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Antagonistic muscular co-activation can compensate for movement variability induced
by motor noise at the expense of increased energetic costs. Greater antagonistic
co-activation is commonly observed in older adults, which could be an adaptation to
increased motor noise. The present study tested this hypothesis by manipulating motor
noise in 12 young subjects while they practiced a goal-directed task using a myoelectric
virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise
was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As
hypothesized, subjects adapted by increasing antagonistic co-activation, and this was
associated with reduced noise-induced performance decrements. A second hypothesis
was that a virtual decrease in motor noise, achieved by smoothing the myoelectric
signals, would have the opposite effect: co-activation would decrease and motor
performance would improve. However, the results showed that a decrease in noise made
performance worse instead of better, with no change in co-activation. Overall, these
findings suggest that the nervous system adapts to virtual increases in motor noise by
increasing antagonistic co-activation, and this preserves motor performance. Reducing
noise may have failed to benefit performance due to characteristics of the filtering
process itself, e.g., delays are introduced and muscle activity bursts are attenuated.
The observed adaptations to increased noise may explain in part why older adults
and many patient populations have greater antagonistic co-activation, which could
represent an adaptation to increased motor noise, along with a desire for increased
joint stability.

Keywords: neural noise, motor control and learning/plasticity, antagonistic co-activation, voluntary movement,
motor noise, virtual arm, signal-dependent noise, electromyography

INTRODUCTION

It could be argued that part of what makes the study of human movement interesting is its
variability. This variability arises, in part, from noise within the nervous system (Faisal et al.,
2008). This noise is present in motor commands and increases with signal magnitude, i.e., motor
noise is signal-dependent. Motor noise has important implications for human movement
control—the amplitude of motor commands should be kept small to minimize the variability
of motor actions (Harris and Wolpert, 1998; Todorov, 2004). However, even with small motor
commands, noise impacts may be severe if there is a high demand for movement accuracy.
Fortunately, the human neuromotor control system has at least one strategy to increase accuracy
independent of motor command magnitude: antagonistic co-activation. Experimental studies have
demonstrated that increasing task accuracy demands elicits increases in antagonistic co-activation
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(Laursen et al., 1998; Osu and Gomi, 1999; Gribble et al., 2003).
Antagonistic co-activation increases limb impedance, which can
reduce kinematic variability by acting as a mechanical filter
(Selen et al., 2005, 2009).

Although there have been many investigations on the
consequences of motor noise for human movement control,
less is known about how the nervous system adapts to
changes in motor noise, which may not be a fixed quantity.
Motor noise may increase with aging (Holloszy and Larsson,
1995; Laidlaw et al., 2000; Kallio et al., 2012) and disease
states, such as with Parkinson’s disease (Winterer et al.,
2004). This could explain why many older adults and
patient populations have increased levels of co-activation,
as documented by others (Izquierdo et al., 1999; Macaluso
et al., 2002; Hortobágyi and Devita, 2006), which may be
a strategy to suppress variability. However, this hypothesis
remains untested, in part due to the difficulty of manipulating
motor noise in living humans. Direct manipulation of motor
noise could be achieved by injecting noisy electrical currents
into the motor axons of humans, but this poses ethical
challenges.

An alternative to an invasive approach is to use a
myoelectrically controlled virtual arm, in which the motor
command, represented by myopotentials recorded through
surface electromyography, can be intercepted and manipulated,
prior to serving as input to a virtual arm model. In concept, this
approach is analogous to a muscle activity-driven prosthetic arm.
While manipulation of motor noise in this context is artificial,
it could provide insight into how the nervous system would
adapt to a real increase in motor noise. Using a similar approach,
de Rugy et al. (2012) increased the noisiness of motor commands
as participants performed fast ramp-and-hold isometric
exertions to achieve a target force magnitude in different
directions. The resultant force depended on a virtual mapping
of muscle activity from five muscles. When the noisiness of
one muscle’s activity was (virtually) increased, participants did
not change their control of the manipulated muscle, nor did
the activity of synergistic and antagonistic muscles change.
These results are inconsistent with the hypothesis that humans
use co-activation to suppress variability, and could be because
musculotendon and rigid-body dynamics were excluded from
the virtual arm model and the task was highly constrained,
preventing subjects from taking advantage of the impedance-
modulating capabilities of antagonistic muscles (Hogan, 1984).
Whether different results would be obtained using a virtual
arm model with specific representations of musculotendon
structures in a more ecological task setting remains an open
question.

Further, how humans adapt to decreased motor noise is
relatively unknown. In theory, such a decrease could be doubly-
beneficial: it would decrease variability and improve movement
economy by reducing the need for antagonistic co-activation.
Whether it is possible to decrease motor noise stemming from
basic physiological processes is unclear; however, other strategies
may be used to reduce the levels of motor noise associated
with motor tasks. For example, by increasing the strength of a
muscle, less neural drive is needed to produce a given force,

and therefore, motor noise is attenuated because the noise is
signal-dependent. Chu et al. (2013) found that dystonic children
can take advantage of a perceived decrease in their motor
variability in a skilled motor task. However, it is unclear whether
individuals with a healthy neuromotor system would benefit in
the same way, and changes in antagonistic co-activation were not
assessed.

Therefore, the aim of this study was to investigate how the
nervous system adapts to virtual manipulations of motor noise.
It was hypothesized that: (1) humans adapt to a virtual increase
in motor noise by increasing antagonistic co-activation, and this
reduces noise-induced performance decrements and (2) humans
adapt to a virtual decrease in motor noise by decreasing
antagonistic co-activation, and this improves performance. To
test these hypotheses, motor noise was manipulated in 12 healthy
young adults, who used a myoelectric virtual arm to perform
a goal-directed task. After the subjects became proficient at
the task, the noise in their muscle activity was either increased
or decreased, and changes in task performance and neural
adaptations assessed.

MATERIALS AND METHODS

Overview
The experiment occurred over two days. The first day was
a familiarization session so subjects could gain proficiency
at controlling a myoelectric virtual arm. On the second day,
subjects performed a number of isometric exertions with their
real arms, from which estimates of motor noise were obtained.
Subjects then performed the virtual arm task with no added
noise, with increased noise, and with decreased noise. Each
subject’s motor noise was increased and decreased by the same
relative proportion, based on the measurements taken during the
isometric exertions. A schematic detailing the virtual arm model
and noise manipulations is presented in Figure 1.

Subjects
Twelve healthy young subjects participated in the
study (age = 24 ± 1.7 yrs; height = 1.69 ± 0.11 m;
weight = 66.9 ± 10.9 kg [mean ± standard deviation (STD)];
5 males; 7 females). All subjects were right-hand dominant,
were healthy, and had no neurological or musculoskeletal issues
that affected movement control. The study was approved by
the Northeastern University Institutional Review Board, and all
subjects signed an informed consent form prior to participation.

Experimental Setup
Apparatus
Participants sat in a chair and faced a computer monitor. Their
right shoulder was in the anatomical position (aligned with
and next to the torso), the elbow was flexed 90◦, and the
wrist was placed in a neutral position. The forearm and wrist
rested on a cushion and were strapped to a rigid aluminum
frame using Velcro straps to allow isometric elbow flexion and
extension actions. Subjects’ arms remained in this fixed position
throughout the experiment.
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FIGURE 1 | In the experiment, subjects used their muscle activity to perform a goal-directed task with a virtual arm. After a period of familiarization, the
coefficient of variation (CV) of subjects’ motor commands (as reflected by muscle activity linear envelopes) was increased by adding signal-dependent noise, and in
another condition the CV was decreased with an exponentially-weighted moving average filter. The shading highlights the control loop hypothesized to take
precedence in the virtual arm task, with processes associated with human physiology shaded in light blue, and processes in the virtual world shaded in light red.
Note that during the experiment the actual human arm does not move due to an external mechanical constraint, and although subjects received proprioceptive
feedback about their actual arms, this feedback did not reflect the actions of the virtual muscles and arm, and therefore was not of high relevance to the task (in
contrast to the visual feedback).

Electromyography
A wireless electromyography system (Myon AG, Baar,
Switzerland; bandwidth: 5–1000 Hz, latency: 16 ms) was used to
monitor the biceps and triceps brachii. For the biceps, bipolar
Ag/AgCl circular disposable electrodes (KendallTMArboTM

H124SG, Covidien, UK, Commercial Ltd) were orientated
parallel to the muscle fibers, and placed 1 cm laterally from
the septum between the biceps muscle heads determined by
palpation (Riley et al., 2008). The other set of electrodes were
placed on the lateral head of the triceps, oriented parallel to the
muscle fibers. The inter-electrode distance was 2.0 cm. Prior
to electrode placement, the skin was shaved, rubbed with an
abrasive gel (NuPrepr, Weaver and Company, Aurora, CO,
USA), and cleaned with alcohol. After placement the electrodes
were covered with elastic wrap. Amplified muscle activity
was rectified and filtered using an analog fifth-order low-pass
Butterworth filter (MAX280; Maxim Integrated Products, Inc.,
San Jose, CA, USA) with a cutoff frequency of 4 Hz (Manal et al.,
2002; Hasson and Manczurowsky, 2015). These linear envelopes
were sampled at 100 Hz using an analog-to-digital converter
(PCI-6289; National Instruments, Austin, TX, USA).

Musculoskeletal Model
Virtual Arm Model
Subjects controlled a myoelectrically driven virtual arm model
(Hasson, 2014; Hasson and Manczurowsky, 2015). The virtual
arm model was created in Matlabr (MathWorksr, Natick,
MA, USA). The virtual arm rotated about a hinge joint with
a moment of inertia equal to 0.24 kgm2 (Winter, 1990), which
approximated a human forearm and hand. A pair of antagonistic

two-element lumped Hill-type (Hill, 1938; Zajac, 1988) muscle
models produced forces to accelerate the arm. One muscle model
represented the behavior of the elbow flexors and a second
modeled the elbow extensors. Each muscle model contained
a contractile element in series with an elastic element; the
behavior of these elements was specified by a maximal isometric
strength (P0), a length-dependent strength defined by a force-
length relation (Gordon et al., 1966), a velocity-dependent
strength defined by a force-velocity relation (Hill, 1938), and
a series-elasticity defined by a force-extension relation (Bahler,
1967). Parameters defining these relationships were adapted
from the SIMM (MusculoGraphics, Inc., Santa Rosa, CA, USA)
musculoskeletal modeling software (Delp et al., 1990); seeHasson
and Manczurowsky (2015) for parameter details. The lumped
flexor and extensor length vs. angle relation was the average of
the relations for the SIMM elbow flexor and extensor muscles,
respectively. The individual muscle SIMM moment arm vs.
elbow angle relations were averaged to produce relations for
the lumped flexor and extensor muscle models. An elastic
torque prevented the virtual limb from circling around the
axis of rotation, and a frictional torque was added to mimic
a limb rotating on a planar surface. Further details about the
musculoskeletal model and passive torques are provided in
Hasson (2014), and the equations describing the muscle model
dynamics are provided in Hasson and Caldwell (2012).

Noise Manipulations
Increasing Noise
We operationally defined motor noise as the noise contained
within the muscle linear envelopes. While this noise likely
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contains components due to measurement noise, such
components remained constant across the experimental
conditions. To increase motor noise, Gaussian distributed noise
was added to the biceps and triceps muscle linear envelopes,
which subjects used to control the virtual arm model. The STD
(σ ) of the added noise increased linearly with the excitation
signal, i.e., the noise was multiplicative. The noise was added in
a muscle- and subject-specific manner, doubling the coefficient
of variation (CV) for each muscle of each subject (a 100%
increase; a change in intensity of about 6 dB). A doubling of
the CV was chosen based on Laidlaw et al. (2000), who showed
an age-related doubling (approximately) of the CV for hand
muscle motor neuron firing rates. The actual CVs of the biceps
and triceps linear envelopes were calculated from a series of
isometric efforts for each subject (see ‘‘Noise Measurements’’
Section). Through an iterative process noise was added to
the muscle activity linear envelopes with steadily increasing
values of σ until the CV was doubled and these σ values
were used to increase motor noise while subjects controlled
the virtual arm (see ‘‘Virtual Arm Simulation’’ Section). An
example of a trial without and with increased noise is shown in
Figure 2A.

Decreasing Noise
To reduce variability, the linear envelopes were smoothed with
an exponentially weighted moving average. A moving-average
filter was used because it is the fastest type of digital filter and
is optimal with respect to reducing noise and retains a sharp
response (Smith, 1997). The smoothing function was:

st = αxt + (1− α)st−1 (1)

where α is the smoothing factor, xt is the excitation vale at the
current time, and st−1 is the previous smoothed excitation value.

The smoothed excitation value at t = 0 was set equal to the
unsmoothed excitation value. As for the noise increase, an
iterative procedure was used to find muscle- and subject-specific
values for α. Subjects’ isometric linear envelopes were smoothed
with increasing values of α (increasingly more smooth) until
a value was reached that decreased the CV by 30% (a change
in intensity of about −3 dB). The noise decrease (30%) was
chosen to be less than the noise increase (100%) because pilot
work showed that the delay introduced by smoothing became
significant with more extreme smoothing factors. Test signals
were created at the simulation sampling rate (100 Hz) to estimate
the filtering delay using α = 0.2 (close to the average used in the
experiment). For a rectified 1 Hz sine function (amplitude = 1)
the filter introduced a delay of 46 ms. For a step function, it
took 43 ms for the filtered signal to reach 63.2% of the maximum
signal value after the step. An example of a trial without and with
decreased noise is shown in Figure 2B.

Virtual Arm Simulation
The biceps and triceps linear envelopes represent the excitation
signals to the virtual flexor and extensor muscle models.
These signals were converted from arbitrary voltages to a
percentage of each subjects’ maximum isometric muscle activity
(see ‘‘Virtual Arm Calibration’’ Section). To increase noise
while subjects controlled the virtual arm, at each iteration
of the simulation the data acquisition system sampled the
most recent linear envelope values; random numbers were
drawn separately for the biceps and triceps using muscle- and
subject-specific σ values, and these numbers were added to the
muscle excitation values. To decrease noise, the sampled muscle
excitation values were smoothed with Equation 1, using muscle-
and subject-specific α values. In non-manipulated conditions,
the recorded linear envelopes were left untouched. The signals

FIGURE 2 | Exemplar data from one subject showing actual and manipulated muscle activity during the virtual arm task. Noise was increased by adding
noise to the muscle excitation linear envelopes before these signals activated muscle models, which produced forces to move the virtual arm (A). Noise was
decreased by applying a low-pass filter (B).
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were then subjected to first-order excitation-activation dynamics
with activation/deactivation time-constants of 11 and 68 ms,
respectively (Winters and Stark, 1988), and converted to muscle
forces via the lumped muscle models. These forces were
multiplied by the muscle moment arms to produce torques about
the virtual elbow axis of rotation. The sum of the muscular
torques, including passive and frictional torques, was used to
calculate the virtual limb angular acceleration using Euler’s
equations of motion, followed by integration via a 4th-order
Runge-Kutta algorithm (Press et al., 1990) to obtain virtual limb
position and velocity. All computations and simulations were
performed in MATLABr. Details of the simulation flow are in
Hasson (2014).

Modeling Considerations
It has been demonstrated by Selen et al. (2005) that the use
of a lumped muscle model does not produce variations in
force output consistent with physiological data, and that a
model of the motor unit pool is needed to model signal-
dependent noise. This was due to the inclusion of a length-
dependency for neural activation (Endo, 1972), which introduced
a low-frequency stiffness in addition to the stiffness contributed
by the series elastic elements (Kistemaker et al., 2005). A
model of the motor unit pool is difficult to incorporate in
the real-time control of a myoelectric virtual arm without
accurate on-line measurements of the activity of a person’s
motor unit pool. Thus, the present study used lumped muscle
models controlled by inputs from surface electromyography.
By excluding the dependency of activation on muscle fiber
length from the model, the linear relation between muscle
activation/force and variability is preserved, at the cost of a small
decrease in physiological fidelity. To verify this claim, Monte-
Carlo isometric simulations were performed with the biceps
lumped muscle model at mean excitation levels from 10 to 100%
in 10% increments (CV = 0.2). One hundred simulations were
performed at each excitation level. Examples of muscle model
excitation and force time-histories, and the relation between the
mean excitation/force, and the STD of the excitation/force are
shown in Figure 3. These relations are linear and therefore, the
CV is constant using lumped muscle models without length-
dependent activation dynamics.

Experimental Methods
Virtual Arm Calibration
At the start of each experiment on Day 1 and 2, electrodes
were applied to the biceps and triceps muscles according to
the procedure described in the ‘‘Experimental Setup’’ Section,
and muscle activity was collected at rest and during maximal
voluntary contractions (MVCs), allowing the strength of the
virtual arm muscles to be tailored to each subject. On Day 2,
this data was also used to derive target effort levels (%MVC)
for the isometric efforts (see Noise Measurements; next section).
Subjects performed three MVCs with their biceps muscle against
an immovable resistance, followed by three triceps MVCs. Each
MVC lasted 5 s with a 30 s rest between trials. This normally took
about 5 min.

Noise Measurements
On Day 2, the noise in each subject’s muscle activity was
measured via isometric exertions performed with the actual
arm. The approach was similar to that used by Christou and
Carlton (2001). Subjects performed a series of isometric muscle
exertions at 5, 10, 15, 20, 25, 30, 50, and 80% of MVC. Two
trials at each percentage were performed. The order of the 16
MVC percentages (8 × 2 trials each) was randomized. Trials
between 5–30% lasted 15 s; trials between 50–80% lasted 10 s to
lessen fatigue. Visual feedback was provided for the first 5 s of
each trial, during which the instantaneous excitation magnitude
was shown as a vertical bar. This visual feedback was removed
for the duration of the trial; subjects were asked to maintain
their muscular effort. A 30 s rest was provided after 5–30%
MCV trials and a longer 60 s rest between 50–80% MVC trials
to minimize fatigue. This took about 15 min for each muscle
(30 min total).

Virtual Arm Task
The virtual arm was drawn as a rotating line segment on a
visual display (Figure 4). Subjects were instructed to use their
muscle activity to perform a slice movement, which required
the arm to be moved in two directions: counterclockwise to
pass through a waypoint and then back to the starting location.
The virtual biceps and triceps produced torques that accelerated
the virtual arm counterclockwise and clockwise, respectively. If
both virtual muscles produced equal, but opposite torques the
arm did not accelerate (ignoring passive and frictional torque
contributions). Subjects were told to move the arm back and
forth as quickly as possible and to stop the arm as close to
the starting target circle center as possible, and that the trial
ends when the virtual arm comes to rest (<4◦/s for 0.3 s). For
reinforcement the target circle turned from yellow to green when
the angular error was within a success threshold of ±4◦ from
the target center, and a ‘‘ding’’ was sounded. After each trial the
movement time was displayed, defined as the time from when
the limb left the starting circle to when the limb stopped. For
additional motivation, subjects’ fastest successful movement time
was also displayed, and if a given trial exceeded this time the
program ‘‘applauded’’ and the fastest time was updated. If the
virtual arm did not pass the waypoint, a buzzer sounded after the
trial was completed and the visual display indicated this failure.

Protocol
On Day 1, after calibration of the virtual arm, subjects practiced
the task without manipulation for four blocks of 60 trials (240
total trials; Initial Practice). On Day 2, the calibration procedure
was performed again, and then the Noise Measurements were
performed. Subjects then practiced the virtual arm task for
one block of 60 trials without manipulation (More Practice).
Next, the manipulation blocks were performed in the following
order: Noise Increase 1, Noise Decrease 1, Noise Increase 2,
and Noise Decrease 2. The order of the manipulations was not
randomized so that adaptation across the two noise increases and
the two noise decreases could be examined. In eachmanipulation
block of 60 trials, subjects first performed 15 trials without
manipulation (to washout effects from a prior manipulation
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FIGURE 3 | Magnitude and variability of virtual arm neural control signals and virtual muscle forces. The top panels show one-second examples of
simulated neural excitation time-histories (A) and resulting virtual muscle force (B) at 20, 40, 60, and 80% of maximal voluntary contraction (MVC) during simulated
isometric efforts of the biceps lumped muscle model. The total virtual muscle-tendon length was fixed at 0.3051 m (the length when the virtual arm was at 90◦ of
elbow flexion). The bottom panels show the relationship between the mean and standard deviation (STD) excitation (C) and muscle model force (D) over 10 s at
different mean excitation levels from 10 to 100% in 10% increments (100 simulations were performed at each excitation level).

and serve as a comparison), and then performed 45 trials
with the manipulation. Performance with each manipulation
was then compared with performance on the immediately
preceding pre-manipulation baseline blocks. Brief rest periods

FIGURE 4 | Visual feedback of the virtual arm provided to participants
(labels included for clarity). The virtual arm started in the vertical position
(0◦). The task was to move the virtual arm to the waypoint (45◦) and then back
to the starting position, i.e., perform a back-and-forth slicing motion.

were provided between all blocks. Each block of 60 trials took
about 6 min.

Data Analysis
Task Performance
Subjects’ proficiency at controlling the virtual armwas quantified
by absolute angular error and movement time. The error was
calculated as the absolute value of the angular difference between
the virtual limb’s final position and the target center. Movement
time was determined as the time from when the limb left the
starting circle to when it came to rest.

Motor Noise
The CV for each isometric effort performed during the noise
measurements was calculated by dividing the average linear
envelope magnitude during the last 5 s by the STD of the linear
envelope. The average CV across all isometric efforts was then
calculated for each subject. The CV was assessed during the
time without visual feedback because otherwise, variations in the
linear envelope could arise from perpetual-motor information
processing (Schmidt et al., 1979; Slifkin and Newell, 2000).
Of additional theoretical interest is how the CV scales with the
magnitude of subjects’ control signals (i.e., linear envelopes), as
this has been shown to be approximately constant experimentally
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(Jones et al., 2002). To determine CV scaling, for each subject
a linear function was fit to the log-log relation between the
average and STD of the biceps and triceps muscle activity linear
envelopes. A constant CV gives a slope of 1.0. The coefficient of
determination (R2) was used to assess the quality of the fits.

Muscular Co-Activation
Following Falconer and Winter (1985) and Kellis et al. (2003),
antagonistic co-activation was calculated as:

Co-Activation =
100 (2IANT)

ITOTAL
(2)

where IANT is the area of overlap between the two muscle linear
envelopes, given by:

IANT=
{ ∫ ti+1

ti EMGBICEPS(t) dt when EMGBICEPS ≤ EMGTRICEPS∫ ti+1
ti EMGTRICEPS(t) dt when EMGBICEPS > EMGTRICEPS

(3)

The calculation of IANT was performed in an iterative manner,
i.e., the area of overlap IANT was determined for each consecutive
chunk of time from ti and ti+1, and this procedure was iterated
throughout a trial for all time points. The quantity ITOTAL is the
summed area of both muscles, given by:

ITOTAL =
∫ ti+1

ti
[EMGBICEPS + EMGTRICEPS] (t) dt (4)

calculated in the same iterative fashion as for IANT .

Statistics
Non-Manipulated Trials
There were three questions of interest related to subjects’
performance on the non-manipulated trials: (1) Did subjects
improve their performance on Day 1? (2) Did they retain what
they learned on Day 2? (3) Did they continue to improve on
Day 2? The dependent variables included the absolute angular
error, movement time, and antagonist co-activation. To answer
Question 1, a paired t-test was performed between the first and
last 10 trials on Day 1. To answer Question 2, a paired t-test was
performed between the last 10 trials on Day 1 and the first 10
trials on Day 2. Finally, to answer Question 3, which had six
time points, a one-way repeated measures analysis of variance
(ANOVA) was performed on the average performance on the
first and last 10 trials of the initial 60-trial Day 2 adaptation
period and the last 10 trials of each of the four pre-manipulation
Day 2 baseline blocks. Post hoc comparisons were made using
Bonferonni corrections.

Noise Measurements
Paired t-tests were performed to determine whether the biceps
and triceps CVs, noise factors (σ ), and smoothing factors (α)
were different, whether the slopes of linear fits to the log-
transformed linear envelope magnitude vs. STD data were
different, and whether the coefficients of determination (R2) for
these linear fits was different between the muscles.

Noise Manipulations
The statistical analysis for the noise manipulations tested the
main hypotheses that: (1) humans adapt to increased motor
noise by increasing antagonistic co-activation, which reduces
noise-induced performance decrements and (2) humans adapt to
decreased motor noise by decreasing antagonistic co-activation,
which improves performance. Performance was again quantified
in terms of error, movement time, and co-activation. However,
these tests were performed on relative performance measures,
i.e., performance with the noise manipulations relative to
performance on the most recent non-manipulated trials. To this
end, the average performance for the last 10 trials in each of the
four manipulation blocks was subtracted from the average of the
last 10 trials in each of the immediately preceding baseline blocks.
Analyzing the relative change controlled for any continued
performance improvements present on the non-manipulated
trials. To determine whether the noise manipulations had an
effect on performance (i.e., was the change with a manipulation
different from zero?), one-sample t-tests were performed on the
difference measures (manipulation minus preceding baseline)
separately for each noise manipulation. To assess whether
subjects adapted to the noise manipulations, paired t-tests
were performed comparing the first and second manipulation
difference measures (i.e., was the change in error for the first
noise increase different from the change in error for the second
noise increase?).

RESULTS

Non-Manipulated Trials
Initial Skill Acquisition (Day 1)
Subjects improved their performance on the virtual arm task on
Day 1 (Figure 5). Paired t-tests comparing early and late practice
on Day 1 showed significant decreases in error (p = 0.008),
movement time (p = 0.049), and co-activation (p = 0.027).

Retention (Day 1 vs. 2)
Retention was assessed by comparing late practice on Day 1 with
early practice on Day 2. Paired t-tests showed no differences
between these two time points for error (p = 0.207) and
movement time (p = 0.110), indicating that subjects retained
their skill overnight. Although there was an increase in the mean
co-activation between Days 1 and 2, the difference was not
significant (p = 0.069).

Later Practice (Day 2)
To determine whether there were continued improvements
in performance on Day 2, a repeated measures ANOVA was
performed to compare six time points (the average of the first
and last 10 trials of the initial 60-trial Day 2 adaptation period,
and the last 10 trials of each of the four pre-manipulation
Day 2 baseline blocks). Greenhouse-Geisser corrections were
used due to non-sphericity. There was no significant effect of
practice on error (F(2.266,24.930) = 2.196, p = 0.127), but there was
an effect of practice on movement time (F(1.717,17.174) = 6.553,
p = 0.010). Post hoc tests with Bonferroni corrections showed
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FIGURE 5 | Changes in non-manipulated virtual arm trials with practice. Measures of task performance, the absolute angular error (A), movement time
(B), and antagonistic co-activation (C) are shown. For the initial practice on Day 1 and more practice on Day 2 the data shown are averaged in non-overlapping
10-trial bins. For the pre-manipulation baseline trials, each 15-trial block is averaged to produce one data point. Error bars represent the standard error.

that the movement time at the end of the initial Day 2
practice period was longer than movement time for each of
the last three pre-manipulation baseline blocks (p < 0.019).
However, there were no differences between each of the four
pre-manipulation blocks (p > 0.133). There was no significant
effect of practice on Day 2 for co-activation (F(2.075,22.824) = 2.292,
p = 0.122).

Noise Measurements
The CV, which characterized each subject’s signal-dependent
noise, was calculated for each biceps and triceps isometric
effort by dividing the average magnitude of the muscle activity
linear envelopes by the STD. The resulting data are shown in
Figure 6A (top row). On average the CV was close to 0.2 for
both muscles (biceps: 0.211 ± 0.026; triceps: 0.190 ± 0.021;
mean ± STD). A paired t-test showed that the CV for

the biceps was larger than the triceps (p = 0.004). The
relation between the magnitude and STD of the muscle activity
linear envelopes is shown for all subjects in Figure 6A. Of
theoretical interest is the consistency of the CV across different
effort levels, i.e., does the muscle activity variability scale
linearly with the magnitude? This question is best addressed
by taking the logarithms of the magnitude and STD; in
log-log space, if the underlying process has a linear scaling
then the slope will be equal to one (Jones et al., 2002).
This transformed data is shown for all subjects in Figure 6B
(bottom row) with a line-of-best-fit to the pooled data. The
linear fits to the individual subject data had a high coefficient
of determination (R2), averaging 0.94 for both muscles (no
difference between muscles; p = 0.777), and the slopes averaged
between 0.81–0.82 for both muscles (no difference between
muscles; p = 0.755).
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FIGURE 6 | Relation between the mean and STD of muscle linear envelopes recorded with surface electromyography (EMG) for the biceps and
triceps. Data for all subjects and all isometric efforts are shown. The data are shown both on decimal (A; top row) and logarithmic (B; bottom row) scales. A line of
best fit to the pooled data is shown for the logarithmically scaled data. The R2 and slope values reported in (B) are for individual subject fits (mean ± STD).

Noise Manipulations
After each subject’s noise was measured on Day 2, subjects
performed the virtual arm task under non-manipulated
conditions, as well as with increased and decreased signal-
dependent noise. The noise was manipulated according to
muscle- and subject-specific noise factors. For the noise increase:
biceps σ = 0.39± 0.04; triceps σ = 0.35± 0.04 (mean± between
subjects STD). For the noise decrease: biceps α = 0.19 ± 0.05;
triceps α = 0.21± 0.04.

Effects of Increased Motor Noise (Hypothesis 1)
There were no statistically significant differences between the
last four baseline blocks for the average error, movement
time, and co-activation, suggesting a relative plateau in
performance (see the results for ‘‘Later Practice’’ in preceding
section). Nevertheless, there were some visible changes in
antagonistic co-activation over these blocks (Figure 5C).
To minimize the effects of any such trends, each subject’s
average error, movement time, and co-activation on the
noise manipulation trials was subtracted from their values
on the immediately preceding pre-manipulation baseline
trials.

The results of the analysis of these relative changes in
performance (Figure 7) showed that in response to the first
noise increase, absolute angular error increased (p = 0.019)
and movement time decreased (p = 0.013), but co-activation
did not change (p = 0.482). For the second noise increase,
absolute angular error and movement time remained the same
(p = 0.297 and p = 0.153, respectively), but co-activation
increased (p = 0.014). To assess adaptation across practice,
the change between the first and second noise increase was
compared. There was a decrease in error (p = 0.015), an increase
in movement time (p = 0.009), and an increase in co-activation
(p = 0.012) from the first to second noise increase blocks. Note
that the increase in co-activation is opposite to the decreasing
trend seen in co-activation across the pre-manipulation baseline
blocks (Figure 5C); therefore, the co-activation increase is likely
not an artifact of a more general practice trend.

Effects of Decreased Motor Noise (Hypothesis 2)
In response to the first noise decrease (Figure 7), the absolute
angular error increased (p = 0.005), but movement time and
co-activation did not change (p = 0.228 and p = 0.074). A
similar pattern was observed in response to the second noise
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FIGURE 7 | Changes in task performance, quantified by the absolute angular error (A), movement time (B), and antagonistic co-activation (C) with
increased (dark green bars) and decreased (light green bars) motor noise. Each bar represents the change relative to a preceding block of non-manipulated
trials. Measures significantly different from zero denoted by (∗), measures that differ across manipulation blocks 1 and 2 denoted by connecting lines with (∗) above.
Error bars represent the standard error.

decrease: absolute angular error increased (p = 0.006), but
movement time and co-activation remained the same (p = 0.077
and p = 0.563, respectively). To again assess adaptation across
practice, the changes between the first and second noise decreases
were compared. There were no significant differences for error,
movement time, and co-activation (p = 0.660, p = 0.643, and
p = 0.579, respectively) between the first and second noise
increases.

DISCUSSION

The results support the hypothesis that humans adapt to
virtual increases in motor noise by increasing antagonistic co-
activation, and this was associated with reduced noise-induced
performance decrements (Hypothesis 1). On the other hand, the
results did not support the hypothesis that humans adapt to
virtual decreases in motor noise by decreasing antagonistic co-
activation, and decreasing noise did not improve performance
(Hypothesis 2).

Learning Trends in Non-Manipulated Trials
Subjects were able to improve their control of the virtual
arm over the first day of practice, decreasing their average
end-point error and movement time. While these quantities
had excellent retention and plateaued after the first day,
co-activation had poorer retention and continued to
decrease throughout practice. A reduction in co-activation
with practice is consistent with numerous prior studies
(Thoroughman and Shadmehr, 1999; Osu et al., 2002; Gribble
et al., 2003; Darainy and Ostry, 2008; Huang et al., 2012),
which could reflect fine-tuning of an internal model of
the virtual arm dynamics (Osu et al., 2002). However,
few studies quantify retention of co-activation following
skill acquisition. Patten and Kamen (2000) showed good
retention of antagonistic co-activation levels for young
and older adults performing a force-modulating task, but
these data were averaged over a week of practice, which
may occlude more transient changes in co-activation

strategies. If antagonistic co-activation is indeed reflective
of internal model tuning, the present results suggest that
this fine-tuning was lost between practice sessions, and
that learning the model was a relatively slow process,
which could be because of the novelty associated with the
virtual arm interface. However, since there are few reports
on the retention of antagonistic co-activation strategies,
further experimental work is needed to reach a firmer
conclusion.

Assessment of Motor Noise
Motor noise was operationally defined as high-frequency
fluctuations in the linear envelopes of muscle activity recorded
with surface electromyography. In contrast, past experimental
studies have measured noise in terms of either the variability
of motor neuron firing rates using indwelling electrodes
(Clamann, 1969; Matthews, 1996), or the variability of force
output during isometric tasks (Schmidt et al., 1979; Slifkin
and Newell, 1999; Laidlaw et al., 2000). In the present study
the scaling of motor noise, relative to the magnitude of the
motor command, had a CV close to 0.2 for both muscles, which
agrees with studies reporting CVs between 0.1 and 0.3 for the
firing rate of motor neurons (Clamann, 1969; Matthews, 1996).
These values are greater than CVs reported for isometric force
production, which are typically less than 0.06 (Schmidt et al.,
1979; Slifkin and Newell, 1999; Laidlaw et al., 2000). This is
likely because the filtering properties of muscle and associated
electromechanical processes (e.g., excitation-contraction
coupling) attenuate higher-frequency fluctuations in the muscle
force time-histories.

Of theoretical interest is how the CV scales with the
magnitude of the control signal, i.e., the muscle activity
linear envelopes. For example, the CV is assumed to be
constant by optimal control models of human motor control
(Harris and Wolpert, 1998). To determine this scaling, linear
functions were fit to the log-log relation between the average
and STD of the muscle activity linear envelopes for each
subject (a constant CV gives a slope of 1.0). The average
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slope was 0.84, which is lower than that reported by Jones
et al. (2002) for isometric finger force data, who found an
average slope of 1.05. However, there was a wide range
of variation in the data of Jones et al. (2002) i.e., if you
remove the slope value for one outlier subject, the average
slope becomes closer to the present study. Compared to the
quality of the linear fits reported by Jones et al. (2002;
reported as R2 = 0.80 ± 0.1), the fits in the present
study were stronger (R2 = 0.94 ± 0.02 and 0.94 ± 0.04
for the biceps and triceps, respectively). This could be
because the mechanical properties of muscle distort the
relationship between neural activation and force, and therefore,
assessing motor noise at the muscle activity level may be
advantageous in this respect, but caution should still be
exercised due to the greater potential for artifacts associated with
electromyography.

Effects of Increased Noise
The initial effect of increasing motor noise was to make
performance worse without any change in antagonistic
co-activation, but with additional practice subjects increased
co-activation and were able to maintain their speed and
accuracy in light of a virtual increase in motor noise. This is
consistent with the hypothesis that co-activation suppresses
task-level variability induced by signal-dependent motor
noise (Hypothesis 1). The co-activation increase seems to
reflect purposeful neural adaptation, as it goes against the
steady decline of co-activation observed on non-manipulated
trials, and is not an artifact of faster movements (Gribble
and Ostry, 1998; Suzuki et al., 2001), because velocity did not
change significantly during later time points. Most subjects
used co-activation to stabilize the switch from accelerating
the virtual arm towards the waypoint, to accelerating the
virtual arm back towards the starting area (see muscle
activation patterns displayed in Figure 2). This switch is
a critical control point: if the deceleration is just right the
virtual arm will smoothly come to a stop on the target (the
frictional model assists slowing down), providing faster
movement times than making corrections near the goal.
Co-activation could help in regulating variability in the net
joint torque during this switch (Gordon and Ghez, 1984;
Ghez and Gordon, 1987; Selen et al., 2005). These results
contrast with the those of de Rugy et al. (2012), who saw
virtually no effect of a similar manipulation in a virtual force-
directing task. This could be because in the experiment of de
Rugy et al. (2012) musculotendon and rigid-body dynamics
were excluded from the virtual arm model, which may have
prevented subjects from taking advantage of the impedance-
modulating capabilities of antagonistic muscles (Hogan,
1984).

Effects of Decreased Noise
When noise was decreased movements became less accurate
with no significant change in antagonistic co-activation. As
with the noise increase, an initial decrement in performance
would be expected after exposure to a novel task perturbation.

However, unlike the noise increase, the decrease in accuracy
persisted into the second manipulation block, and although co-
activation appeared to reduce, the reduction was not significant.
This may be because: (1) A longer period of adaptation may
have been needed; (2) There may have been a floor effect,
which made it difficult to further reduce co-activation; (3) The
small, but unavoidable delay introduced by the filter may have
made the task more difficult; (4) The filtering benefits may
have been offset by a reduction in peak virtual muscle force.
As can be seen in the exemplar data presented in Figure 2B,
the normally sharp peaks in muscle activity are attenuated by
the filter. Therefore, to get the same peak activation, subjects
would need to activate their muscles more, which would
increase signal-dependent noise, negating the benefits of noise-
reduction. Note that subjects were still able to complete the
task successfully with the filtered muscle activity, as their error
only increased a few degrees and their movement time did not
change significantly; and (5) In response to the noise reduction,
the small (but non-significant) decrease in co-activation could
have reduced the noise-suppression benefits of co-activation,
again negating the positive effects of the noise reduction. The
results of this experiment do not follow those of Chu et al.
(2013) who found that dystonic children can take advantage of
a perceived decrease in their motor variability in a throwing
task. This may be because the present study investigated
healthy adults, and may also be due to task differences (on-
line control of a myoelectric virtual arm vs. a discrete throwing
task).

Implications
The data suggest that in the short-term, the nervous system
adapts to increased signal dependent noise by increasing
antagonistic co-activation. This could explain why older adults
generally have increased levels of co-activation (Izquierdo
et al., 1999; Macaluso et al., 2002), which could be due
to a greater need to protect and stabilize joints (Huang
et al., 2012) and/or the need to counter the effects of
greater signal dependent noise. Greater motor noise in older
adults has been documented by Laidlaw et al. (2000), who
showed an increase in the CV of motor neuron firing
rates at low force levels in a hand muscle, which was
roughly double that of young adults. Similar findings have
been observed in larger leg muscles, although to a lesser
degree (Kallio et al., 2012). While greater signal dependent
noise may require greater co-activation to compensate and
maintain motor function, it is unknown whether the short-
term adaptations observed in the present study would accurately
reflect the much longer-term adaptations that would be expected
over decades of aging. In addition, there is evidence that
practice reduces motor unit discharge variability and increases
force steadiness in older adults (Keen et al., 1994; Laidlaw
et al., 1999; Kornatz et al., 2005), which could be due
to changes in the low-frequency modulation of motor unit
discharge rates (Dideriksen et al., 2012). Thus, in the long-
haul, with training older adults could reduce their noise and
thus, lessen the need for energetically expensive antagonistic
co-activation.
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Limitations
Only short-term adaptations were studied, and therefore, it is
unknown whether the results would hold if subjects continued to
practice under the manipulated conditions. Also, the virtual arm
was a relatively simple one-degree-of-freedom rigid body model
actuated by a pair of antagonistic lumped muscle models. The
muscle models were designed to mimic the behavior, but not
the fine details, of human muscle. The advantage of this simple
approach is that subjects only needed to learn to coordinate
two muscles, and were able to become proficient at controlling
the virtual arm in a relatively short time. However, in real
human arms there are many more degrees of freedom, and
it is unknown whether in this case a different solution could
be found by the nervous system. Another limitation is that
proprioceptive feedback related to the virtual arm was limited
as the participants’ arms did not move during performance of
the task (although there would still be feedback from muscle-
tendon length changes and cutaneous receptors; see Figure 1).
It is also unclear how the findings would generalize, as the
noise manipulations were performed on healthy young adults.
Further research is needed to see if other individuals, such as
the elderly or patient populations, would respond in the same
way. Finally, the observed changes in co-contraction cannot be
separated into the contributions from various neural systems,
such as movement commands vs. reflex activity (Gribble et al.,
2003).

A potential criticism of the present approach is that
subjects’ actual motor noise was unchanged, and ultimately,
the manipulation was effectively a visual one. While it is
true that subjects’ actual motor noise was not manipulated,
adding variability to subjects’ muscle activity is not the same
as adding variability to the visual display. The former preserves
the causal ordering of events: variations in muscle activity
produce variations in muscle force, which in turn affect
fluctuations in net joint torque, and limb acceleration, velocity,
and displacement. At each stage the fluctuations are filtered
by various physiological processes (e.g., excitation-contraction

coupling; muscle dynamics) and mechanics associated with these
events (e.g., inertial properties of the arm). If the variability
was introduced at a later stage, for example in the displayed
motion of the virtual limb, the variations produced by the added
noise would become causally disconnected from the subjects’
motor commands, decreasing the ecological validity of the task.
Further study is needed to determine how the central nervous
system responds to noise introduced at different points in the
human motor control loop, whether in the motor command or
in sensory feedback. The latter could be in the form of a visual
perturbation, such as error amplification (Wei et al., 2005a,b),
or a proprioceptive disruption, such as tendon vibration (Cordo
et al., 1995, 2009).

CONCLUSION

This work suggests that the nervous system adapts to virtual
increases in motor noise by increasing antagonistic co-activation,
which preserves motor performance. A virtual reduction in
motor noise failed to benefit performance, but this may have
been due to characteristics of the filtering process itself, e.g.,
delays are introduced and muscle activity bursts are attenuated.
The observed adaptations to increased noise could explain in
part why older adults and many patient populations have greater
antagonistic co-activation, which may represent an adaptation
to increased motor noise, along with a desire for increased
joint stability. However, a downside is an increase in energy
cost. Future work should determine whether the results hold
in the long-term, or if the nervous system finds other ways to
compensate for increases in motor noise.
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