits and 
microwave fields are in the strong and ultrastrong regime.

Superconducting transmission line resonators can be used as quantum data buses, quantum memories, and sin-
gle microwave photon detectors1,2. They usually work in the microwave regime and can also be used as quantum 
nodes in so-called quantum networks3,4. It is well known that the entanglement is one of the most important 
resources for quantum information processing5, and microwave photons play a critical role in quantum state 
control for solid state quantum devices. Therefore, engineering arbitrarily entangled microwave photon states is a 
very fundamental issue for both solid state quantum information processing and quantum optics6 on supercon-
ducting quantum chips.

Usually, nonclassical photon states of a single-mode cavity field are generated through the interaction between 
the cavity field and the two-level atom. The methods of generating nonclassical photon states can be classified into 
two ways. One is to engineer appropriate Hamiltonians in different evolution durations by tuning experimental 
parameters when the target state is being generated7–10. The other one is to obtain the target state via appropriately 
designed measurements11. The former one is deterministic, while the latter one is probabilistic and usually has a 
low probability to succeed. If the nonclassical state is generated using natural atomic systems, the latter method 
is usually more practical since most of parameters are not possible or not easy to be tuned. However, in artificial 
atomic systems, the former method is more appropriate because system parameters can be artificially controlled. 
For example, superconducting quantum circuits (SQCs)12–19 provide us a very convenient way to deterministi-
cally engineer nonclassical states of a single-mode microwave field by varying the system parameters7–10.

The method of deterministically generating entangled photon states using atomic systems can be tracked to 
that of generating entangled phonon states of two vibrational modes20, in a trapped ion interacting with laser 
fields, by using different sideband transitions. However, the number of steps in such a method20 exponentially 
depends on the maximum phonon numbers. A few proposals were put forward to overcome the exponential 
dependence of the phonon number by introducing auxiliary atomic energy levels21,22, using phonon number 
dependent interactions23, or employing multiphonon transitions of high phonon numbers22,24. These methods 
have successfully reduced the number of steps into quadratic polynomials of the maximum phonon numbers.

The generation of entangled microwave photon states of two modes using superconducting qubit has been 
studied25–27, where a classically driven superconducting qubit with time-dependent frequency is coupled to two 
microwave fields in two separated cavities. The interaction Hamiltonian between the superconducting qubit and 
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the cavity fields of two modes is described by the Jaynes-Cummings model. Therefore, there is only single photon 
transition in each step. However, the photon-number-dependent Stark effects25–27 induced by the qubit-field cou-
pling make it possible to independently implement operations for photon states. Thus, the number of steps also 
quadratically depends on the maximum photon number.

It has been shown that the superconducting qubit and the cavity field can have both transverse and longitudi-
nal couplings when the inversion symmetry of the qubit potential energy is broken28,29. The longitudinal coupling 
can induce multiphoton transitions30 in different sidebands as in trapped ions31,32 and thus arbitrary photon states 
of a single-mode cavity field can be more conveniently engineered30. Motivated by studies25–30, we study a method 
to generate entangled microwave photon states in two separated cavities coupled by a superconducting qubit 
using multiphoton transitions. We first show that the longitudinal couplings can induce two-mode multiphoton 
processes similar to those in trapped ions33, and then study an efficient way to generate superposed two-mode 
photon states.

The paper is organized as below. In Sec. Theoretical Model and Sideband Excitations, an effective Hamiltonian, 
similar to that of trapped ions with two vibrational modes33, is derived, and then different sideband transitions are 
discussed. In Sec. Algorithm for State Generation, a new algorithm is introduced to generate arbitrary superpo-
sitions of two-mode photon states. In Sec. Minimizing the Effect of Unwanted Terms, we discuss how to choose 
parameters to obtain a high fidelity of the target state. In Sec. Environmental Effect on Target States, we numeri-
cally study the effects of both imperfect control pulses and the environment on the generated target state. In Sec. 
Discussions, the advantages and experimental feasibility of our method are discussed. Finally, we summarize our 
results in Sec. Conclusions.

Theoretical Model and Sideband Excitations
Basic Hamiltonian. As schematically shown in Fig. 1, we study a system where a superconducting qubit 
(SQ), modeled as a two level system, is coupled to two single-mode microwave fields in two separated cavities and 
driven by a classical field. The system Hamiltonian can be given by

= + + + .
∼ ∼ ∼ ∼H H H H H (1)q r g d

Here, ∼Hq and Hr are the free Hamiltonians of the SQ and the cavity fields, respectively. Moreover, ∼H g  is the inter-
action Hamiltonian between the SQ and cavity fields, and ∼Hd is the interaction Hamiltonian between the SQ and 
the classical field. In the qubit basis, the qubit Hamiltonian is given by

ω
σ

=
∼ H

2
, (2)q q

z

with σ = + 


˜ ˜g e e gx  and σ = −  


˜ ˜e e g gz . The parameter ωq is the qubit frequency. The kets 
g  and ẽ  

denote the ground and excited states of the qubit, respectively.
The free Hamiltonian of two cavity fields is given by

∑ ω=
=

†H a a ,
(3)r

l
l l l

1

2

where al †a( )l  is the annihilation (creation) operator of the lth cavity field with its frequency ωl and ω1 ≠  ω2. The 
interaction Hamiltonian between the qubit and two cavity fields is

Figure 1. Schematic diagram for a driven qubit (in the middle with the blue color), which is coupled to two 
single-mode microwave fields of two separated cavities (in the left with the purple color and the right with 
the red color, respectively). The first cavity field has the frequency ω1 and the second one has the frequency ω2. 
The coupling strength is g1 (g2) between the qubit and the first (second) cavity field. The qubit is driven by a 
classical field (in the middle with the black color) with the frequency ω and Rabi frequency Ω.
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∑ σ θ σ θ= − +
∼

=
 

†H g a a( cos sin )( ),
(4)g

l
l z x l l

1
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where gl is the coupling strength between the lth cavity field and the qubit, and θ is a parameter which depends on 
the inversion symmetry of the qubit potential energy.

Similarly, the interaction Hamiltonian between the qubit and classical field is given by

σ θ σ θ ω φ= Ω − +
∼

  
H t( cos sin )cos( ), (5)d z x

where Ω is the coupling strength (or Rabi frequency) between the qubit and the driving field. The parameters ω 
and φ are the driving frequency and driving phase, respectively.

In Eqs. (4) and (5), when the qubit potential energy possesses inversion symmetry, i.e., cos θ =  0, there are only 
transverse couplings between the qubit and cavity fields29. If the rotating wave approximation is further made and 
there is no driving (Ω =  0), Eq. (1) is reduced to extensively studied Jaynes-Cummings model6. When the qubit 
potential energy possesses a broken inversion symmetry28,29, i.e., cos θ ≠  0, there are both transverse and longi-
tudinal couplings between the qubit and microwave fields. The broken inversion symmetry of the qubit potential 
energy can be achieved when the bias charge for the charge qubit or the bias flux for the flux qubit is tuned off the 
optimal point28,29. But for the phase qubit, the inversion symmetry of the potential energy is always broken34,35. 
Here, we will study a general method and not specify a particular qubit.

We now change the qubit basis into the current basis of the flux qubit or the charge basis of the charge qubit. 
This is equivalent to diagonalizing the operator σ θ σ θ−

 
cos sinz x . In the new basis, the Hamiltonian in Eq. (1) 

becomes

= + + + .H H H H H (6)q r g d

Here, the Hamiltonians Hq, Hg, and Hd are given by

 ω
σ

ω
σ

= +H
2 2

, (7)q x
x
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z

∑ σ= +
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†H g a a( ),
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 σ ω φ= Ω +


H tcos( ), (9)d z

with σ = +g e e gx , and σ = −e e g gz . Hereafter, the parameters ωx =  ωq sin θ and ωz =  ωq cos θ are 
called transverse and longitudinal frequencies of the qubit, respectively. The kets θ≡ − 

g R g( )y  and 
θ≡ − ˜e R e( )y  are persistent current states of the flux qubit or charge states of the charge qubit. Here, 

ϕ ϕσ= −


R i( ) exp( /2)y y  is the rotation operator along the y-axis, with σ = − +  


i e g i g ey . The parameter 

ωz ≠  0 results in longitudinal couplings between the qubit and microwave fields in Eq. (1). Below, we will show 
that ωz ≠  0 can induce two-mode multiphoton processes in the qubit, and then use these multiphton processes to 
generate arbitrary superpositions of two-mode photon states.

Multiphoton processes and sideband excitations. To see how the multiphoton processes can be 
induced by the longitudinal coupling when ωz ≠  0, we now apply a unitary transformation

∑η
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l l
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to the Hamiltonian in Eq. (6). Then, we obtain an effective Hamiltonian
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It is clear that D is the displacement operator6 of two-mode cavity fields. The displacement quantity is ηlσz/2 for 
the lth cavity field. Hereafter, we will call the picture after the operator D as the displacement picture. The ratios 
ηl =  2gl/ωl are called the Lamb-Dicke parameters in analogy to trapped ions31,32.

To understand the classical-field-assisted multiphoton transitions of two cavity fields in the qubit, we apply to 
Eq. (11) a time-dependent unitary transformation

σ
ω φ=







+







U t ix t( ) exp

2
sin( ) ,

(12)d
z

with ω= Ω


x 2 / . Then, another effective Hamiltonian
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can be derived, with the time-dependent term

∑η ω φ=




 − + +





.
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Here, JN ≡  JN(x) is the Bessel function of the first kind. Equation (13) shows that multiphoton transitions with 
different modes can be controlled by the classical field as in trapped ions33.

In the interaction picture with the free Hamiltonian  ω σ= ∑ +=
†H a a ( /2)l l l z z0 1

2 , Equation (13) becomes
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2 2  is the coupling strength between the qubit and cavity field with each different transition 

process, and its algebraic form is

∑

∑

ω ω ω φ

η η η

=










 + + −





 +







× −
−

.

=

+ + +


J i N m n t iN

J x
m n m n

exp ( )

exp(
2

) ( )
( 1)

! ! ! ! (16)

Nm n
m n

z
l

l l l

l

l
N

n n m n m n
1

2

2
1 2

1 1 2 2

1 1
2 2

1 2 1 1 2 2

Equation (15) describes the classical-field-assisted two-mode multiphoton processes as in trapped ions33. The 
magnitude of JNm n

m n
1 1

2 2  depends on ωx, x, and ηl. We find
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where the properties of ≡J J t( )N
m n

N
m nl l l l  have been studied in ref. 30. The specific expression of JN

m nl l is given by
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Similarly to Eq. (17), the magnitude of JN
m nl l can be rewritten as
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It is clear that J J/N
m n

N
l l  is independent of the reduced driving strength x. From Eqs. (17)–(19), we know that both 

| |JNm n
m n

1 1
2 2  and JN

m nl l  can be changed by adjusting x and ηl in a similar way. By introducing new variables kl =  ml −  nl, 
we expand Eq. (15) in the Fock state basis, and then have
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with ξl =  max{0, − kl} and ζl =  min{nl, nl +  kl}. Here, σ = ′
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l
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 denotes the ladder operator of the lth cavity 
field. The time-dependent transition element ζ ζW t( )N
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with n1, n2 replaced by ζ1, ζ2 respectively. The complex transition amplitude ΩNn n
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Here, L z( )n
k( )  is the generalized Laguerre polynomials. It is clear that the classical-field-assisted multiphoton tran-

sitions can be derived from Eq. (20) using different frequency-matching conditions.

Time evolution operators. We now give detailed discussions on how to engineer two-mode multiphoton 
processes by tuning the driving field. Let us assume that the driving field is tuned to satisfy the resonant condition

ω ω ω ω∆ = + + + = .


N k k 0 (27)N
k k

z 1 1 2 2
1 2

Then Eq. (20) can be reduced to an effective Hamiltonian HN
k k1 2 when unwanted terms are neglected, that is,
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The time evolution operator governed by the Hamiltonian in Eq. (28) is given by
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Recall that ξl =  max{0, − kl} and ζl =  min{nl, nl +  kl} as defined previously. Here the new parameters used in 
Eq. (29) are respectively

≡ = Ω( )C C t t( ) cos , (30)Nn n
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As shown in Eqs. (28) and (29), |kl| photons in the lth resonator can be either created if kl ≥  0 or annihilated if 
kl <  0 while the qubit is flipped up. Similarly, |kl| photons in the lth resonator can be either created if kl <  0 or anni-
hilated if kl ≥  0 while the qubit is flipped down. Thus different sideband excitations can be constructed, depending 
on the values of k1 and k2.

Because the Hamiltonian derived in Eq. (15) is similar to that of the trapped ions24, the algorithm using 
two-mode multiphonon processes in trapped ions can be directly applied into our model, and different superpo-
sitions of two-mode photons can be generated. As a special case, two-mode Fock states of high photon numbers 
can in principle be more efficiently generated with just two steps as single-mode Fock states of high photon 
numbers30. However, we here design a new algorithm via different sideband transitions of low photon numbers 
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by tuning the driving field with properly selecting the parameters ωz, ωx, ωl, and ηl. The detailed discussions of 
parameter selection will be given in Sec. 3.

Algorithm for State Generation
Let us first study a universal algorithm for generating arbitrary two-mode microwave photon states using side-
band transitions with the following four Hamiltonians H1

11, H1
10, H1

01, and H1
00. Here, for the compact of notations, 

we have used k to represent − k with k >  0. For instance, H1
11 is actually HN

k k1 2 with N =  − 1, k1 =  1, and k2 =  − 1. 
For different N, k1, and k2, the interaction Hamiltonian HN

k k1 2 and its time evolution operator UN
k k1 2 have already 

been given in Sec. 1. Below, we will first study how to generate the target state by choosing pulse durations, fre-
quencies, and phases of the driving fields at each generation step with different sideband excitations, and then we 
will apply our algorithm to the generation of NOON states and discuss particular properties of the algorithm.

Universal algorithm for generating arbitrary two-mode microwave photon states. We note that 
the state generation in our algorithm is studied in the displacement picture with the unitary transformation as 
shown in Eq. (10). The arbitrary quantum states, we expect to be generated, is written as

∑ψ| 〉 =
+ ≤

C n n g, ,
(33)

f
n n N

n n 1 2
max1 2

1 2

where n n,1 2  means that the first and second cavities contain nl and n2 photons, respectively, and g  means that 
the qubit is in the ground state. Besides, Nmax and Cn n1 2

 mean the maximum photon number and the probability 
amplitude on the state n n g,1 2 , respectively. We assume that the system is initially in the state

ψ = .g0, 0 (34)0

We suppose the target state ψ| 〉f  can be generated by alternately switching on and off the two-mode transitions 
H1

11, H1
10, H1

01, and H1
00. With the designed time evolution operators, the state generation procedure can be repre-

sented by,

∏ψ ψ| 〉 = | 〉

=

| 〉| 〉

ν
ν ν ν ν

=

ν



†

†

†

U t U t U

U t U t U

U t U t U g

[ ( ) ( ) (0)]

[ ( ) ( ) (0)]

[ ( ) ( ) (0)] 0, 0 , (35)

f
f

p

f f
p

f f
p

1

1 0

1

1 1 1 1 1

f

1

where ∈νp {11, 10, 01, 00} denotes the transition type for the νth step, and tν is the time duration for the νth 
step. The time evolution operator ν νU t( ) is given by

ω
σ

ω ω
σ

ω φ=








 + +










×







+





.ν ν ν ν ν ν

† †U t i a a a a t ix t( ) exp
2

exp
2

sin( )
(36)z

z z
1 1 1 2 2 2

As discussed above, the transitions of different types can be achieved by changing the frequency ω of the driv-
ing field, which is denoted by ων  for the νth step. The phase of the driving field for the νth step is denoted by φν. 
We can express Eq. (35) in another equivalent form of iteration,

ψ ψ=ν ν ν ν ν ν−
ν† †U U t U t(0) ( ) ( ) , (37)

p
1 1

with |ψ0〉  and |ψf〉  given in Eqs. (34) and (33), respectively. The ket |ψν〉  is the state after the νth step. We note that 
the subscript f of |ψf〉  in Eq. (35) denotes the number of the final step. Equation (37) means that the initial state is 
restored from the target state by a composition of sideband transitions with proper time durations, frequencies 
and phases of driving fields. It is a recursion algorithm.

Without loss of generality, we use the maximum photon number Nmax =  2 as an example to show our algo-
rithm. The more general case with arbitrary Nmax is given in the supplementary material. The detailed steps for 
generating the target state

ψ| 〉 = + +

+ + +

C g C g C g
C g C g C g

0, 2 1, 1 2, 0
0, 1 1, 0 0, 0 , (38)

f 02 11 20

01 10 00

with Nmax =  2 using our recursion algorithm are described as the following four procedures.
Procedure (i). As schematically shown in Fig. 2(a), from the final state |ψf〉 , we first transfer the populations 

in the state space spanned by {|n1, n2〉 |g〉 |n1 +  n2 =  2} to the state |1, 0〉 |e〉 . This procedure consists of four steps as 
schematically shown in below

→ → →

← .

− −

−

g e g

e g

0, 2 0, 1 1, 1

1, 0 2, 0
(39)

f f f

f

01 10

1

01

2

10

3
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In Eq. (39), the transition type and step number is labeled respectively above and below the arrow. The arrow 
points to the direction of the population transfer. In Step ν, the population transfer is accomplished by properly 

Figure 2. Universal algorithm for generating arbitrary two-mode superposition state with the maximal 
photon number Nmax = 2. The n1 and n2-axis respectively denote the photon number of the first and second 
mode. The two-mode photon state is denoted by |n1, n2〉 . The qubit state is represented by the q-axis with q =  g 
or e respectively denoting the ground state |g〉  or excited state |e〉 . The state component |n1, n2〉 |q〉  is represented 
by a block at the location (n1, n2, q). If a state component is occupied, we color the corresponding block with red; 
otherwise, the block is left uncolored. The arrows respectively represent the “10”, “01”, “11”, and “00” transitions 
with transition types labeled aside them. The solid arrow indicates a desired population transfer from the 
starting state to the end state, while the dashed arrow indicates the inevitable oscillation when the desired 
population transfer is implemented. The inevitable oscillations have no effect on the results or fidelity of the 
target state. (a) Schematic diagram for transferring the populations on states |0, 2〉 |g〉 , |1, 1〉 |g〉 , and |2, 0〉 |g〉  to 
the state |1, 0〉 |e〉 . This is achieved by consecutively using “01”, “10”, “01”, and “10” transitions. (b) Schematic 
diagram for transferring populations on states |0, 1〉 |g〉  and |1, 0〉 |e〉  to the state |1, 0〉 |g〉 . This is achieved by 
consecutively using “11” and “00” transitions. (c) Schematic diagram for transferring the population on the state 
|1, 0〉 |g〉  to the state |0, 0〉 |e〉 . This is achieved by using a “10” transition. (d) Schematic diagram for transferring 
the population on the state |0, 0〉 |e〉  to the state |0, 0〉 |g〉 . This is achieved by using a “00” transition.
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tuning ων , tν, and φν. After this procedure, we obtain the state |ψf−4〉  which only has popupaltions in the space 
g e g g e{ 0, 0 , 0, 0 , 0, 1 , 1, 0 , 1, 0 }. We note that two additional oscillations

↔ ↔g e g e1, 1 1, 0 and 0, 1 0, 0 , (40)
01 01

will also occur inevitably when the population transfer from the state  g0, 2  to the state  e0, 1  is implemented. 
But they do not cause population leakage outside the original space and no extra steps should be taken for them. 
Thus these oscillations have no effect on the results or fidelity of the target state. For this procedure, these oscilla-
tions are schematically shown by dashed arrows in Fig. 2(a). Such oscillations can also occur in the following 
procedures and are shown by dashed arrows.

Procedure (ii). As schematically shown in Fig. 2(b), starting from the state |ψf−4〉 , we need to transfer the 
populations in the state space spanned by {|0, 1〉 |g〉 , |1, 0〉 |e〉 } to the state |1, 0〉 |g〉 . This procedure consists of 
following two steps

→ → .
− −

g e g0, 1 1, 0 1, 0
(41)f f

11

4

00

5

After this procedure, we obtain the state |ψ f−6〉  ,  which only has popupaltions in the space 
g e g{ 0, 0 , 0, 0 , 1, 0 }.

Procedure (iii). This procedure is similar to Procedure (i). As schematically shown in Fig. 2(c), starting from 
the state |ψf−6〉 , here we need to transfer the population on the state |1, 0〉 |g〉  to the state |0, 0〉 |e〉 . This procedure 
consists of only one step as below

→ .
−

g e1, 0 0, 0
(42)f

10

6

After this procedure, we obtain the state |ψf−7〉 , which only has popupaltions in the space g e{ 0, 0 , 0, 0 }.
Procedure (iv). This procedure is similar to the Procedure (ii). As schematically shown in Fig. 2(d), starting 

from the state |ψf−7〉 , we need to transfer the population on the state |0, 0〉 |e〉  to the state |0, 0〉 |g〉 . This procedure 
only consists of one step as below

→ .
−

e g0, 0 0, 0
(43)f

00

7

We thus obtain the state |ψf−8〉  =  |0, 0〉 |g〉 .
Therefore, the target ψ| 〉f  can be generated from the initial state ψ| 〉−f 8  using inverse processes from the 

Procedure (iv) to the Procedure (i). We note ψ ψ| 〉 ≡ | 〉 = | 〉| 〉− g0, 0f 8 0 . Thus, we obtain the total step number 
f =  8 by setting f −  8 =  0. Therefore, the generation of the target state with Nmax =  2 needs 8 steps.

Our algorithm takes a quadratic number of steps while an exponential one is required in ref. 20. Let us now 
analyze the reason. Our algorithm employs four interaction Hamiltonians, H1

10, H1
01, H1

00, and H1
11 given in 

Eq. (28). However, four interaction Hamiltonians “ σ + . .+â H cx ”, “ σ + . .−ˆ†a H cy ”, “σ− +  σ+”, and “ σ + . .+ˆ ˆa a H cx y ”  
are employed in ref. 20. The former three interaction Hamiltonians between our algorithm and those in ref. 20 are 
qualitatively identical since they convert the same number of bosons for either mode when the two-level system 
is excited. However, the last ones show fundamental difference between our algorithm and that in ref. 20, because 
ours creates one boson (photon) of one mode but annihilate one boson (photon) of the other when the two-level 
system is excited. But in ref. 20, one boson for both modes can be simultaneously created when the two-level 
system is excited. This difference is critical for us to design an algorithm which can keep track of the populations 
with a constant total boson (photon) number. Therefore, there is no population leakage outside the original space. 
However, the algorithm in ref. 20 has population leakage. Obviously, if the last interaction in ref. 20 is changed to 
“ σ .+ .+ˆ ˆ†a a H cx y ”, a theoretically equivalent algorithm to ours can also be developed. In this sense, our algorithm 
can be regarded as the improved version of that in ref. 20.

Calculation of controllable parameters. Let us now study how to choose the pulse duration tν, the fre-
quency ων  and phase φν of the driving field to generate a target state in the νth step for different types of 
transitions.

We suppose that the population transfer is taken as following

→ + +
ν

νn n g n k n k e, , , (44)
p

1 2 1 1 2 2

in the νth step, where the transition type pν =  k1k2 should be switched on based on the previous discussions. Thus 
the driving frequency is taken as

ω ω ω ω= + +ν k k , (45)z 1 1 2 2

from the resonant condition in Eq. (27). By introducing the notations

ψ=ν
νC n n g, , (46)n n

( )
1 21 2
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ψ=ν
νD n n e, , (47)n n

( )
1 21 2

then from Eq. (37), we need to solve the equation,

ψ = .ν ν ν ν ν
ν† †n n g U U t U t, (0) ( ) ( ) 0 (48)

p
1 2 1

We thus have the explicit solution for the pulse duration tν as

=
Ω

.ν

ζ ζ

ν

ν
+ +

t
C

D
1 arc tan

(49)
k k

n n

n k n k1

,
( )

,
( )

1 2

1 2

1 2

1 1 2 2

The phase of the driving field is determined by

ω φ ω

φ π π












= + +

− − .

ν

ν ν ν ν ν ν

ζ ζ
ν

+ +

 

C

D
x t targ sin( )

2
mod 2

(50)

n n

n k n k

k k

,
( )

,
( )

1

1 2

1 1 2 2

1 2

1 2

Here, the notation φ ν
n n
k k

1 ,1 2
1 2  is the value of φ n n

k k
1 ,1 2

1 2  for the νth step, which is given in Eq. (32) and depends on φν. Still 
recall ζl =  min{nl, nl +  kl} with l =  1, 2.

Similarly, if the population transfer is taken as

+ + → .
ν

νn k n k e n n g, , (51)
p

1 1 2 2 1 2

in the νth step. The explicit solution for tν is then

=
Ω

ν

ζ ζ

ν

ν
+ +t

D

C
1 arc tan ,

(52)
k k

n k n k

n n1

,
( )

,
( )

1 2

1 2

1 1 2 2

1 2

and the phase of the driving field is determined by

ω φ ω

φ π π












= + +

− + .

ν

ν ν ν ν ν ν

ζ ζ
ν

+ +

 

C

D
x t targ sin( )

2
mod 2

(53)

n n

n k n k

k k

,
( )

,
( )

1

1 2

1 1 2 2

1 2

1 2

According to the target state, the time duration, frequency and phase of the driving field for each step can be 
calculated using above equations. For example, if the “00” transition is used in the 3rd step, then we use Eq. (52) 
and Eq. (53) to obtain t3 and φ3 by setting ν =  3.

Application to NOON states. As an example, we now apply our algorithm to the generation of the NOON 
state, i.e., the target state is

ψ| 〉 = + .N g N g1
2

( , 0 0, )
(54)f max max

The recursion algorithm restoring ψ| 〉f  to the vacuum state |0, 0〉 |g〉  is schematically shown in Fig. 3 for the max-
imum photon number Nmax =  2. In Fig. 3(a), we can find that all the populations in the Hilbert space spanned by 
{|0, 2〉 |g〉 , |2, 0〉 |g〉 } can be transferred to the state |1, 0〉 |e〉  by consecutively using transitions “01”, “10”, “01”, and “1
0”, i.e.,

→ → →

← .

− −

−

g e g

e g

0, 2 0, 1 1, 1

1, 0 2, 0
(55)

f f f

f

01 10

1

01

2

10

3

After this procedure, as schematically shown in Fig. 3(b), all the populations on the state |1, 0〉 |e〉  can be trans-
ferred to the state |0, 0〉 |g〉  by consecutively using transitions “00”, “10”, and “00”, i.e.,

→ →

→ .

− −

−

e g

e g

1, 0 1, 0

0, 0 0, 0
(56)

f f

f

00

4

10

5
00

6
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The total step number is thus f =  7 for generating the NOON state +( 0, 2 2, 0 )/ 2 .
More generally, given an arbitrary Nmax, the total step number for generating the NOON state in Eq. (54) is

= − .f N4 1 (57)max

The step number for generating NOON state has been greatly reduced in comparison with that for generating an 
arbitrary state (see Equation (16) in the supplementary information). Obviously, the NOON state can be gener-
ated without using the “11” transition. If we assume the Lamb-Dicke parameter η 1l , which is usually the case 
even in the ultrastrong regime in superconducting circuit QED systems36–38. From Eq. (22), we have the Rabi 
frequencies η η|Ω | ∝n n1

00
1
0

2
0

1 2
, η η|Ω | ∝n n1

11
1 21 2

, η|Ω | ∝n n1
10

11 2
, and η|Ω | ∝n n1

01
21 2
. Thus, the transition “11” generally 

takes more time among the four types of transitions employed by us. Therefore, our algorithm may show a better 
efficiency for generating NOON sates than generating arbitrary entangled states. This is especially true when the 
maximal photon number Nmax is higher and the Lamb-Dicke parameter ηl is smaller.

Minimizing the Effect of Unwanted Terms
Theoretical analysis. In all of the above studies, we make an approximation that all unwanted terms have 
been neglected. However, these neglected terms will affect the fidelity of the prepared target state. Let us now 
discuss how to minimize the effect of these unwanted terms in Eq. (20) on the target state by choosing appropri-
ate parameters. In principle, the effects of these unwanted terms can be perfectly removed by pulse calibration 
techniques. Here, we study a method to minimize the effect of these unwanted terms by choosing the parameters 
when the pulse calibration cannot be used.

In our algorithm, we have used four interactions H1
10, H1

01, H1
11, and H1

00, all of them are constructed by the 
terms with the Bessel function J x( )1  in Eq. (20). Here, in the subscript of the Bessel function, we also use N  to 
denote − N if N >  0. We hope to suppress all the terms with the Bessel functions JN′(x) for N′  ≠  − 1. We focus on 
the case ω= Ω


~x 2 / 1 considering possible experimental conditions. In this case, only lower order Bessel func-

tions J0(x), J±1(x), and J±2(x) play significant roles. Thus, we need only to find proper parameters such that the 
effect of the terms with J0(x), J1(x), and J±2(x) are negligibly small. Our idea is to make those terms nonresonant 
by properly choosing the parameters ωx and ωz of the qubit, and frequencies ω1 and ω2 of two microwave modes. 
That is, we assume that the frequency of the lth cavity mode satisfies

ω ω= l , (58)l l gcd

where ll is a positive integer and ωgcd is the greatest common divisor of ω1 and ω2. Assuming that the “k1k2” tran-
sition is switched on, i.e., the transition detuning ∆ = 0k k

1
1 2 , then from Eq. (23), the frequency ω of the driving 

field must satisfy the condition

ω ω ω ω= + + .


k k (59)z 1 1 2 2

From Eqs. (23), (58), and (59), the detuning of the term with N′ , ′k1, ′k2 is then given by

Figure 3. Application of the general algorithm to generating the NOON state. The notations are the same as 
those in Fig. 2. (a) Schematic diagram for transferring the population in the space {|0, 2〉 |g〉 , |2, 0〉 |g〉 } to the 
state |1, 0〉 |e〉 . This is achieved by consecutively using “01”, “10”, “01”, and “10” transitions. (b) Schematic diagram 
for transferring the population on the state |1, 0〉 |e〉  to the state |0, 0〉 |g〉 . This is achieved by consecutively using 
“00”, “10”, and “00” transitions.
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∑ω ω∆ = ′ + + ′ + ′ .′
=

′ ′ N N k k l( 1) ( )
(60)N

k k
z

l
l l l

1

2

gcd
1 2

Thus the terms with the Bessel function J1(x) will have the detuning

∑ω ω∆ = + + ′ .
=

′ ′ k k l2 ( )
(61)

k k
z

l
l l l1

1

2

gcd
1 2

We expect that the terms with J1(x) are nonresonant. Thus, the relation that ∆ ≠′ ′ 0k k
1

1 2  must hold. A simple but 
sufficient condition is

ω ω≠ k2 , (62)z gcd

where k is an integer. Similarly, for the terms with J0(x), J2(x), and J x( )2 , the sufficient conditions can be given by

ω ω≠ k , (63)z gcd

ω ω≠ k3 , (64)z gcd

ω ω≠ .k (65)z gcd

The conditions in Eqs. (62)–(65) can be summarized as

ω ω≠ .k6 (66)z gcd

We can also assume that the longitudinal frequency ωz of the qubit is

ω ω= +p r( ) , (67)z gcd

where p is the integer part, and r is the fraction part. To meet Eq. (66), there should be

∉ .{ }r 0, 1
6

, 2
6

, 3
6

, 4
6

, 5
6 (68)

The nonresonant terms with J1, J0, and J±2 still have effect on the desired time evolution. These effects can be 
further eliminated by decreasing the stark shifts caused by the terms with Ω ′ ′ ′

′ ′
N n n
k k

1 2
1 2  in Eq. (22). The ideal case is

|Ω |

|∆ |
|Ω |′

′

′ ′
′ ′

′ ′
 ,

(69)

N n n
k k

N
k k n n

k k
2

1
1 2

1 2

1 2 1 2
1 2

or equivalently,

|Ω |

|Ω |
|∆ |′

′
′ ′

′ ′
′ ′

 ,
(70)

N n n
k k

n n
k k N

k k
2

1

1 2
1 2

1 2
1 2

1 2

for N′  =  0, 1, ± 2, ′ + ′ ≤n n N1 2 max, and n1 +  n2 ≤  Nmax, where the constraint condition for nl and ′nl  denotes the 
working space of our algorithm. Equation (69) means that the stark shifts should be negligibly smaller than the 
Rabi frequencies for state generation. Considering that Nmax is the maximum photon number of the target state, 
and using Eq. (60) and Eq. (67), we can obtain

ω ω∆ ≥ −′ ′ r ror (1 ) , (71)
k k
0 gcd gcd

1 2

ω ω∆ ≥ − −′ ′ ⌊ ⌋ ⌈ ⌉r r r r(2 2 ) or ( 2 2 ) , (72)
k k
1 gcd gcd

1 2

ω ω∆ ≥ − −′ ′ ⌊ ⌋ ⌈ ⌉r r r r(3 3 ) or ( 3 3 ) , (73)
k k
2 gcd gcd

1 2

ω ω∆ ≥ − .′ ′ r ror (1 ) (74)
k k
2 gcd gcd

1 2

Here, ⌊ ⌋x  means x rounded down and ⌈ ⌉x  means x rounded up. We thus reduce Eq. (70) to
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ω
Ω

Ω
−

′ ′
′ ′

 r rmin{ , 1 } ,
(75)

n n
k k

n n
k k

0

2

1
gcd

1 2
1 2

1 2
1 2

ω
Ω

Ω
− −

′ ′
′ ′

 ⌊ ⌋ ⌈ ⌉r r r rmin{2 2 , 2 2 } ,
(76)

n n
k k

n n
k k

1

2

1
gcd

1 2
1 2

1 2
1 2

ω
Ω

Ω
− −

′ ′
′ ′

 ⌊ ⌋ ⌈ ⌉r r r rmin{3 3 , 3 3 } ,
(77)

n n
k k

n n
k k

2

2

1
gcd

1 2
1 2

1 2
1 2

ω
Ω

Ω
−

′ ′
′ ′

 r rmin{ , 1 } ,
(78)

n n
k k

n n
k k

2

2

1
gcd

1 2
1 2

1 2
1 2

a condition much stronger than Eq. (70). If Eqs. (75)–(78) are fulfilled, the nonresonant terms can in principle 
be suppressed. We know from Eq. (22) that Eqs. (75)–(78) can be satisfied if, for example, the parameter ωx of the 
qubit is tuned sufficiently small, assuming that the reduced driving frequency x and Lamb-Dicke parameters ηl 
have been appropriately chosen.

Beside the terms with Bessel functions ′J x( )N  where N′  ≠  − 1, there are also unwanted terms with the Bessel 
function J x( )1 , which, however, also satisfy the resonant condition

∑ ω∆ = ′ − = .
=

′ ′ k k l( ) 0
(79)

k k

l
l l l1

1

2

gcd
1 2

Here, we have used Eqs. (59) and (60) to obtain Eq. (79). The Lamb-Dicke parameters satisfy the condition 
η ω= ⪅g2 / 1l l l  for circuit QED systems even in the ultrastrong regime36–38. From Eq. (58), we know that l1 and l2 
are coprime numbers. We can further make l1 (or l2) sufficiently large. Thus the unwanted resonant terms will 
possess large ′k1  (or ′k2 ). In this way, the effects of these terms will be suppressed due to the exponential decrease 
via the term ηl

kl  in Eq. (22). The condition, that the term J x( )1  is negligibly small, can be summarized as that l1 
and l2 should satisfy

η η . 1 (80)
l l

1 2
2 1

We now summarize the condition that minimizes the effects of unwanted terms. The parameter ωz of the qubit 
should satisfy Eq. (67) and Eq. (68). However, the parameter ωx of the qubit is mainly constrained by current 
experiments. For example, typical values of ωx/2π are in the range 1 ~ 5 GHz. The frequencies of the cavity modes 
ωl should satisfy Eq. (58) and Eq. (80). The values of the reduced driving frequency ω= Ω


x 2 /  and Lamb-Dick 

parameter ηl =  2gl/ωl should satisfy Eq. (70) or stronger conditions Eqs. (75)–(78). Appropriate values of x and ηl 
can be obtained via numerical simulations, which will be discussed below in Sec. 3.

Numerical simulations. We now further numerically simulate the effect of the unwanted terms on the gen-
eration of target states by using examples of generating the following two target states

∑ψ∼ =
+ ≤

n n g1
6

, ,
(81)n n

E
2

1 2
1 2

ψ = +
∼ g1

2
( 0, 2 2, 0 ) ,

(82)N

for some given parameters. It is obvious that ψ∼E  is an entangled state where every state component is evenly 
occupied. We thus call ψ∼E  the evenly-populated state. The state ψ∼N  is a two-photon NOON state5. Both ψ∼E  and 
ψ∼N  possess a maximum photon number Nmax =  2. The fidelities for generating these two states ψ∼E  and ψ∼N  are 
defined as

ψ ψ= |〈 | 〉|
∼ ∼

F , (83)
A

E E E

ψ ψ= |〈 | 〉|.
∼ ∼

F (84)
A

N N N

Here, ψ| 〉
∼A

E  and ψ| 〉
∼A

N  are respectively the actually generated states via the total Hamiltonian in Eq. (6).
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We now determine the detailed experimental parameters. From Eq. (67) and Eq. (68), we set r =  3/4, p =  9, 
and ωgcd/2π =  2 GHz, which corresponds to ωz/2 =  19.5 GHz. From Eq. (70) or Eqs. (75)–(78), the parameter 
ωx/2π should be made smaller, e.g., we set ωx/2π =  1.2 GHz. The frequency of the lth cavity, i.e., ωl, is determined 
by Eq. (58) and (80). Since the microwave fields are usually of several gigahertz, here we set l1 =  3, and l2 =  4, thus 
yielding ω1/2π =  l1ωgcd/2π =  6 GHz and ω2/2π =  l2ωgcd/2π =  8 GHz. The Lamb-Dicke parameters for the first and 
second cavity modes are set to be identical, i.e.,

η η η= = . (85)1 2

We vary the Lamb-Dick parameter η and the reduced driving frequency ω= Ω


x 2 /  to simulate the effect of the 
unwanted terms on the fidelity of the expected target states in Eqs. (81) and (82). The pulses are taken according 
to the calculation of Sec. Calculation of controllable parameters. That is, in the νth step, we use a sinusoidal driv-
ing with the driving frequency ων . Since the sinusoidal driving lasts for a duration tν, the driving field can be 
considered as square-windowed sinusoidal signal and thus, strictly speaking, is not delta-shaped in the spectrum. 
The simulation results for generating target states in Eq. (81) and Eq. (82) are listed in Tables 1 and 2, respectively. 
We can easily find that larger reduced driving strengths x and Lamb-Dick parameters η can usually make the 
fidelity higher. For the evenly-populated state ψ∼E , the largest fidelity 0.939 can be obtained at x =  1.7571 and 
η =  0.3714. However, for the NOON state ψ∼N , the largest fidelity 0.92 can be obtained at x =  2 and η =  0.5429.

Environmental Effect on Target States
In the above, we only discuss the effect of unwanted terms on the generation of target states. We now study the 
effect of dissipation on the fidelities of target states by numerical simulation for given parameters. When the 
environmental effect is included, the dynamical evolution of the SQC can be described by the master equation

ρ ρ γ σ ρ γ σ ρ

γ σ ρ κ ρ κ ρ

= − + 





+

+ 





+ +

 



D D

D D D

i H

a a

[ , ] [ ]

[ ] [ ] , (86)

eg ge ee ee

gg gg 1 1 2 2

where ρ and H are the reduced density operator and the Hamiltonian of the whole system, respectively. The total 
Hamiltonian has been given in Eq. (6). The compact notation ρ ρ ρ ρ= − −† † †D c c c c c c c[ ] (2 )/2 represents the 
Lindblad-type dissipation. We have noted that {|g〉 ,|e〉 } is the basis of σz, but the qubit dissipation is determined 

η

0.2 0.3714 0.4571 0.5429 0.6286 0.7143

x

0.3 0.115 0.393 0.519 0.608 0.739 0.675

0.7857 0.589 0.817 0.872 0.851 0.911 0.852

1.0286 0.615 0.85 0.876 0.906 0.886 0.857

1.2714 0.724 0.872 0.886 0.906 0.852 0.878

1.7571 0.821 0.939 0.899 0.859 0.825 0.837

2 0.867 0.915 0.838 0.876 0.887 0.859

Table 1.  The fidelities ψ ψ= |〈 | 〉|
∼ ∼

F
A

E E E  of the target state ψ = ∑
∼

+ ≤ n n g1 6( / ) ,n nE 2 221 2
 are listed  

for different values of the reduced driving frequency ωΩ= ∼x 2 /  and the Lamb-Dicke parameter η = 2g1/ 
ω1 = 2g2/ω2. Here ψ| 〉

∼A
E  is the actually generated state using the total Hamiltonian. We have chosen the 

longitudinal frequency of the qubit ωz/2π =  19.5 GHz, the transverse frequency of the qubit ωx/2π =  1.2 GHz, 
the frequency of the first mode ω1/2π =  6 GHz and the frequency of the second mode ω2/2π =  8 GHz.

η

0.2 0.3714 0.4571 0.5429 0.6286 0.7143

x

0.3 0.108 0.34 0.403 0.395 0.461 0.687

0.7857 0.675 0.815 0.833 0.862 0.829 0.868

1.0286 0.78 0.857 0.846 0.867 0.883 0.813

1.5143 0.871 0.877 0.873 0.877 0.787 0.806

1.7571 0.844 0.918 0.889 0.902 0.862 0.819

2 0.876 0.909 0.832 0.92 0.853 0.806

Table 2.  The fidelities ψ ψ= |〈 | 〉|
∼ ∼

F
A

N N N  of the target state ψ = +
∼ g g1 2 0 2 2 0( / )( , , )NOON  are 

listed for different values of the reduced driving frequency ωΩ= ∼x 2 /  and the Lamb-Dicke parameter 
η = 2g1/ω1 = 2g2/ω2. Here ψ| 〉

∼A
G  is the actually generated state using the total Hamiltonian. We have chosen the 

same parameters as in Table 1.
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by the qubit basis 
 ˜g e{ , }. The ground (

g ) and excited ( ẽ ) states of the qubit are given by the eigenstates of 
Eq. (2). If we define

σ ν µ=νµ , (87)

with ν =  g, e and μ =  g, e, and also define

σ ν µ=νµ 
 , (88)

with ν =


 ˜g e,  and µ =  ˜g e, . We can easily verify

σ θ σ θ=νµ νµ

†R R( ) ( ),y y

where Ry(θ) =  exp(− iθσy/2), and θ =  arc tan(ωx/ωz). In Eq. (86), γeg is the pure-relaxation rate from the qubit 
excited state to the ground state. Besides, γgg and γee are the pure-dephasing rates originating from disturbed qubit 
eigenstates. The decay rates of the first and the second cavity fields are denoted by κ1 and κ2, respectively.

Using parameters in Sec. 3 and taking the reduced driving strength ω= Ω = .


x 2 / 1 7571 and Lamb-Dicke 
parameter η =  0.3714 from Tables 1 and 2, we find that the highest fidelity = .F 0 939E  is achieved for generating 
the evenly-populated state ψ∼E  in Eq. (81), and a high fidelity = .F 0 918N  is also reached for generating the 
NOON state ψ∼N  in Eq. (82).

We now assume that the decay rates in Eq. (86) are taken as γgg/2π =  0, γee/2π =  2 MHz, and γeg/2π =  κ1/2π =  
κ2/2π =  1 MHz. We assume that the density operators ρ A

E  and ρ A
N  are the actually generated states for the target 

states ψ∼E  and ψ∼N . Then the fidelities can be redefined as

 ψ ρ ψ′ =
∼ ∼ , (89)

A
E E E E

 ψ ρ ψ′ = .
∼ ∼

(90)
A

N N N N

We perform numerical simulations using the above parameters and obtain ′ = .F 0 911E  and ′ = .F 0 863N . The 
total time for generating ψ∼E  is TE =  8.9561 ns and that for generating ψ∼N  is TN =  10.4451 ns. Both TE and TN are 
too small to induce significant decoherence at the decay rates specified by us. Thus, the fidelity losses induced by 
dissipation are fairly small, which are − ′ = .F F 0 028E E  for the evenly-populated state ψ∼E  and 

− ′ = .F F 0 055N N  for the NOON state ψ∼N . In ref. 39, the experimentally demonstrated 2-photon NOON state 
is of a fidelity between 0.69 and 0.72 by our definition of fidelity. Thus, it is lower than our result ′ = .F 0 863N .

Discussions
We now discuss the advantages and disadvantages between our methods and the previous ones20–27 for generating 
arbitrarily entangled states of two microwave fields or two vibrational modes.

The brief comparison between these methods is listed in Table 3. In detail, ref. 20 provided an algorithm to 
generate arbitrarily entangled states of two vibrational modes. But due to population leakage outside the original 
space, it takes an exponential complexity of the number of steps. The succeeding proposals21–27 overcome the 
exponential drawback in several ways: (1) A third atomic level is used to shield oscillations that cause population 
leakage21,22. But the disadvantage is that higher energy levels of systems usually have larger decay rates, which 
inevitably reduce the fidelities of the target states. (2) Boson-number-dependent Stark effects are used to realize 
independent operations of particular states23,25–27. But the disadvantage is that the detunings of nonresonant 
terms are usually less by one order of the coupling strengths between the two-level system and boson modes. This 
means that the Rabi frequencies are smaller, and the longer generation time is required. (3) Multiphoton pro-
cesses of high photon number are used to shield oscillations that cause population leakage or reduce the number 
of steps22,24. But the disadvantage is that if the coupling strengths between the atom and cavity fields are not high 
enough, then the Rabi frequencies become small, especially for states with high photon numbers, which obviously 
indicates longer generation time.

Besides the advantage that there is no population leakage, our method has also the following advantages 
compared with previous ones21–27: (1) It only uses the two energy levels of the qubit. Thus, the fidelities of 
the target states should be higher because there is no other auxiliary energy levels. (2) The detunings of the 
nonresonant terms are in the order of the resonator frequencies. They are usually bigger than the coupling 
strengths between the qubit and resonator modes. Thus the Rabi frequency can be made bigger than those using 
boson-number-dependent Stark effects. (3) We use multiphoton processes of low photon number, i.e., one pho-
ton at most is converted for either mode. Thus the Rabi frequency can be bigger than those using multiphoton 
processes of higher photon number, especially when the coupling strengths between the qubit and cavity modes 
are not very big. Of course, stronger couplings will further enhance the Rabi frequencies and hence reduce the 
generation time.

We point out that the real supercoducting qubit circuits are mutilevel systems, the information leakage to 
higher levels is not avoidable. However, the leakage can be neglected when the transition frequency between 
the first excited state and the second excited state is much larger than the qubit frequency. For example, in the 
flux qubit circuits, due to its large anharmonicity of energy levels, the information leakage is negligibly small. 
However, for the transmon and phase qubit, the anharmonicity is very weak. Thus, the pulse should be carefully 
calibrated to avoid information leakage to higher levels. The pulse calibration can be done as in ref. 40.
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We now compare the differences between our algorithm and other ones for generating NOON states. Ref. 41 
uses mutliphoton processes to generate NOON states. In superconducting systems, this means a low generation 
efficiency if the Lamb-Dicke parameter is not sufficiently big. Ref. 42 uses synchronization technology to generate 
NOON states, but the time duration for synchronization between two steps can be quite long and there exists inev-
itably information leakage. Ref. 43 and its experimental realization39 use two phase qubits with three active energy 
levels to generate NOON states of two cavity modes. The experimental setup is complex and the high energy 
levels of qubits will reduce the decoherence time. Ref. 25 uses photon number-dependent Stark effects to achieve 
independent operations. Thus the Rabi frequency is smaller than the qubit-cavity coupling strengths. Ref. 44  
requires that two qubits be initially prepared in a Bell state and finally get decoupled from the qubits and cavity 
fields. Ref. 45 uses one qubit but still needs one additional level to shield unwanted resonances. More recently, ref. 
46 uses one qubit of four levels which resonantly interacts with two resonators simultaneously to speed up the 
generation process of NOON states.

When applied to generating NOON states, our algorithm has new features besides the common advantages 
for generating arbitrary two-mode photon states: (1) Only carrier processes31 and one-photon processes are used. 
In this case, even though the coupling strengths between the qubit and cavity modes are small, large Rabi fre-
quencies can still be obtained. (2) The number of steps is reduced to linear dependence on the maximum photon 
number. These advantages indicate less generation time and thus guarantee a higher efficiency than preceding 
methods.

Now we discuss the experimental feasibility of our scheme. Tables 1 and 2 show that without pulse calibration, 
higher fidelities can be achieved at bigger Lamb-Dicke parameters η and reduced driving frequencies x. These 
values are already in the ultrastrong regime. Ref. 36 has reported ultrastrong couplings between three resonator 
modes and a flux qubit, where the Lamb-Dicke parameter η can reach as high as 0.236. In the ultrastrong regime, 
Rabi frequencies can be made to approach the magnitude of ωx, which usually ranges from 1 to 5 GHz. The decay 
rates of the qubit and cavity fields are usually in the magnitude of megahertz. Thus the dissipation has small 
effect on the fidelities of target states. For singe-mode microwave fields, Fock states with up to six photons9 and 
Fock state superpositions10 have been experimentally demonstrated using phase qubits. The NOON state up to 3 
photons has also been experimentally reported39. We thus hope that our proposal is also experimentally feasible 
in the near future.

Conclusions
In summary, we have proposed an approach to generate arbitrary superpositions of photon states of two micro-
wave fields in two separated cavities. Our method mainly depends on the coexistence of transverse and longitudi-
nal couplings between the qubit and cavity fields. Employing the longitudinal couplings, we derive a Hamiltonian 
which is similar to that of trapped ions interacting with two vibrational modes33. Using four simple interaction 
Hamiltonians derived from the longitudinal coupling, we design the state generation algorithm. Our algorithm 
can be regarded as the improved version of that in20 when the transverse and longitudinal couplings coexist in cir-
cuit QED systems. But it has remedied the drawback that the number of steps exponentially depends on the max-
imal photon number, which is replaced by a quadratic dependence. Compared with previous ones with quadratic 
complexity, our algorithm does not require atomic energy levels higher than two21,22, boson-number-dependent 
stark effects23,25,27, or multiboson processes of high boson numbers22,24.

When applied to the generation of NOON states, whose engineering has been extensively studied39,41–48, our 
algorithm needs only carrier and one-photon sideband transitions. Meanwhile, the number of steps only linearly 
depends on the maximum photon numbers. In fact, these properties for generating NOON states can be general-
ized to any states with a constant total photon number of both modes.

We have also discussed how to avoid the effect of unwanted terms on the generation of target state. Our 
numerical results show that fidelities above 0.91 can be reached in the ultrastrong regime for the two-photon 
evenly-populated state and NOON state when the environmental effect is neglected. The generation time can be 
very short, in which case, the environment has small effect on fidelities of the target states. We here note that due 
to the similarity of two-mode interaction Hamiltonians, the algorithm using two-mode multi-phonon processes 

Pop. Leak. No. At. Lev. St. Eff. Mult. Proc.

Ref. 20 Yes 2 No L. Pn. No.

Ref. 21 No 3 No L. Pn. No.

Ref. 22 No 3 No H. Pn. No.

Ref. 23 No 2 Yes None

Ref. 24 No 2 No H. Pn. No.

Refs 25–27 No 2 Yes None

Our proposal No 2 No L. Pt. No.

Table 3.  Comparison of different methods for generating arbitrarily entangled states of two-mode bosonic 
fields. We use Pop. Leak., St. Eff. and Mult. Proc. to denote population leakage, the Stark effect, multiboson 
processes, respectively. No. At. Lev. is used to denote the number of atomic energy levels. For example, 2 denotes 
two energy levels when the state is generated. We use “Yes” or “No” to denote whether the population leakage 
(Stark effect) occurs (are used) or not. Meanwhile, L (or H). Pn. No. means multiphonon processes of low 
(or high) phonon number, however, L (or H). Pt. No. means multiphoton processes of low (or high) photon 
number.
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in ref. 24 can be directly applied into our model. Thus, two-mode Fock states with high photon numbers can be 
generated with just two steps as one-mode Fock states in30.

We have noted that our method for generating NOON states is similar to a recent algorithm simplified from 
the one which employs Stark effects to generate arbitrary entangled states27.
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