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Abstract
Chronic heart failure (CHF) poses a significant threat to human health. The stress hyperglycemia ratio (SHR) is a 
novel metric for accurately assessing stress hyperglycemia, which has been correlated with adverse outcomes in 
various major diseases. However, it remains unclear whether SHR is associated with 28-day mortality in patients 
with pre-existing CHF who were admitted to intensive care units (ICUs). This study retrospectively recruited patients 
who were admitted to ICUs with both acute critical illness and pre-existing CHF from the Medical Information Mart 
for Intensive Care (MIMIC) database. Characteristics were compared between the survival and non-survival groups. 
The relationship between SHR and 28-day all-cause mortality was analyzed using restricted cubic splines, receiver 
operating characteristic (ROC) curves, Kaplan–Meier survival analysis, and Cox proportional hazards regression 
analysis. The importance of the potential risk factors was assessed using the Boruta algorithm. Prediction models 
were constructed using machine learning algorithms. A total of 913 patients were enrolled. The risk of 28-day 
mortality increased with higher SHR levels (P < 0.001). SHR was independently associated with 28-day all-cause 
mortality, with an unadjusted hazard ratio (HR) of 1.45 (P < 0.001) and an adjusted HR of 1.43 (P < 0.001). Subgroup 
analysis found that none of the potential risk factors, such as demographics, comorbidities, and drugs, affected 
the relationship (P for interaction > 0.05). The area under the ROC (AUC) curve for SHR was larger than those for 
admission blood glucose and HbA1c; the cut-off for SHR was 0.57. Patients with SHR higher than the cut-off had 
a significantly lower 28-day survival probability (P < 0.001). SHR was identified as one of the key factors for 28-
day mortality by the Boruta algorithm. The predictive performance was verified through four machine learning 
algorithms, with the neural network algorithm being the best (AUC 0.801). For patients with both acute critical 
illness and pre-existing CHF, SHR was an independent predictor of 28-day all-cause mortality. Its prognostic 
performance surpasses those of HbA1c and blood glucose, and prognostic models based on SHR provide clinicians 
with an effective tool to make therapeutic decisions.
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Introduction
Heart failure (HF) is a clinical syndrome characterized 
by cardinal symptoms such as shortness of breath and 
fatigue, with or without signs like peripheral edema, 
pulmonary crackles, and elevated jugular venous pres-
sure, it can be artificially divided into chronic HF (CHF) 
and acute HF based on whether the patient's symptoms 
and signs have acutely worsened to the point where they 
require urgent medical treatment [1]. CHF makes a sig-
nificant threat to human health and places immense pres-
sure on healthcare resources [2]. The global prevalence of 
HF ranges from 1 to 3% of the total population, depend-
ing on definitions, patient age, nations, and diagnostic 
capabilities. There are approximately 56.2 million HF 
patients worldwide [3, 4] In the last few decades, a pla-
teau in incidence rates has been reached, and the number 
of new diagnoses is substantially decreasing in devel-
oped countries. Meanwhile, in developing countries, an 
increasing number of people are at risk of developing HF 
due to an increased prevalence associated with the aging 
population and changes in lifestyle [2]. The prognosis for 
CHF patients is typically poor with a high mortality, even 
in the most developed country, North America, 5-year 
mortality ranges from 45 to 75% [4]. Furthermore, the 
progressive decline in cardiac function not only severely 
impacts patients' quality of life, limits their daily activi-
ties, but also increases the risk of serious complications 
such as arrhythmias and renal failure [5, 6]. Addition-
ally, CHF is associated with high treatment costs, which 
imposes a heavy economic burden on both families and 
society [2, 4]. These factors highlight the urgency and 
importance of CHF research, with significant value in 
exploring effective treatments and prognostic indicators.

Transient hyperglycemia due to stress is advanta-
geous to enhance the ability of struggling with the acute 
severe illness, [7] that is, an essential survival response 
[8] However, long-term or continuous hyperglycemia 
adversely affects the cardiovascular system by impair-
ing vascular endothelial function, promoting the forma-
tion and progression of atherosclerosis, and exacerbating 
coronary artery narrowing and blockage. In patients with 
CHF, stress hyperglycemia reduces cardiac blood sup-
ply, disrupt the normal metabolism of myocardial cells, 
and increases the workload of the heart, further deterio-
rates cardiac function, leads to a decrease in myocardial 
contractility and finally worsens HF [9, 10]. Moreover, 
stress hyperglycemia increases the body's inflamma-
tory and oxidative stress responses, further damaging 
cardiac tissue [11–13]. Blood glucose levels have been 
incorporated into the Intermountain Risk Score, which 
has significant predictive value for both short-term and 

long-term mortality in patients with cardiovascular dis-
eases, such as cardiogenic shock [14], and ST-segment 
elevation myocardial infarction [15]. These findings fur-
ther corroborate the harm of hyperglycemia to the heart. 
For patients with CHF, they might face prolonged stress 
due to poor heart function and recurrent acute events, 
which induce a hyperglycemic state and oxidative stress 
[16–19] that may contribute to poor clinical outcomes 
[20]. Stress hyperglycemia at admission has been inde-
pendently associated with poor prognosis in various dis-
eases including stroke, [21, 22] sepsis, [23, 24] and acute 
coronary syndrome [25].

However, admission blood glucose (ABG) cannot dif-
ferentiate whether hyperglycemia is induced by stress or 
is a result of a chronic high blood sugar status. Therefore, 
the stress hyperglycemia ratio (SHR), a relative hypergly-
cemia, was introduced as a new metric to assess stress 
hyperglycemia more accurately, and additionally, to elim-
inate the impact of chronic blood sugar levels on acute 
hyperglycemia [26] Multiple studies have demonstrated 
higher SHR levels were associated with the increased risk 
of adverse outcomes in patients with cardiovascular dis-
eases such as acute coronary syndrome [27–29], acute 
decompensated HF [30] and sepsis [31].

Patients with pre-existing CHF are prone to be admit-
ted to the intensive care units (ICUs) due to various acute 
critical illnesses, which pose a significant threat to the 
patients' lives [3, 32]. However, it is still unclear whether 
SHR is associated with the poor prognosis in patients 
admitted to ICUs with both acute critical illness and 
pre-existing CHF. Therefore, we conducted this study to 
explore the value of SHR in the prediction of mortality in 
this kind of patient.

Methods
Study design and participant
This is a retrospective study based on the clinical data of 
patients with CHF from MIMIC-IV version 2.2, which 
includes information on over 65,000 ICU admissions 
and more than 200,000 emergency department admis-
sions at Beth Israel Deaconess Medical Center (BIDMC) 
in Boston, Massachusetts, between 2008 and 2019 [33]. 
The Institutional Review Board of BIDMC waived the 
requirement for informed consent and approved the 
sharing of research resources. The authors obtained 
access to the database (Certificate No.: 56073040). The 
participants were included according to the prespeci-
fied criteria: (1) age > 18  years, (2) patients diagnosed 
with Pre-existing CHF on International Classification of 
Diseases 10th Revision, (3) Admitted to the ICU regard-
less of the reason. The exclusion criteria were as follows: 
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(1) patients who had not been tested blood glucose and 
glycated hemoglobin A1c (HbA1c) in the first labora-
tory test, (2) patients with a follow-up time of less than 
28  days, (3) patients with incomplete data may severely 
affect the analysis of results. The primary outcome was 
the value of SHR in prediction of the 28-day in-hospital 
mortality.

Data extraction
Data was extracted using Navicat software. Characteris-
tics were collected at the time of the patients' admission 
including age, gender, vital signs [heart rate, systolic blood 
pressure, diastolic blood pressure, mean arterial pressure 
(MAP), respiratory rate, body temperature, pulse oxy-
gen saturation (SpO2)], medical comorbidities (such as 
diabetes, liver disease, renal disease, and congestive HF), 
laboratory tests (such as white blood cell count, platelet 
count, serum electrolytes, pH, ABG, and HbA1c), com-
monly used drugs as well as the 28-day clinical outcome, 
survival or all-cause of death. In addition, the Oxford 
acute illness severity (OASIS) score was extracted to assess 
disease severity. SHR was calculated as ABG (mg/dL) / 
(28.7 × HbA1c [%]−46.7) [26].

Statistical analysis
For continuous outcomes, normally distributed data are 
expressed as mean ± standard deviation and compared 
using t-test, non-normally distributed data are expressed 
as medians (interquartile range) and compared by Wil-
coxon signed-rank non-parametric tests. The normal 
distribution was tested for by Kolmogorov–Smirnov test. 
Missing continuous data were imputed using linear inter-
polation. Categorical data were expressed as frequency 
and percentage n (%) and compared between groups 
using the chi-square test. Restricted cubic splines (RCS) 
analysis was used to examine the relationship between 
SHR and mortality. The receiver operating characteristic 
(ROC) curve and the corresponding area under the ROC 
curve (AUC) were used to compare the predictive power 
of SHR, blood glucose, and HbA1c for 28-day mortality. 
Kaplan–Meier (KM) regression analysis was conducted 
to compare prognosis between groups with high and low 
SHR levels. Subgroup analysis was performed to further 
investigate whether the potential confounders affected 
the relationship between SHR and mortality. Cox propor-
tional hazards regression was used to determine prog-
nostic risk factors for CHF. Hazard ratios (HR) and 95% 
confidence intervals (95% CI) were reported as effect 
sizes. The Boruta algorithm in machine learning was used 
to rank the features according to its importance of pre-
dictive ability of 28-day mortality. Acceptable variables 
were subsequently integrated into the machine learning 
algorithm. The Cox proportional hazards survival learner 
(coxph), K-Nearest Neighbors (KNN), Bayesian, and 
Neural Network algorithms were employed to assess the 
28-day death risk in CHF patients, respectively. The data-
set of the included patients was randomly grouped into 
development and validation sets at a 7:3 ratio. The ROC 
curves and AUCs were utilized to assess model perfor-
mance. Decision curve analysis (DCA) was implemented 
to evaluate clinical effectiveness, while calibration curves 
were employed to measure the accuracy of absolute risk 
predictions. A p-value < 0.05 was considered statistically 
significant. Statistical analyses were conducted using R 
software (version 4.0.5) and SPSS (version 26.0, IBM Cor-
poration, USA).

Results
Participant inclusion and baseline characteristics
There were 12,861 cases with CHF and older than 
18  years being recorded in MIMIC-IV. 11,948 patients 
were excluded because the HbA1c was not reported, 
and 2821 cases were excluded because of short follow-
up time (< 28  days). Finally, 913 patients were recruited 
with 425 in survivor group and 488 in non-survivor 
group (Fig. 1). Among them, 539 (59%) participants were 
male; Within the 28-day follow-up, 488 (53.5%) patients 
died, while 425 (46.5%) patients survived. There were 

Fig. 1  Inclusion flow in this study. CHF Chronic heart failure, HbA1C Gly-
cosylated hemoglobin
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significant differences between the survivor group and 
the non-survivor group in the age, vital signs (blood pres-
sure, respiratory rate and body temperature), laboratory 
examinations (such as ABG, HbA1c and the other indica-
tors). More patients met with congestive HF (25% versus 
19.1%, P = 0.031) and less frequency of furosemide (42.2% 
versus 59.1%, P = 0.000) was used in non-survivors than 
those in the survivors. There were more patients in the 
survival group who had infection diseases (sepsis and 
pneumonia) and therefore received antibiotics. There was 
no significant difference in gender and the other comor-
bidities between the two groups. More characteristics 
were reported in Table 1.

SHR levels and its relation to 28-day in-hospital mortality 
analyzed by RCS
The SHR levels were significantly higher in the non-sur-
vivor group [1.2 (0.9, 1.6) vs. 1.1 (0.9, 1.4), P = 0.002]. RCS 
analysis revealed a significant relationship between SHR 
and 28-day mortality (P for overall < 0.001, Fig. 2A). The 
risk of 28-day mortality in CHF patients increased with 
higher SHR levels. After adjusting for potential risk fac-
tors (all the indicators with significant differences in 
Table  1, such as age, comorbid sepsis, pneumonia and 
congestive heart failure, vital signs, OASIS score, labora-
tory test indicators and drugs), the association between 
SHR and 28-day mortality remained significant (Fig. 2B).

COX proportional hazards regression and the subgroup 
analysis
COX proportional hazards regression analysis with and 
without adjustment (the characteristics with significant 
differences between the survivors and non-survivors) 
was performed to explore the relationship between SHR 
and 28-day in-hospital mortality. The results showed 
that the unadjusted HR was equal to 1.45 with 95% CI 
1.32–1.59 (P < 0.001), and the adjusted HR was equal to 
1.43 with 95% CI 1.29–1.58 (P < 0.001), which indicated 
that SHR were independently associated with 28-day all-
cause mortality. Subgroup analysis was performed for the 
potential impact factors such as demographics (gender, 
age), comorbidities (diabetes, liver disease, renal disease, 
congestive HF, pneumonia, cerebral infarction, and sep-
sis), OASIS score, and drugs (furosemide, atorvastatin, 
aspirin and vancomycin). The results indicated that none 
of the aforementioned factors affected the prognostic 
prediction of SHR for patients with CHF (Fig. 3 and Sup-
plementary Table S1). Higher SHR was associated with 
increased risk of 28-day mortality in CHF in each sub-
group (both unadjusted HR and adjusted HR were above 
1, P < 0.05, P for interaction > 0.05), meaning the baseline 
demographics, comorbidities, OASIS score and the com-
monly used drugs did not sway the relationship between 
SHR and 28-day mortality.

ROC curves of SHR, ABG, and HbA1c
The ROC curves were plotted for SHR, ABG, and HbA1c 
(Fig.  4) to predict 28-day all-cause mortality in patients 
with CHF. SHR had an AUC of 0.924 (95% CI: 0.904–
0.943, P < 0.001), outperforming both ABG [AUC: 0.910 
(95% CI: 0.889–0.932), P < 0.001] and HbA1c [AUC: 0.917 
(95% CI: 0.899–0.935), P < 0.001], which indicated that 
SHR offered a significant advantage in prediction over 
ABG and HbA1c. Additionally, we determined a cut-off 
value of 0.57 for SHR, with a sensitivity of 0.80 and speci-
ficity of 0.98. KM curves were plotted for patients divided 
by the cut-off of SHR.

KM analysis to compare the 28-day survival in subgroups 
with low versus high SHR
The participants were allocated into low-SHR and high-
SHR subgroups for K-M analysis (Fig.  5). Compared to 
the low-SHR group, patients with higher SHR levels had 
significantly lower 28-day survival probability (P = 0.011).

Importance of factors in the impact on 28-day mortality 
ranked by Boruta algorithm
In the report from Boruta algorithm, the variables includ-
ing SHR in the green area are identified as important fac-
tors, which have important roles in the model. SHR was 
one of the key factors in predicting 28-day hospital mor-
tality in patients with CHF. The variables in the yellow 
area are suspected factors, which may be related to the 
adverse outcome to a certain extent, and the variables in 
the red area are unimportant factors (Fig. 6).

Establishment and validation of the machine learning 
prediction model
According to the pre-specified protocol, patients 
were assigned to development (n = 640) and validation 
(n = 273) groups, no significant differences were detected 
in the characteristics, suggesting that the two groups of 
patients originate from the same population and pos-
sess good comparability (Supplementary Table S2). The 
ROC curves of machine learning prediction model were 
shown in Fig. 7A. The AUC of Coxph, KNN, Bayes and 
Neutral Network were 0.793, 0.774, 0.786, 0.801, respec-
tively, which indicated that the best performance was 
in the Neutral Network algorithm prediction model. 
The DCA curves demonstrated the KNN algorithm 
model presented a large net benefit and beard strong 
clinical effectiveness (Fig.  7B). Moreover, the calibra-
tion curve of KNN was highly in good agreement with 
the reference line, indicating excellent prediction per-
formance (Fig.  7C). The characteristics of patients in 
the development set and validation set are reported in 
Supplementary Table S2. This table indicates that no sig-
nificant differences were detected in as many as 62 char-
acteristics, suggesting that the two groups of patients 
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Overall (n = 913) Survivors (n = 425) Non-survivors (n = 488) z(χ2)/p
Demographics
 Age, years 66.7 (65.7, 67.7) 63.0 (53.5, 72.0) 72.0 (61.0, 82.0) − 8.3/0.000
 Male, n (%) 539 (59.0) 256 (60.2) 283 (58.0) 0.5/0.492
Comorbidities, n (%)
 Diabetes 364 (39.9) 164 (38.6) 200 (41.0) 0.5/0.461
 Renal diseases 324 (35.5) 151 (35.5) 173 (35.5) 0.0/0.980
 Liver diseases 291 (31.9) 140 (32.9) 151 (30.9) 0.4/0.518
 COPD 34 (3.7) 11 (2.6) 23 (4.7) 2.9/0.091
 Sepsis 306 (33.5) 163 (38.4) 143 (29.3) 8.4/0.004
 Pneumonia 254 (27.8) 142 (33.4) 112 (23) 12.4/0.000
 Asthma 71 (7.8) 39 (9.2) 32 (6.6) 2.1/0.140
 SAP or UAP 67 (7.3) 32 (7.5) 35 (7.2) 0.0/0.836
 AMI 12 (1.3) 5 (1.2) 7 (1.4) 0.1/0.733
 ARDS 10 (1.1) 6 (1.4) 4 (0.8) 0.7/0.391
 Cerebral infarction 126 (13.8) 65 (15.3) 61 (12.5) 1.5/0.222
 Intracerebral hemorrhage 13 (1.4) 8 (1.9) 5 (1.0) 1.2/0.275
 Congestive heart failure 203 (22.2) 81 (19.1) 122 (25.0) 4.6/0.031
 Acute heart failure 84 (9.2) 38 (8.9) 46 (9.4) 0.1/0.800
Vital signs, median (IQR)
 Systolic pressure, mmHg 109.6 (108.6, 110.6) 109.6 (102.0, 119.8) 105.9 (97.7, 114.7) − 4.7/0.000
 Diastolic pressure, mmHg 59.2 (58.6, 59.9) 59.2 (53.7, 65.5) 57.4 (51.6, 63.9) − 3.3/0.001
 MAP, mmHg 73.3 (72.6, 73.9) 73.2 (68.0, 80.0) 71.3 (65.0, 76.8) − 4.3/0.000
 Respiratory rate, breathes per minute 21.4 (21.1, 21.7) 20.3 (17.4, 23.9) 21.6 (18.3, 24.8) − 3.4/0.001
 Body temperature, ℃ 36.9 (36.8, 36.9) 36.9 (36.7, 37.3) 36.8 (36.5, 37.1) − 4.7/0.000
 Heart rate, beats per minute 91.8 (90.7, 93.0) 91.4 (79.4, 103.7) 91.2 (78.5, 103.8) − 0.3/0.801
 SpO2, % 96.4 (96.2, 96.6) 97.2 (96.0, 98.6) 96.5 (94.7, 98.1) − 4.7/0.000
Score, median (IQR)
 OASIS 39.5 (38.8, 40.1) 37.0 (29.0, 44.0) 41.0 (35.0, 48.0) − 6.4/0.000
Laboratory examination, median (IQR)
 ABG, mg/dl 168.1 (161.9, 174.3) 137.0 (113.8, 170.0) 144.2 (115.0, 212.8) − 3.3/0.001
 HbA1c, % 6.3 (6.2, 6.4) 6.0 (5.0, 7.0) 6.0 (5.3, 7.0) − 5.8/0.000
 Hemoglobin, g/dl 9.9 (9.7, 9.9) 9.2 (8.1, 10.6) 9.7 (8.5, 11.4) − 4.0/0.000
 PLT, 109/L 199.4 (190.9, 208.0) 183.0 (112.3, 262.0) 173.3 (103.6, 246.0) − 1.5/0.132
 WBC, 109/L 15.0 (14.1, 16.0) 12.6 (8.1, 17.9) 14.1 (9.0, 19.4) − 2.7/0.008
 BUN, mg/dl 39.9 (38.0, 41.7) 30.0 (19.0, 46.0) 35.3 (22.0, 54.9) − 3.4/0.001
 Calcium, mmol/L 8.2 (8.1, 8.3) 8.2 (7.7, 8.7) 8.2 (7.6, 8.7) − 1.2/0.226
 Chloride, mmol/L 103.0 (102.6, 103.5) 103.0 (99.0, 107.0) 103.0 (98.0, 107.5) − 0.1/0.915
 Creatinine, mg/dl 2.1 (2.0, 2.2) 1.4 (0.9, 2.3) 1.8 (1.1, 2.7) − 3.8/0.000
 Sodium, mmol/L 37.9 (137.5, 138.3) 138.0 (134.5, 141.0) 138.0 (134.0, 141.5) − 0.2/0.814
 Potassium, mmol/L 4.4 (4.3, 4.4) 4.2 (3.9, 4.7) 4.4 (3.9, 4.9) − 2.9/0.004
 INR 1.9 (1.8, 1.9) 1.5 (1.2, 1.8) 1.6 (1.3, 2.2) − 3.5/0.001
 PT, s 20.2 (19.4, 21.0) 15.7 (13.5, 20.2) 17.2 (13.9, 23.2) − 3.4/0.001
 PTT, s 45.4 (44.0, 46.9) 35.9 (29.6, 45.4) 42.2 (30.8, 56.4) − 4.1/0.000
 ALT, U/L 172.3 (138.8, 205.8) 52.0 (21.5, 172.0) 51.0 (22.0, 172.0) − 0.3/0.796
 ALP, U/L 135.4 (128.6, 142.1) 130.0 (74.5, 135.0) 122.5 (82.0, 141.5) − 1.0/0.360
 AST, U/L 384.8 (287.6, 482.0) 75.0 (31.5, 385.0) 97.5 (36.3, 385.0) − 1.7/0.096
 pH 7.3 (7.3, 7.3) 7.0 (7.0, 7.0) 7.0 (7.0, 7.0) − 1.5/0.000
 SHR 1.3 (1.3, 1.3) 1.1 (0.9, 1.4) 1.2 (0.9, 1.6) − 3.1/0.002
Drugs, n (%)
Antiplatelet drugs
 Clopidogrel 108 (11.8) 44 (10.4) 64 (13.1) 1.7/0.197
 Aspirin 419 (45.9) 194 (45.6) 225 (46.1) 0.0/0.889
Lipid regulating drugs

Table 1  Baseline characteristics of patients with chronic heart failure
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originate from the same population and possess good 
comparability.

Power of the study
The sample size was estimated using a method specifi-
cally designed for developing clinical prediction mod-
els, as put forward by biostatistics professors [34]. To 
achieve the expected power of test (a significance level of 
0.05,two-tailed, and a desired power of 0.80) in the four 
machine learning algorithms used in this study, at least 
439 participants were required for the sample (includ-
ing 220 positive events) based on preliminary analysis 
(mortality of 0.53) and the top 15 important factors in the 
green zone (Fig. 6) ranked by Boruta algorithm, the cal-
culations were performed by the R package (pmsampsize) 
[34]. In the current research, 913 patients were included 
in the sample, which included 488 positive events. This 
sample size exceeded the calculated sample size, provid-
ing sufficient power to detect the effects.

Discussion
This retrospective study exclusively investigated the rela-
tionship between the SHR and the mortality in patients 
with CHF. The study ultimately found that the SHR was 

an independent prognostic risk factor, regardless of the 
baseline demographics, comorbidities and drugs, which 
was validated by a variety of statistical methods and from 
multiple dimensions in this study.

The estimates of mortality rates in CHF varied greatly 
due to the differences in the study design, study popula-
tion, definition for CHF, and cut-off values for left ven-
tricular ejection fraction [4, 35]. Patients who suffered 
from pre-existing CHF only have an overall median sur-
vival of 2.1  years even if admitted to the hospital solely 
for HF (mostly non-ICU) [36] The patients included in 
this study also met with at least one acute critical illness 
at the time of ICU admission, such as sepsis, pneumo-
nia, cardiovascular events, and liver and kidney diseases, 
which jointly contribute to poor prognosis, these are also 
the reasons why we chose the 28-day all-cause mortality 
rate. The mortality is consistent with the results of previ-
ous related studies. [37, 38]. The relatively high rates of 
hospital readmission and mortality have brought an enor-
mous economic burden to society and families [4, 35]. 
Therefore, establishing early prediction models for prog-
nosis and identifying patients at high risk of death can 
assist clinicians in formulating more proactive and rea-
sonable treatment plans, serving to reduce risk of death. 

Overall (n = 913) Survivors (n = 425) Non-survivors (n = 488) z(χ2)/p
 Atorvastatin 216 (23.7) 101 (23.8) 115 (23.6) 0.0/0.944
 Simvastatin 115 (12.6) 48 (11.3) 67 (13.7) 1.2/0.269
Diuretics
 Spironolactone 89 (9.7) 38 (8.9) 51 (10.5) 0.6/0.443
 Furosemide 457 (50.1) 251 (59.1) 206 (42.2) 25.8/0.000
Antibacterial drugs
 Amoxicillin-clavulanic acid 12 (1.3) 6 (1.4) 6 (1.2) 0.1/0.809
 Ampicillin sodium 27 (3.0) 19 (4.5) 8 (1.6) 6.3/0.012
Piperacillin tazobactam 196 (21.5) 113 (26.6) 83 (17.0) 12.4/0.000
 Cefazolin 85 (9.3) 53 (12.5) 32 (6.6) 9.4/0.002
 Ceftazidime 46 (5.0) 33 (7.8) 13 (2.7) 12.4/0.000
 Ceftriaxone 99 (10.8) 51 (12.0) 48 (9.8) 1.1/0.294
 Meropenem 126 (13.8) 87 (20.5) 39 (8.0) 29.7/0.000
 Imipenem 5 (0.5) 3 (0.7) 2 (0.4) 0.4/0.545
 Azithromycin 73 (8.0) 40 (9.4) 33 (6.8) 2.2/0.141
 Erythromycin 29 (3.2) 19 (4.5) 10 (2.0) 4.3/0.037
 Ciprofloxacin 191 (20.9) 114 (26.8) 77 (15.8) 16.8/0.000
 Levofloxacin 87 (9.5) 49 (11.5) 38 (7.8) 3.7/0.055
 Metronidazole 137 (15.0) 77 (18.1) 60 (12.3) 6.0/0.014
 Vancomycin 436 (47.8) 237 (55.8) 199 (40.8) 20.4/0.000
Vasodilator drugs
 Nitroglycerin 129 (14.1) 78 (18.4) 51 (10.5) 11.7/0.001
Anti-arrhythmic drugs
 Amiodarone 107 (11.7) 60 (14.1) 47 (9.6) 4.4/0.036
COPD Chronic obstructive pulmonary disease, SAP Stable angina pectoris, UAP Unstable angina pectoris, AMI Acute myocardial infarction, ARDS Acute respiratory 
distress syndrome, ABG Admission blood glucose, HbA1c Glycosylated hemoglobin, OASIS Oxford acute illness severity score, MAP Mean arterial pressure, SpO2 Pulse 
oxygen saturation, PLT Platelet count, WBC White blood cell count, BUN Blood urea nitrogen, INR International normalized ratio, PT Prothrombin time, PTT Partial 
thromboplastin time, ALT Alanine aminotransferase, ALP Alkaline phosphatase, AST Aspartate aminotransferase, SHR Stress hyperglycemia ratio

Table 1  (continued) 
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The Meta-Analysis Global Group in Chronic Heart Fail-
ure (MAGGIC) pooled the data from 30 cohort studies ( 
involving 39 372 patients) and identified 13 independent 
predictors of mortality with various predictive strength 
in patients with CHF [39]. One observational study has 
externally validated the MAGGIC risk score could be 
considered as a powerful and simple method to stratify 
the risk of mortality [40]. Another retrospective cohort 
analysis constructed a nomogram prediction model of in-
hospital mortality with similar 13 risk factors [41]. With 
an increasing understanding of the relationship between 
inflammation and CHF [42] some scholars have estab-
lished a clinical outcome risk stratification model based 
on multiple plasma biomarkers [43]. However, these 
models involve too many parameters and are complex 
to operate. Therefore it needs simple and easy-to-use 
parameters to assess the risk of mortality, such as heart 
rate [44], echocardiography [45] and the combination 
of several commonly used laboratory indicators in clini-
cal practice [46]. In critically ill patients, SHR has been 

concerned because it eliminates the influence of baseline 
glucose on stress hyperglycemia regardless of whether 
the patient has diabetes or not [26, 47]. Considering 
that stress hyperglycemia can occur in all populations, 
this study includes patients with and without diabetes to 
reflect the universality of SHR.

In this study, RCS analysis clearly demonstrated that 
the risk of 28-day mortality gradually rose with the 
increase of SHR. This relationship remains stable after 
adjusting for confounding factors. Meanwhile it was 
validated by proportional hazards regression and the 
subgroup analysis based on the potential impact factors, 
which demonstrated the broad applicability and stability 
of the relationship between SHR and the mortality. This 
finding might have important clinical implications, as 
physicians can calculate SHR early in the patient's admis-
sion to quickly assess their prognostic risk and develop 
more personalized and targeted treatment protocols. 
This result aligns with previous research in other criti-
cal illnesses including acute myocardial infarction [21], 
stroke [26], sepsis [27]. These results further emphasize 
the importance of SHR in prognostic assessment for CHF 
patients.

Another finding was the cut-off of SHR, it is 0.57 
according to the ROC analysis, which was lower than 
those for long-term prognosis in patients with CHF [48] 
and poor prognosis acute coronary syndrome [29]. The 
results of KM analysis based on the cut-off also strongly 
support this view point. The 28-day survival rate in 
patients with SHR level larger than 0.57 was significantly 
lower than in those with SHR lower than 0.57, which 
indicated that SHR could be used as an effective stratifi-
cation tool to differentiate prognostic risk. Additionally, 
the AUC of SHR was superior to both admission glucose 
and HbA1c, which suggested that SHR could more accu-
rately reflect the severity and prognosis of the patient's 
condition, potentially provide more comprehensive and 
precise information compared to traditional blood glu-
cose markers. The strength of SHR might be attributed to 
the fact that SHR takes into account both acute glucose 
elevation and chronic glucose levels, therefore SHR bet-
ter reflects the patient's glucose metabolism during stress 
and its impact on prognosis [26].

It is well-known that the poor prognosis might not be 
driven by only one factor. As shown in Table 1, there are 
significant differences between survivors and non-sur-
vivors in multiple characteristics involving age, comor-
bidities, vital signs, laboratory test indicators, and clinical 
medication use, although it is not possible to make defin-
itive judgments relying solely on basic statistical meth-
ods. Therefore, the Boruta algorithm was adopted to 
determine the importance of various factors in the influ-
ence on the poor prognosis, which showed that SHR 
played an important role in the model and was identified 

Fig. 2  The association between SHR and 28-day mortality by restricted 
cubic spline method A The unadjusted evaluation; B The adjusted evalua-
tion. CI Confidence interval, SHR Stress hyperglycemia ratio
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as a critical feature within the green zone. Important 
characteristics also include age and indicators of disease 
severity, such as pH, OASIS, SpO2, and MAP. Merope-
nem is the only drug categorized as a significant influenc-
ing factor, possibly since the patients in this study were 

Fig. 5  Kaplan–Meier survival curve for mortality according to SHR cut-off 
SHR: stress hyperglycemia ratio

 

Fig.  4  Prediction performance for 28-day all-cause mortality by ROC 
curves. SHR Stress hyperglycemia ratio, ABG Admission blood glucose, 
HbA1C Glycosylated hemoglobin

 

Fig. 3  COX proportional hazards regression and the subgroup analysis. OASIS Oxford acute illness severity score, HR Hazard ratio
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Fig. 6  Importance of potential risk factors of 28-day mortality ranked by Boruta algorithm. The horizontal axis is the name of each variable, and the verti-
cal axis is the Z value of each variable. The box plot shows the Z value of each variable during model calculation. The green boxes represent important 
variables, the red boxes represent unimportant variables, and the yellow boxes represent potentially important variables. ABG Admission blood glucose, 
HbA1c Glycosylated hemoglobin, OASIS Oxford acute illness severity score, MAP Mean arterial pressure, SpO2 Pulse oxygen saturation, SHR Stress hypergly-
cemia ratio, MAP Mean arterial pressure, PTT Partial thromboplastin time, INR International normalized ratio, PT Prothrombin time, BUN Blood urea nitro-
gen, HbA1C Glycosylated hemoglobin, AST Aspartate aminotransferase, ALT Alanine aminotransferase, COPD Chronic obstructive pulmonary disease, WBC 
White blood cell count, SAP Stable angina pectoris, UAP Unstable angina pectoris, AMI: acute myocardial infarction, ARDS Acute respiratory distress disease
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from the ICU and had a relatively high prevalence of co-
existing infectious diseases. Despite their clinical impor-
tance, comorbidities (congestive HF, sepsis, diabetes and 
pneumonia) and other medications were not listed in 
the green area. As shown in Fig.  3 and Supplementary 
Table  1, further subgroup analysis of Cox proportional 
hazards regression based on important characteristics 
also indicates that these characteristics do not signifi-
cantly affect the relationship between SHR and 28-day 
mortality. These findings further validate the relationship 
between SHR and mortality in patients with CHF, while 
also providing strong support for constructing a prog-
nostic model based on SHR. However, we also observed 
that variables in the yellow zone, marked as tentative 
important features, may be somewhat related to adverse 
outcomes in CHF patients. This suggests that in future 
studies, we could further explore the potential interac-
tions between these variables and SHR, as well as their 
combined influence on the prognosis of CHF patients, to 
gain a more comprehensive understanding of prognostic 
factors in CHF.

The prediction performance was acceptable when 
tested by four commonly used machine learning models 
(coxph, KNN, Bayes, Neutral Network) with the neural 
network algorithm being the best (AUC 0.801). The cali-
bration curve indicated that the fitted curve was close 
to the reference curve, and the DCA curve showed that 
the model had significant net benefit. These results sug-
gest that the model had high accuracy and clinical prac-
ticability. This prognostic model provided clinicians with 
a practical and intuitive tool to make more informed 
treatment decisions for patients with both acute critical 
illness and pre-existing CHF more effectively. Just as in 
coronary artery disease and atrial fibrillation, the predic-
tive performance of machine learning algorithms was 
especially important for cardiologists and experts in the 
ICU who face challenges in trying to make optimal clini-
cal decision-making [49].

This study has several strengths. Various statistical 
methods, including RCS analysis, Kaplan–Meier analy-
sis, ROC curve analysis, the Boruta algorithm, subgroup 
analysis, Cox regression analysis, and machine learning, 
were employed to thoroughly investigate the relation-
ship between the SHR and 28-day all-cause mortality in 
patients with CHF from multiple dimensions. This com-
prehensive use of multiple methods enhances the reliabil-
ity and persuasiveness of the study results, allowing for a 
more complete revelation of the role of SHR in the prog-
nostic evaluation of CHF patients. Compared to other 
similar studies, our research is methodologically more 
rigorous and comprehensive [39–43]. For example, in the 
variable selection process, we utilized difference analy-
sis, univariate Cox regression, and the Boruta algorithm, 
which not only identified SHR as an important feature 

Fig. 7  Establishment and validation of the machine learning prediction 
model. A ROC curve of the machine learning model. B DCA of the machine 
learning model. C Calibration curve of the KNN algorithm model. KNN K-
Nearest Neighbors, Coxph Cox proportional hazards survival
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but also revealed several potentially significant features, 
providing directions for future research. Furthermore, we 
predicted the 28-day all-cause mortality of CHF patients 
using various machine learning models. Moreover, SHR 
has several advantages, it is simple, easy to measure, fast, 
non-invasive, and highly accurate [26].

However, as a retrospective study, there are several 
limitations, such as the potential for selection bias, which 
may prevent the included patients from fully represent-
ing all patients of this category. The sample size is limited 
in the current database, and objectively, we cannot deter-
mine its size. Since the outcomes of interest have already 
occurred and exposure factors cannot be controlled, 
the results of the study can only suggest a correlation 
between SHR and mortality but cannot prove whether 
there is a causal relationship between SHR and the prog-
nosis. There is a small amount of incomplete data, and 
the filled data may affect the results to a certain extent. 
Additionally, the data for this study came from a single 
database with racial limitations, meaning the findings 
may only be applicable to the studied population. There-
fore, these findings should provoke further multicenter 
and prospective studies to validate the predictive value of 
SHR in prognosis.

Conclusion
For patients admitted to ICUs with both acute critical 
illness and pre-existing CHF, SHR was identified as an 
independent predictor of 28-day all-cause mortality. Its 
prognostic value surpasses those of HbA1c and blood 
glucose, and prognostic models based on SHR were suc-
cessfully constructed with machine learning algorithm, 
which provide clinicians with an effective tool to make 
therapeutic decisions. More multicenter clinical studies 
are needed to provide stronger evidence.
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