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Predicting 28-day all-cause mortality

in patients admitted to intensive care units
with pre-existing chronic heart failure using
the stress hyperglycemia ratio: a machine
learning-driven retrospective cohort analysis
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Abstract

Chronic heart failure (CHF) poses a significant threat to human health. The stress hyperglycemia ratio (SHR) is a
novel metric for accurately assessing stress hyperglycemia, which has been correlated with adverse outcomes in
various major diseases. However, it remains unclear whether SHR is associated with 28-day mortality in patients
with pre-existing CHF who were admitted to intensive care units (ICUs). This study retrospectively recruited patients
who were admitted to ICUs with both acute critical illness and pre-existing CHF from the Medical Information Mart
for Intensive Care (MIMIC) database. Characteristics were compared between the survival and non-survival groups.
The relationship between SHR and 28-day all-cause mortality was analyzed using restricted cubic splines, receiver
operating characteristic (ROC) curves, Kaplan—-Meier survival analysis, and Cox proportional hazards regression
analysis. The importance of the potential risk factors was assessed using the Boruta algorithm. Prediction models
were constructed using machine learning algorithms. A total of 913 patients were enrolled. The risk of 28-day
mortality increased with higher SHR levels (P <0.001). SHR was independently associated with 28-day all-cause
mortality, with an unadjusted hazard ratio (HR) of 1.45 (P<0.001) and an adjusted HR of 1.43 (P<0.001). Subgroup
analysis found that none of the potential risk factors, such as demographics, comorbidities, and drugs, affected

the relationship (P for interaction > 0.05). The area under the ROC (AUC) curve for SHR was larger than those for
admission blood glucose and HbA1c; the cut-off for SHR was 0.57. Patients with SHR higher than the cut-off had

a significantly lower 28-day survival probability (P <0.001). SHR was identified as one of the key factors for 28-

day mortality by the Boruta algorithm. The predictive performance was verified through four machine learning
algorithms, with the neural network algorithm being the best (AUC 0.801). For patients with both acute critical
illness and pre-existing CHF, SHR was an independent predictor of 28-day all-cause mortality. Its prognostic
performance surpasses those of HbA1c and blood glucose, and prognostic models based on SHR provide clinicians
with an effective tool to make therapeutic decisions.

*Correspondence:
Qi Liu
fecliux@zzu.edu.cn; giliu@vip.163.com

Full list of author information is available at the end of the article

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the

licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:/creati
vecommons.org/licenses/by-nc-nd/4.0/.


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12933-025-02577-z&domain=pdf&date_stamp=2025-1-8

Li et al. Cardiovascular Diabetology (2025) 24:10

Page 2 of 13

Keywords Stress hyperglycemia ratio, Chronic heart failure, Mortality, Risk factor, Machine learning

Introduction
Heart failure (HF) is a clinical syndrome characterized
by cardinal symptoms such as shortness of breath and
fatigue, with or without signs like peripheral edema,
pulmonary crackles, and elevated jugular venous pres-
sure, it can be artificially divided into chronic HF (CHF)
and acute HF based on whether the patient's symptoms
and signs have acutely worsened to the point where they
require urgent medical treatment [1]. CHF makes a sig-
nificant threat to human health and places immense pres-
sure on healthcare resources [2]. The global prevalence of
HF ranges from 1 to 3% of the total population, depend-
ing on definitions, patient age, nations, and diagnostic
capabilities. There are approximately 56.2 million HF
patients worldwide [3, 4] In the last few decades, a pla-
teau in incidence rates has been reached, and the number
of new diagnoses is substantially decreasing in devel-
oped countries. Meanwhile, in developing countries, an
increasing number of people are at risk of developing HF
due to an increased prevalence associated with the aging
population and changes in lifestyle [2]. The prognosis for
CHEF patients is typically poor with a high mortality, even
in the most developed country, North America, 5-year
mortality ranges from 45 to 75% [4]. Furthermore, the
progressive decline in cardiac function not only severely
impacts patients' quality of life, limits their daily activi-
ties, but also increases the risk of serious complications
such as arrhythmias and renal failure [5, 6]. Addition-
ally, CHEF is associated with high treatment costs, which
imposes a heavy economic burden on both families and
society [2, 4]. These factors highlight the urgency and
importance of CHF research, with significant value in
exploring effective treatments and prognostic indicators.
Transient hyperglycemia due to stress is advanta-
geous to enhance the ability of struggling with the acute
severe illness, [7] that is, an essential survival response
[8] However, long-term or continuous hyperglycemia
adversely affects the cardiovascular system by impair-
ing vascular endothelial function, promoting the forma-
tion and progression of atherosclerosis, and exacerbating
coronary artery narrowing and blockage. In patients with
CHE, stress hyperglycemia reduces cardiac blood sup-
ply, disrupt the normal metabolism of myocardial cells,
and increases the workload of the heart, further deterio-
rates cardiac function, leads to a decrease in myocardial
contractility and finally worsens HF [9, 10]. Moreover,
stress hyperglycemia increases the body's inflamma-
tory and oxidative stress responses, further damaging
cardiac tissue [11-13]. Blood glucose levels have been
incorporated into the Intermountain Risk Score, which
has significant predictive value for both short-term and

long-term mortality in patients with cardiovascular dis-
eases, such as cardiogenic shock [14], and ST-segment
elevation myocardial infarction [15]. These findings fur-
ther corroborate the harm of hyperglycemia to the heart.
For patients with CHF, they might face prolonged stress
due to poor heart function and recurrent acute events,
which induce a hyperglycemic state and oxidative stress
[16-19] that may contribute to poor clinical outcomes
[20]. Stress hyperglycemia at admission has been inde-
pendently associated with poor prognosis in various dis-
eases including stroke, [21, 22] sepsis, [23, 24] and acute
coronary syndrome [25].

However, admission blood glucose (ABG) cannot dif-
ferentiate whether hyperglycemia is induced by stress or
is a result of a chronic high blood sugar status. Therefore,
the stress hyperglycemia ratio (SHR), a relative hypergly-
cemia, was introduced as a new metric to assess stress
hyperglycemia more accurately, and additionally, to elim-
inate the impact of chronic blood sugar levels on acute
hyperglycemia [26] Multiple studies have demonstrated
higher SHR levels were associated with the increased risk
of adverse outcomes in patients with cardiovascular dis-
eases such as acute coronary syndrome [27-29], acute
decompensated HF [30] and sepsis [31].

Patients with pre-existing CHF are prone to be admit-
ted to the intensive care units (ICUs) due to various acute
critical illnesses, which pose a significant threat to the
patients' lives [3, 32]. However, it is still unclear whether
SHR is associated with the poor prognosis in patients
admitted to ICUs with both acute critical illness and
pre-existing CHF. Therefore, we conducted this study to
explore the value of SHR in the prediction of mortality in
this kind of patient.

Methods

Study design and participant

This is a retrospective study based on the clinical data of
patients with CHF from MIMIC-IV version 2.2, which
includes information on over 65,000 ICU admissions
and more than 200,000 emergency department admis-
sions at Beth Israel Deaconess Medical Center (BIDMC)
in Boston, Massachusetts, between 2008 and 2019 [33].
The Institutional Review Board of BIDMC waived the
requirement for informed consent and approved the
sharing of research resources. The authors obtained
access to the database (Certificate No.: 56073040). The
participants were included according to the prespeci-
fied criteria: (1) age>18 vyears, (2) patients diagnosed
with Pre-existing CHF on International Classification of
Diseases 10th Revision, (3) Admitted to the ICU regard-
less of the reason. The exclusion criteria were as follows:
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(1) patients who had not been tested blood glucose and
glycated hemoglobin Alc (HbAlc) in the first labora-
tory test, (2) patients with a follow-up time of less than
28 days, (3) patients with incomplete data may severely
affect the analysis of results. The primary outcome was
the value of SHR in prediction of the 28-day in-hospital
mortality.

Data extraction

Data was extracted using Navicat software. Characteris-
tics were collected at the time of the patients' admission
including age, gender, vital signs [heart rate, systolic blood
pressure, diastolic blood pressure, mean arterial pressure
(MAP), respiratory rate, body temperature, pulse oxy-
gen saturation (SpO,)], medical comorbidities (such as
diabetes, liver disease, renal disease, and congestive HF),
laboratory tests (such as white blood cell count, platelet
count, serum electrolytes, pH, ABG, and HbAlc), com-
monly used drugs as well as the 28-day clinical outcome,
survival or all-cause of death. In addition, the Oxford
acute illness severity (OASIS) score was extracted to assess
disease severity. SHR was calculated as ABG (mg/dL) /
(28.7x HbAc [%]-46.7) [26].

Patients with CHF (age=18 years) in MIMIC-IV
(n=12861)

Excluded:
| Without HbAlc (n=11948)
Follow-up <28 days (n=2821)

A 4

Recruited patients
(n=913)

I

A 4

Survivors Non-survivors
(n=425) (n=488)

\ J
[

Statistical Analysis

@ Restricted cubic spline
@ COX proportional hazards regression
@ Receiver operating characteristic curve
@ Kaplan-Meier regression @ Boruta algorithm
@ Machine learning:
Cox proportional hazards survival learner
K-Nearest Neighbors, Bayesian
Neural Network

Fig. 1 Inclusion flow in this study. CHF Chronic heart failure, HBATC Gly-
cosylated hemoglobin
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Statistical analysis

For continuous outcomes, normally distributed data are
expressed as meanztstandard deviation and compared
using t-test, non-normally distributed data are expressed
as medians (interquartile range) and compared by Wil-
coxon signed-rank non-parametric tests. The normal
distribution was tested for by Kolmogorov—Smirnov test.
Missing continuous data were imputed using linear inter-
polation. Categorical data were expressed as frequency
and percentage n (%) and compared between groups
using the chi-square test. Restricted cubic splines (RCS)
analysis was used to examine the relationship between
SHR and mortality. The receiver operating characteristic
(ROC) curve and the corresponding area under the ROC
curve (AUC) were used to compare the predictive power
of SHR, blood glucose, and HbAlc for 28-day mortality.
Kaplan—-Meier (KM) regression analysis was conducted
to compare prognosis between groups with high and low
SHR levels. Subgroup analysis was performed to further
investigate whether the potential confounders affected
the relationship between SHR and mortality. Cox propor-
tional hazards regression was used to determine prog-
nostic risk factors for CHF. Hazard ratios (HR) and 95%
confidence intervals (95% CI) were reported as effect
sizes. The Boruta algorithm in machine learning was used
to rank the features according to its importance of pre-
dictive ability of 28-day mortality. Acceptable variables
were subsequently integrated into the machine learning
algorithm. The Cox proportional hazards survival learner
(coxph), K-Nearest Neighbors (KNN), Bayesian, and
Neural Network algorithms were employed to assess the
28-day death risk in CHF patients, respectively. The data-
set of the included patients was randomly grouped into
development and validation sets at a 7:3 ratio. The ROC
curves and AUCs were utilized to assess model perfor-
mance. Decision curve analysis (DCA) was implemented
to evaluate clinical effectiveness, while calibration curves
were employed to measure the accuracy of absolute risk
predictions. A p-value<0.05 was considered statistically
significant. Statistical analyses were conducted using R
software (version 4.0.5) and SPSS (version 26.0, IBM Cor-
poration, USA).

Results

Participant inclusion and baseline characteristics

There were 12,861 cases with CHF and older than
18 years being recorded in MIMIC-IV. 11,948 patients
were excluded because the HbAlc was not reported,
and 2821 cases were excluded because of short follow-
up time (<28 days). Finally, 913 patients were recruited
with 425 in survivor group and 488 in non-survivor
group (Fig. 1). Among them, 539 (59%) participants were
male; Within the 28-day follow-up, 488 (53.5%) patients
died, while 425 (46.5%) patients survived. There were
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significant differences between the survivor group and
the non-survivor group in the age, vital signs (blood pres-
sure, respiratory rate and body temperature), laboratory
examinations (such as ABG, HbAlc and the other indica-
tors). More patients met with congestive HF (25% versus
19.1%, P=0.031) and less frequency of furosemide (42.2%
versus 59.1%, P=0.000) was used in non-survivors than
those in the survivors. There were more patients in the
survival group who had infection diseases (sepsis and
pneumonia) and therefore received antibiotics. There was
no significant difference in gender and the other comor-
bidities between the two groups. More characteristics
were reported in Table 1.

SHR levels and its relation to 28-day in-hospital mortality
analyzed by RCS

The SHR levels were significantly higher in the non-sur-
vivor group [1.2 (0.9, 1.6) vs. 1.1 (0.9, 1.4), P=0.002]. RCS
analysis revealed a significant relationship between SHR
and 28-day mortality (P for overall<0.001, Fig. 2A). The
risk of 28-day mortality in CHF patients increased with
higher SHR levels. After adjusting for potential risk fac-
tors (all the indicators with significant differences in
Table 1, such as age, comorbid sepsis, pneumonia and
congestive heart failure, vital signs, OASIS score, labora-
tory test indicators and drugs), the association between
SHR and 28-day mortality remained significant (Fig. 2B).

COX proportional hazards regression and the subgroup
analysis

COX proportional hazards regression analysis with and
without adjustment (the characteristics with significant
differences between the survivors and non-survivors)
was performed to explore the relationship between SHR
and 28-day in-hospital mortality. The results showed
that the unadjusted HR was equal to 1.45 with 95% CI
1.32-1.59 (P<0.001), and the adjusted HR was equal to
1.43 with 95% CI 1.29-1.58 (P<0.001), which indicated
that SHR were independently associated with 28-day all-
cause mortality. Subgroup analysis was performed for the
potential impact factors such as demographics (gender,
age), comorbidities (diabetes, liver disease, renal disease,
congestive HF, pneumonia, cerebral infarction, and sep-
sis), OASIS score, and drugs (furosemide, atorvastatin,
aspirin and vancomycin). The results indicated that none
of the aforementioned factors affected the prognostic
prediction of SHR for patients with CHF (Fig. 3 and Sup-
plementary Table S1). Higher SHR was associated with
increased risk of 28-day mortality in CHF in each sub-
group (both unadjusted HR and adjusted HR were above
1, P<0.05, P for interaction>0.05), meaning the baseline
demographics, comorbidities, OASIS score and the com-
monly used drugs did not sway the relationship between
SHR and 28-day mortality.
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ROC curves of SHR, ABG, and HbA1c

The ROC curves were plotted for SHR, ABG, and HbAlc
(Fig. 4) to predict 28-day all-cause mortality in patients
with CHFE. SHR had an AUC of 0.924 (95% CIL: 0.904—
0.943, P<0.001), outperforming both ABG [AUC: 0.910
(95% CI: 0.889-0.932), P<0.001] and HbA1lc [AUC: 0.917
(95% CIL: 0.899-0.935), P<0.001], which indicated that
SHR offered a significant advantage in prediction over
ABG and HbAlc. Additionally, we determined a cut-off
value of 0.57 for SHR, with a sensitivity of 0.80 and speci-
ficity of 0.98. KM curves were plotted for patients divided
by the cut-off of SHR.

KM analysis to compare the 28-day survival in subgroups
with low versus high SHR

The participants were allocated into low-SHR and high-
SHR subgroups for K-M analysis (Fig. 5). Compared to
the low-SHR group, patients with higher SHR levels had
significantly lower 28-day survival probability (P=0.011).

Importance of factors in the impact on 28-day mortality
ranked by Boruta algorithm

In the report from Boruta algorithm, the variables includ-
ing SHR in the green area are identified as important fac-
tors, which have important roles in the model. SHR was
one of the key factors in predicting 28-day hospital mor-
tality in patients with CHF. The variables in the yellow
area are suspected factors, which may be related to the
adverse outcome to a certain extent, and the variables in
the red area are unimportant factors (Fig. 6).

Establishment and validation of the machine learning
prediction model

According to the pre-specified protocol, patients
were assigned to development (n=640) and validation
(n=273) groups, no significant differences were detected
in the characteristics, suggesting that the two groups of
patients originate from the same population and pos-
sess good comparability (Supplementary Table S2). The
ROC curves of machine learning prediction model were
shown in Fig. 7A. The AUC of Coxph, KNN, Bayes and
Neutral Network were 0.793, 0.774, 0.786, 0.801, respec-
tively, which indicated that the best performance was
in the Neutral Network algorithm prediction model.
The DCA curves demonstrated the KNN algorithm
model presented a large net benefit and beard strong
clinical effectiveness (Fig. 7B). Moreover, the calibra-
tion curve of KNN was highly in good agreement with
the reference line, indicating excellent prediction per-
formance (Fig. 7C). The characteristics of patients in
the development set and validation set are reported in
Supplementary Table S2. This table indicates that no sig-
nificant differences were detected in as many as 62 char-
acteristics, suggesting that the two groups of patients
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Table 1 Baseline characteristics of patients with chronic heart failure

Overall (n=913) Survivors (n=425) Non-survivors (n=488) z(x2)/p
Demographics
Age, years 66.7 (65.7,67.7) 63.0 (53.5,72.0) 72.0(61.0,82.0) —8.3/0.000
Male, n (%) 539 (59.0) 256 (60.2) 283 (58.0) 0.5/0.492
Comorbidities, n (%)
Diabetes 364 (39.9) 164 (38.6) 200 (41.0) 0.5/0.461
Renal diseases 324 (35.5) 151(35.5) 173 (35.5) 0.0/0.980
Liver diseases 291 (31.9) 140 (32.9) 151(30.9) 04/0518
COPD 34.(3.7) 11(2.6) 23(4.7) 2.9/0.091
Sepsis 306 (33.5) 163 (384) 143 (29.3) 8.4/0.004
Pneumonia 254 (27.8) 142 (334) 112 (23) 12.4/0.000
Asthma 71(7.8) 39(9.2) 32 (6.6) 2.1/0.140
SAP or UAP 67 (7.3) 32(7.5) 35(7.2) 0.0/0.836
AMI 12(1.3) 5(1.2) 7(14) 0.1/0.733
ARDS 10 (1.1) 6(1.4) 4(0.8) 0.7/0.391
Cerebral infarction 126 (13.8) 65 (15.3) 61(12.5) 1.5/0.222
Intracerebral hemorrhage 13(14) 8(1.9) 5(1.0) 1.2/0.275
Congestive heart failure 203 (22.2) 81(19.1) 122 (25.0) 4.6/0.031
Acute heart failure 84 (9.2) 38(8.9) 46 (9.4) 0.1/0.800
Vital signs, median (IQR)
Systolic pressure, nmHg 109.6 (108.6, 110.6) 109.6 (102.0,119.8) 105.9 (97.7,114.7) —4.7/0.000
Diastolic pressure, mmHg 59.2 (58.6,59.9) 59.2 (53.7,65.5) 57.4(51.6,63.9) —3.3/0.001
MAP, mmHg 733(726,73.9) 73.2 (68.0,80.0) 713(65.0,76.8) —4.3/0.000
Respiratory rate, breathes per minute 214(21.1,21.7) 203 (17.4,23.9) 216(183,24.8) —3.4/0.001
Body temperature, C 36.9 (36 8,36.9) 36.9 (36.7,37.3) 36.8(36.5,37.1) —4.7/0.000
Heart rate, beats per minute 91.8(90.7,93.0) 914 (794,103.7) 91.2 (78.5,103.8) —0.3/0.801
SpO,, % 96.4 (96.2,96.6) 97.2 (96.0,98.6) 96.5 (94.7,98.1) —4.7/0.000
Score, median (IQR)
OASIS 39.5(38.8,40.1) 37.0(29.0,44.0) 41.0(35.0,48.0) —6.4/0.000
Laboratory examination, median (IQR)
ABG, mg/dl 168.1 (161.9, 174.3) 137.0(113.8,170.0) 1442 (115.0,212.8) —3.3/0.001
HbA1c, % 6.3(6.2,64) 6.0 (5.0,7.0) 6.0(5.3,7.0) —5.8/0.000
Hemoglobin, g/dl 9.9(9.7,9.9) 9.2(8.1,10.6) 9.7(85114) —4.0/0.000
PLT, 10%/L 199.4 (190.9, 208.0) 183.0(112.3,262.0) 173.3(103.6, 246.0) —1.5/0.132
WBC, 10%/L 15.0 (14.1,16.0) 12,6 (8.1,17.9) 14.1 (9.0,19.4) —2.7/0.008
BUN, mg/d| 39.9(38.0,41.7) 30.0(19.0,46.0) 353(22.0,54.9) —3.4/0.001
Calcium, mmol/L 82(8.1,83) 82(7.7,87) 82(76,87) —1.2/0.226
Chloride, mmol/L 103.0 (102.6, 103.5) 103.0 (99.0,107.0) 103.0 (98.0, 107.5) —-0.1/0915
Creatinine, mg/dl 2.1(20,22) 14(09,23) 1.8(1.1,2.7) —3.8/0.000
Sodium, mmol/L 37.9(137.5,138.3) 138.0 (134.5,141.0) 138.0 (134.0,141.5) —0.2/0.814
Potassium, mmol/L 44 (4.3,44) 42(39,47) 44(3.9,4.9) —2.9/0.004
INR 19(1.8,19) 15 (1 2,18) 16(1.3,2.2) —3.5/0.001
PT, s 20.2(194,21.0) .7(13.5,20.2) 17.2(13.9,23.2) —3.4/0.001
PTT, s 454 (44.0,46.9) 35.9(29.6,454) 42.2(30.8,56.4) —4.1/0.000
ALT, U/L 172.3(138.8,205.8) 52.0(21.5,172.0) 51.0(22.0,172.0) —0.3/0.796
ALP, U/L 1354 (128.6,142.1) 130.0 (74.5,135.0) 1225 (82.0,141.5) - 1.0/0.360
AST, U/L 384.8 (287.6,482.0) 75.0(31.5,385.0) 97.5(36.3,385.0) - 1.7/0.096
pH 73(7.3,7.3) 7.0(7.0,7.0) 7.0(7.0,7.0) —1.5/0.000
SHR 1.3(1.3,13) 1.1(09,14) 1.2(09,1.6) —3.1/0.002
Drugs, n (%)
Antiplatelet drugs
Clopidogrel 108 (11.8) 44 (104) 64 (13.1) 1.7/0.197
Aspirin 419 (45.9) 194 (45.6) 225 (46.1) 0.0/0.889

Lipid regulating drugs
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Overall (n=913) Survivors (n=425) Non-survivors (n=488) z(x2)/p
Atorvastatin 216 (23.7) 101 (23.8) 115(23.6) 0.0/0.944
Simvastatin 115 (12.6) 48(11.3) 67 (13.7) 1.2/0.269
Diuretics
Spironolactone 89(9.7) 38(8.9) 51(10.5) 0.6/0.443
Furosemide 457 (50.1) 251 (59.1) 206 (42.2) 25.8/0.000
Antibacterial drugs
Amoxicillin-clavulanic acid 12 (1.3) 6(1.4) 6(1.2) 0.1/0.809
Ampicillin sodium 27 (3.0) 19 (4.5) 8(1.6) 6.3/0.012
Piperacillin tazobactam 196 (21.5) 113 (26.6) 83(17.0) 12.4/0.000
Cefazolin 85 (9.3) 53(12.5) 32 (6.6) 9.4/0.002
Ceftazidime 46 (5.0) 33(7.8) 13(27) 12.4/0.000
Ceftriaxone 99 (10.8) 51(12.0) 48 (9.8) 1.1/0.294
Meropenem 126 (13.8) 87 (20.5) 39(8.0) 29.7/0.000
Imipenem 5(0.5) 3(0.7) 2(04) 0.4/0.545
Azithromycin 73 (8.0) 40 (9.4) 33(6.8) 2.2/0.141
Erythromycin 29(3.2) 19 (4.5) 10 (2.0) 4.3/0.037
Ciprofloxacin 191 (20.9) 114 (26.8) 77 (15.8) 16.8/0.000
Levofloxacin 87 (9.5) 49 (11.5) 38(7.8) 3.7/0.055
Metronidazole 137 (15.0) 77 (18.1) 60 (12.3) 6.0/0.014
Vancomycin 436 (47.8) 237 (55.8) 199 (40.8) 20.4/0.000
Vasodilator drugs
Nitroglycerin 129 (14.1) 78 (18.4) 51(10.5) 11.7/0.001
Anti-arrhythmic drugs
Amiodarone 107 (11.7) 60 (14.1) 47 (9.6) 4.4/0.036

COPD Chronic obstructive pulmonary disease, SAP Stable angina pectoris, UAP Unstable angina pectoris, AMI Acute myocardial infarction, ARDS Acute respiratory
distress syndrome, ABG Admission blood glucose, HbAlc Glycosylated hemoglobin, OASI/S Oxford acute illness severity score, MAP Mean arterial pressure, SpO2 Pulse
oxygen saturation, PLT Platelet count, WBC White blood cell count, BUN Blood urea nitrogen, /INR International normalized ratio, PT Prothrombin time, PTT Partial

thromboplastin time, ALT Alanine aminotransferase, ALP Alkaline phosphatase, AST Aspartate aminotransferase, SHR Stress hyperglycemia ratio

originate from the same population and possess good
comparability.

Power of the study

The sample size was estimated using a method specifi-
cally designed for developing clinical prediction mod-
els, as put forward by biostatistics professors [34]. To
achieve the expected power of test (a significance level of
0.05,two-tailed, and a desired power of 0.80) in the four
machine learning algorithms used in this study, at least
439 participants were required for the sample (includ-
ing 220 positive events) based on preliminary analysis
(mortality of 0.53) and the top 15 important factors in the
green zone (Fig. 6) ranked by Boruta algorithm, the cal-
culations were performed by the R package (pmsampsize)
[34]. In the current research, 913 patients were included
in the sample, which included 488 positive events. This
sample size exceeded the calculated sample size, provid-
ing sufficient power to detect the effects.

Discussion

This retrospective study exclusively investigated the rela-
tionship between the SHR and the mortality in patients
with CHEF. The study ultimately found that the SHR was

an independent prognostic risk factor, regardless of the
baseline demographics, comorbidities and drugs, which
was validated by a variety of statistical methods and from
multiple dimensions in this study.

The estimates of mortality rates in CHF varied greatly
due to the differences in the study design, study popula-
tion, definition for CHE, and cut-off values for left ven-
tricular ejection fraction [4, 35]. Patients who suffered
from pre-existing CHF only have an overall median sur-
vival of 2.1 years even if admitted to the hospital solely
for HF (mostly non-ICU) [36] The patients included in
this study also met with at least one acute critical illness
at the time of ICU admission, such as sepsis, pneumo-
nia, cardiovascular events, and liver and kidney diseases,
which jointly contribute to poor prognosis, these are also
the reasons why we chose the 28-day all-cause mortality
rate. The mortality is consistent with the results of previ-
ous related studies. [37, 38]. The relatively high rates of
hospital readmission and mortality have brought an enor-
mous economic burden to society and families [4, 35].
Therefore, establishing early prediction models for prog-
nosis and identifying patients at high risk of death can
assist clinicians in formulating more proactive and rea-
sonable treatment plans, serving to reduce risk of death.
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Fig. 2 The association between SHR and 28-day mortality by restricted
cubic spline method A The unadjusted evaluation; B The adjusted evalua-
tion. C/ Confidence interval, SHR Stress hyperglycemia ratio

The Meta-Analysis Global Group in Chronic Heart Fail-
ure (MAGGIC) pooled the data from 30 cohort studies (
involving 39 372 patients) and identified 13 independent
predictors of mortality with various predictive strength
in patients with CHF [39]. One observational study has
externally validated the MAGGIC risk score could be
considered as a powerful and simple method to stratify
the risk of mortality [40]. Another retrospective cohort
analysis constructed a nomogram prediction model of in-
hospital mortality with similar 13 risk factors [41]. With
an increasing understanding of the relationship between
inflammation and CHF [42] some scholars have estab-
lished a clinical outcome risk stratification model based
on multiple plasma biomarkers [43]. However, these
models involve too many parameters and are complex
to operate. Therefore it needs simple and easy-to-use
parameters to assess the risk of mortality, such as heart
rate [44], echocardiography [45] and the combination
of several commonly used laboratory indicators in clini-
cal practice [46]. In critically ill patients, SHR has been
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concerned because it eliminates the influence of baseline
glucose on stress hyperglycemia regardless of whether
the patient has diabetes or not [26, 47]. Considering
that stress hyperglycemia can occur in all populations,
this study includes patients with and without diabetes to
reflect the universality of SHR.

In this study, RCS analysis clearly demonstrated that
the risk of 28-day mortality gradually rose with the
increase of SHR. This relationship remains stable after
adjusting for confounding factors. Meanwhile it was
validated by proportional hazards regression and the
subgroup analysis based on the potential impact factors,
which demonstrated the broad applicability and stability
of the relationship between SHR and the mortality. This
finding might have important clinical implications, as
physicians can calculate SHR early in the patient's admis-
sion to quickly assess their prognostic risk and develop
more personalized and targeted treatment protocols.
This result aligns with previous research in other criti-
cal illnesses including acute myocardial infarction [21],
stroke [26], sepsis [27]. These results further emphasize
the importance of SHR in prognostic assessment for CHF
patients.

Another finding was the cut-off of SHR, it is 0.57
according to the ROC analysis, which was lower than
those for long-term prognosis in patients with CHF [48]
and poor prognosis acute coronary syndrome [29]. The
results of KM analysis based on the cut-off also strongly
support this view point. The 28-day survival rate in
patients with SHR level larger than 0.57 was significantly
lower than in those with SHR lower than 0.57, which
indicated that SHR could be used as an effective stratifi-
cation tool to differentiate prognostic risk. Additionally,
the AUC of SHR was superior to both admission glucose
and HbAlc, which suggested that SHR could more accu-
rately reflect the severity and prognosis of the patient's
condition, potentially provide more comprehensive and
precise information compared to traditional blood glu-
cose markers. The strength of SHR might be attributed to
the fact that SHR takes into account both acute glucose
elevation and chronic glucose levels, therefore SHR bet-
ter reflects the patient's glucose metabolism during stress
and its impact on prognosis [26].

It is well-known that the poor prognosis might not be
driven by only one factor. As shown in Table 1, there are
significant differences between survivors and non-sur-
vivors in multiple characteristics involving age, comor-
bidities, vital signs, laboratory test indicators, and clinical
medication use, although it is not possible to make defin-
itive judgments relying solely on basic statistical meth-
ods. Therefore, the Boruta algorithm was adopted to
determine the importance of various factors in the influ-
ence on the poor prognosis, which showed that SHR
played an important role in the model and was identified
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Unadjusted Adjusted
Variables HR (95%Cl) P P for interaction HR (95%Cl) P P for interaction
All patients 913 (100.00) 1.45 (1.32 ~ 1.59) i e <.001 913 (100.00) 1.43 (1.29 ~ 1.58) i = <.001
OASIS | 0.199 ] 0.252
<25 69 (7.56) 1.32 (1.01 ~ 1.73) '}—-—{ 0.042 69 (7.56) 7807.41 (5936.54 ~ 10267.87) 3 <.001
225 844 (92.44) 154 (139~171) | = <.001 844 (92.44) 150 (1.34 ~1.68) Db <001
Gender : 0.997 : 0.414
Female 374 (40.96) 1.44 (1.23~168) | =i <.001 374 (40.96) 1.33(1.12~1.58) — 0.001
Male 539 (59.04) 1.46(1.29~1.64) | = <.001 539 (59.04) 1.49 (1.31 ~1.70) . <001
Age : 0.576 : 0434
<65 390 (42.72) 1.50 (1.27 ~ 1.78) i <.001 390 (42.72) 1.41(1.16 ~1.71) | — <.001
265 523 (57.28) 1.42(1.27 ~ 1.58) | <.001 523 (57.28) 1.43(1.26 ~1.62) i <.001
Diabetes | 0.946 ! 0.988
No 549 (60.13) 1.46 (1.29 ~ 1.65) i <.001 549 (60.13) 1.45(1.26 ~1.67) O <.001
Yes 364 (39.87) 1.44 (1.24 ~ 1.66) e <.001 364 (39.87) 1.37 (1.15~1.64) i = <.001
Renal disease H 0.710 : 0.840
No 589 (64.51) 1.44(1.30 ~1.60) | Fad <.001 589 (64.51) 1.43(1.27 ~1.61) [— <001
Yes 324 (35.49) 152 (1.17~197) | —=— 0.002 324 (35.49) 1.80 (1.35 ~ 2.40) | —=> <001
Liver disease : 0.889 ‘ 0.314
No 622 (68.13) 1.44 (129~1.62) | F=d <.001 622 (68.13) 1.38 (1.22 ~1.57) Lo <001
Yes 291(31.87) 147 (125~1.72) | (=i <.001 291(31.87) 1.48(1.26 ~1.75) | b= <001
Congestive heart failure ; 0.985 : 0.339
No 710 (77.77) 1.45(1.31 ~ 1.60) E = <.001 710 (77.77) 1.42(1.28 ~1.59) f = <.001
Yes 203 (22.23) 147 (1.06~2.04) (—=—— 0.021 203 (22.23) 1.94 (1.27 ~2.94) | ——= 0.002
Pneumonia : 0.063 : 0.259
No 659 (72.18) 1.40 (1.27 ~ 1.55) ik <.001 659 (72.18) 1.40(1.26 ~1.57) 3 (! <.001
Yes 254 (27.82) 192(142~260) | |+—= <001 254 (27.82) 1.66 (1.13 ~2.43) | —=— 0010
Cerebral infarction 1 0.223 : 0.285
No 787 (86.20) 1.49 (1.35~ 1.64) i e <.001 787 (86.20) 1.46 (1.30 ~1.63) 3 [l <.001
Yes 126 (13.80) 1.26 (0.94 ~ 1.70) H—-—! 0.121 126 (13.80) 1.15(0.86 ~1.53) H—-—i 0.349
Sepsis : 0.307 : 0.263
No 607 (66.48) 1.47 (1.33~1.63) | =i <.001 607 (66.48) 1.47 (1.31 ~1.65) Db <001
Yes 306 (33.52) 1.32(1.05~1.65) i—=—o 0.017 306 (33.52) 1.29 (0.95 ~ 1.74) f——q 0.097
Furosemide ! 0.748 ! 0.440
No 456 (49.95) 1.39 (1.26 ~ 1.54) f = <.001 456 (49.95) 1.42(1.26~1.61) i = <.001
Yes 457 (50.05) 1.48 (1.16 ~ 1.89) i —=—  0.002 457 (50.05) 1.49(1.12~1.98) 3 —=—+ 0.006
Atorvastatin ; 0.186 : 0.159
No 697 (76.34) 142(1.28~157) | f=d <.001 697 (76.34) 1.40 (1.25 ~1.57) Db <001
Yes 216 (23.66) 1.77 (1.34~2.35) | |—=> <001 216 (23.66) 1.53 (1.07 ~2.19) —s— 0018
Rainn 0.069 0.356
No 494 (54.11) 1.39 (1.24 ~ 1.55) ] <.001 494 (54.11) 1.38(1.21~1.57) ] <.001
Yes 419 (45.89) 1.76 (1.43 ~ 2.17) —=— <.001 419 (45.89) 1.57 (1.24 ~1.99) —=— <001
Vancomycin ! 0.421 ‘ 0.448
No 477 (52.25) 1.39 (124 ~155) | pad <.001 477 (52.25) 1.39 (1.23 ~1.58) e <001
Yes 436 (47.75) 153(1.30~1.81) ' |—=—f <001 436 (47.75) 1.58 (1.29 ~1.95) | —=— <001
T 1 1
0 1 15 2 0 1 15 2
Worse Better Worse Better

Fig. 3 COX proportional hazards regression and the subgroup analysis. OASIS Oxford acute illness severity score, HR Hazard ratio
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Fig. 5 Kaplan—-Meier survival curve for mortality according to SHR cut-off
SHR: stress hyperglycemia ratio

as a critical feature within the green zone. Important
characteristics also include age and indicators of disease
severity, such as pH, OASIS, SpO,, and MAP. Merope-
nem is the only drug categorized as a significant influenc-
ing factor, possibly since the patients in this study were
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Fig. 6 Importance of potential risk factors of 28-day mortality ranked by Boruta algorithm. The horizontal axis is the name of each variable, and the verti-
cal axis is the Z value of each variable. The box plot shows the Z value of each variable during model calculation. The green boxes represent important
variables, the red boxes represent unimportant variables, and the yellow boxes represent potentially important variables. ABG Admission blood glucose,
HbA1c Glycosylated hemoglobin, OASIS Oxford acute illness severity score, MAP Mean arterial pressure, SpO, Pulse oxygen saturation, SHR Stress hypergly-
cemia ratio, MAP Mean arterial pressure, PTT Partial thromboplastin time, INR International normalized ratio, PT Prothrombin time, BUN Blood urea nitro-
gen, HbATC Glycosylated hemoglobin, AST Aspartate aminotransferase, ALT Alanine aminotransferase, COPD Chronic obstructive pulmonary disease, WBC
White blood cell count, SAP Stable angina pectoris, UAP Unstable angina pectoris, AMI: acute myocardial infarction, ARDS Acute respiratory distress disease
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from the ICU and had a relatively high prevalence of co-
existing infectious diseases. Despite their clinical impor-
tance, comorbidities (congestive HF, sepsis, diabetes and
pneumonia) and other medications were not listed in
the green area. As shown in Fig. 3 and Supplementary
Table 1, further subgroup analysis of Cox proportional
hazards regression based on important characteristics
also indicates that these characteristics do not signifi-
cantly affect the relationship between SHR and 28-day
mortality. These findings further validate the relationship
between SHR and mortality in patients with CHF, while
also providing strong support for constructing a prog-
nostic model based on SHR. However, we also observed
that variables in the yellow zone, marked as tentative
important features, may be somewhat related to adverse
outcomes in CHF patients. This suggests that in future
studies, we could further explore the potential interac-
tions between these variables and SHR, as well as their
combined influence on the prognosis of CHF patients, to
gain a more comprehensive understanding of prognostic
factors in CHE.

The prediction performance was acceptable when
tested by four commonly used machine learning models
(coxph, KNN, Bayes, Neutral Network) with the neural
network algorithm being the best (AUC 0.801). The cali-
bration curve indicated that the fitted curve was close
to the reference curve, and the DCA curve showed that
the model had significant net benefit. These results sug-
gest that the model had high accuracy and clinical prac-
ticability. This prognostic model provided clinicians with
a practical and intuitive tool to make more informed
treatment decisions for patients with both acute critical
illness and pre-existing CHF more effectively. Just as in
coronary artery disease and atrial fibrillation, the predic-
tive performance of machine learning algorithms was
especially important for cardiologists and experts in the
ICU who face challenges in trying to make optimal clini-
cal decision-making [49].

This study has several strengths. Various statistical
methods, including RCS analysis, Kaplan—Meier analy-
sis, ROC curve analysis, the Boruta algorithm, subgroup
analysis, Cox regression analysis, and machine learning,
were employed to thoroughly investigate the relation-
ship between the SHR and 28-day all-cause mortality in
patients with CHF from multiple dimensions. This com-
prehensive use of multiple methods enhances the reliabil-
ity and persuasiveness of the study results, allowing for a
more complete revelation of the role of SHR in the prog-
nostic evaluation of CHF patients. Compared to other
similar studies, our research is methodologically more
rigorous and comprehensive [39-43]. For example, in the
variable selection process, we utilized difference analy-
sis, univariate Cox regression, and the Boruta algorithm,
which not only identified SHR as an important feature
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but also revealed several potentially significant features,
providing directions for future research. Furthermore, we
predicted the 28-day all-cause mortality of CHF patients
using various machine learning models. Moreover, SHR
has several advantages, it is simple, easy to measure, fast,
non-invasive, and highly accurate [26].

However, as a retrospective study, there are several
limitations, such as the potential for selection bias, which
may prevent the included patients from fully represent-
ing all patients of this category. The sample size is limited
in the current database, and objectively, we cannot deter-
mine its size. Since the outcomes of interest have already
occurred and exposure factors cannot be controlled,
the results of the study can only suggest a correlation
between SHR and mortality but cannot prove whether
there is a causal relationship between SHR and the prog-
nosis. There is a small amount of incomplete data, and
the filled data may affect the results to a certain extent.
Additionally, the data for this study came from a single
database with racial limitations, meaning the findings
may only be applicable to the studied population. There-
fore, these findings should provoke further multicenter
and prospective studies to validate the predictive value of
SHR in prognosis.

Conclusion

For patients admitted to ICUs with both acute critical
illness and pre-existing CHF, SHR was identified as an
independent predictor of 28-day all-cause mortality. Its
prognostic value surpasses those of HbAlc and blood
glucose, and prognostic models based on SHR were suc-
cessfully constructed with machine learning algorithm,
which provide clinicians with an effective tool to make
therapeutic decisions. More multicenter clinical studies
are needed to provide stronger evidence.

Abbreviations

HF Heart failure

CHF Chronic heart failure

ABG Admission blood glucose

SHR Stress hyperglycemia ratio

BIDMC Beth Israel Deaconess Medical Center
ICD International Classification of Diseases
MAP Mean arterial pressure

Sp0O, Pulse oxygen saturation

HbAlc Glycated hemoglobin

OASIS Oxford acute illness severity

RCS Restricted cubic splines

ROC Receiver operating characteristic
AUC Area under the curve

KM Kaplan-Meier

HR Hazard ratios

cl Confidence intervals

Coxph Cox proportional hazards

KNN K-Nearest Neighbors

DCA Decision curve analysis

MAGGIC ~ Meta-Analysis Global Group in Chronic Heart Failure
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