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Abstract 

Background:  DNA methylation is an epigenetic mark associated with the repression 
of gene promoters. Its pattern in the genome is disrupted with age and these changes 
can be used to statistically predict age with epigenetic clocks. Altered rates of aging 
inferred from these clocks are observed in human disease. However, the molecu‑
lar mechanisms underpinning age-associated DNA methylation changes remain 
unknown. Local DNA sequence can program steady-state DNA methylation levels, but 
how it influences age-associated methylation changes is unknown.

Results:  We analyze longitudinal human DNA methylation trajectories at 345,895 
CpGs from 600 individuals aged between 67 and 80 to understand the factors respon‑
sible for age-associated epigenetic changes at individual CpGs. We show that changes 
in methylation with age occur at 182,760 loci largely independently of variation in cell 
type proportions. These changes are especially apparent at 8322 low CpG density loci. 
Using SNP data from the same individuals, we demonstrate that methylation trajecto‑
ries are affected by local sequence polymorphisms at 1487 low CpG density loci. More 
generally, we find that low CpG density regions are particularly prone to change and 
do so variably between individuals in people aged over 65. This differs from the behav‑
ior of these regions in younger individuals where they predominantly lose methylation.

Conclusions:  Our results, which we reproduce in two independent groups of indi‑
viduals, demonstrate that local DNA sequence influences age-associated DNA meth‑
ylation changes in humans in vivo. We suggest that this occurs because interactions 
between CpGs reinforce maintenance of methylation patterns in CpG dense regions.
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Introduction
DNA methylation is the most common DNA modification found in mammals. It is con-
sidered a repressive epigenetic mark at gene promoters and is observed predominantly 
at cytosines in CpG dinucleotides [1]. In mammals, it is largely erased from the somatic 
genome in early development and re-established later by the de novo DNA methyl-
transferases 3A and 3B (DNMT3A and DNMT3B) [2]. This wave of de novo methyla-
tion results in a pervasive methylation landscape where 70–80% of CpGs are methylated 
in most human tissues [3]. Short regions lacking DNA methylation often correspond to 
promoters and other regulatory elements particularly CpG islands [1]. Subsequently, this 
DNA methylation pattern is largely maintained by the action of the maintenance DNA 
methyltransferase, DNMT1 [4].

Despite maintenance methylation, the DNA methylation landscape alters with age. 
Overall, the DNA methylation content of the genome reduces with age [5] but individual 
loci gain methylation. Changes at some loci are sufficiently reproducible across individu-
als as to enable the statistical derivation of accurate predictors of age termed epigenetic 
clocks [6, 7]. Accelerated aging inferred using epigenetic clocks has been observed in 
human diseases and health-associated conditions such as obesity [8]. It is also predictive 
of the development of disease [8] and mortality [9]. Similar epigenetic clocks have been 
derived for other mammalian species [10–13]. In mice, interventions associated with 
increased lifespan also associate with decreases in epigenetic age measured by murine 
epigenetic clocks [10, 12]. In addition to epigenetic clocks, DNA methylation changes 
that are inconsistent between individuals have also been described and termed epige-
netic drift [14]. For example, increased divergence in the DNA methylation patterns of 
twins is observed with age [15].

The mechanisms underpinning these changes in DNA methylation with age remain 
unclear. Losses of DNA methylation with age are thought to occur primarily in hetero-
chromatic, late replicating genomic regions [16]. Conversely, DNA methylation gains 
have been associated with CGIs that are targeted by polycomb repressive complexes in 
embryonic stem cells [17–19]. Although epigenetic clocks are designed as sparse pre-
dictors of age and therefore are likely to capture a range of diverse processes ongoing 
in cells and tissues [20], epigenetic clock loci have been observed to include enhanc-
ers [10] suggesting that changes in the methylation level at enhancers may occur with 
age. The majority of variation in DNA methylation seen between cell types also occurs 
at enhancers [21]. An analysis of age-associated epigenetic changes has suggested that 
many correlate with variation in the proportions of different cell types in the blood [22]. 
Furthermore, some epigenetic clocks have been suggested to capture changes in the pro-
portions of cell types because they correlate with cell type proportions [8]. Age-associ-
ated variable loci have also been reported to occur in regions of the genome regulated by 
polycomb repressive complexes [23].

Analysis of steady-state DNA methylation patterns in human populations has found 
differences in the methylation levels of individual loci between people that associate 
with sequence polymorphisms. These have been characterized as allele-specific meth-
ylation or methylation quantitative trait loci (meth-QTLs) [24, 25]. This suggests that 
DNA sequence can program local DNA methylation levels, a hypothesis supported 
by the inheritance pattern of allele-specific methylation in families [26] and analysis 
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of the methylation patterns of ectopic DNA sequences integrated into cell lines [27]. 
Whether DNA sequence plays a role in age-associated changes in DNA methylation is 
less clear. Some studies have provided evidence that genetic variants affect how DNA 
methylation changes with age at individual loci [28, 29]. However, a study of mice 
possessing a copy of human chromosome 21 suggested that local sequence plays a lit-
tle role in determining the rate of age-associated DNA methylation changes [30]. In 
this study, the human chromosome accumulated age-associated changes at a similar 
rate to the mouse genome rather than the rate observed in its native human context.

Here we examine longitudinal DNA methylation patterns at 345,895 individual 
CpGs in blood DNA samples from people aged between 67 and 80 to determine 
which loci show changes in DNA methylation level and provide insight into mech-
anisms that might underpin age-associated epigenetic changes, particularly in later 
life. We demonstrate that the methylation patterns of low CpG density regions are 
more likely to change with age and do so variably in later life.

Results
Longitudinal methylation trajectories reveal changes at individual epigenetic clock loci

In order to understand the factors that are responsible for age-associated altera-
tions in DNA methylation at the CpG level, we analyzed longitudinal DNA methyla-
tion data collected from blood samples taken from the Lothian Birth Cohort of 1936 
(LBC) [31–33]. This cohort consists of 1091 individuals, whose blood was assayed at 
multiple timepoints on Illumina Infinium 450k arrays between the ages of 67 and 80 
(see Table 1). To robustly quantify DNA methylation alterations with age, we focused 
on the 600 individuals for whom 3 or more datapoints were available and 345,895 reli-
ably measured autosomal CpG probes whose signal is not directly affected by SNPs or 
cross-hybridisation [34].

We modelled methylation trajectories for each CpG and individual as linear models of 
the Infinium beta values with age (example shown in Fig. 1a). This approach estimates 
every individual’s slope independently and can account for heterogenous groups within 
the data. Mixed effect models provide an alternative approach [35]. However, mixed 
effects models borrow information between individuals implicitly assuming all individu-
als belong to a single group. Our mean rates of change derived from individual trajec-
tories were highly correlated with the rates of change estimated from a mixed effects 
model including a random intercept (Additional file  1: Fig S1a, Pearson’s R = 0.999, 
p < 2.2 × 10−16 for the 345,890 CpGs that could be modelled in this manner).

Table 1  Demographics of LBC participants used in this study. The mean age in years at 
each measurement are indicated along with the range. The number of observations at each 
measurement is also indicated. In total, 351 individuals had data for all 4 measurements and 249 for 
three of the measurements

1st measurement 2nd measurement 3rd measurement 4th measurement

Mean age (min/max) 69.6 (67.7, 71,3) 72.6 (71.0, 74.2) 76.3 (74.7, 77.7) 79.3 (78.0, 80.9)

No. females 265 271 259 224

No. males 295 307 292 238
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To test whether age-associated DNA methylation changes at individual loci could 
be measured using our approach, we first examined the CG probe cg16867757 in the 
ELOV2L promoter which shows strong age-associated changes in DNA methylation 
[7, 36]. We observed a highly significant gain of methylation with age at the locus in 
the LBC cohort, validating our approach (Fig. 1a, T-test, p < 2.2 × 10−16). To further test 
whether we could reliably estimate changes at individual loci, we next examined epige-
netic clock loci. Epigenetic clocks have been defined as statistical instruments whose 
output is strongly correlated with age [20]. Individual clock loci show DNA methyla-
tion levels that correlate with age in cross-sectional analyses [12]. Given their use in pre-
dicting age, they would be expected to show consistent trajectories between individuals. 
We focused on the behavior of CpGs that are included in the widely used Hannum and 
Horvath epigenetic clocks [6, 7]. 88% of the CpGs in the Hannum epigenetic clock and 
80% of the CpGs in the Horvath epigenetic clock had a statistically significant change 
with age in the direction predicted by the original studies (46 out of 52 and 241 out of 
302 respectively, p < 0.05, T-test, examples in Fig. 1b and aggregate analysis Fig. 1c) [6, 
7]. The slopes of the CpGs making up these epigenetic clocks in LBC were also highly 
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Fig. 1  Longitudinal methylation trajectories reveal changes at individual epigenetic clock loci. a ELOLV2 
shows increases in methylation across individuals. Plots of methylation levels at ELOVL2 CpG cg16867657 
showing data from one individual in the cohort and their methylation trajectory (left and middle panel, red 
points and line), and methylation trajectories for all individuals (right panel, gray lines). In the right panel, the 
bold line indicates the mean methylation trajectory, and the dashed lines are the 95% confidence intervals. b 
Examples of methylation trajectories observed for epigenetic clock CpGs. Individual methylation trajectories 
are indicated by gray lines. The mean methylation trajectory is indicated by the bold line and the dashed lines 
are the 95% confidence intervals. c Methylation trajectories recapitulate the predicted behavior of epigenetic 
clock CpGs. Boxplots showing the calculated mean rates of change for CpGs that are part of the Hannum or 
Horvath epigenetic clocks split by their reported direction of change. P-values were calculated using T-test. 
Lines = median; Box = 25th–75th percentile; whiskers = 1.5 × interquartile range from box; n indicates the 
number of CpGs in each group
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consistently correlated with those calculated from a cross-sectional cohort of 5101 indi-
viduals from the Generation Scotland study who had their DNA methylation levels pro-
filed on Illumina EPIC arrays (Additional file 1: Fig S1b) [37, 38]. The absolute rate of 
change of clock CpGs were modest compared to other CpGs whose methylation levels 
changed significantly with age in accordance with previous  observations of individual 
clock loci in cross-sectional analyses (Additional file 1: Fig S1c) [12].

These results suggest that the analysis of individual methylation trajectories in the 
LBC cohort can detect previously described age-associated changes in DNA methyla-
tion at individual CpGs.

A large number of CpGs show age‑associated changes in DNA methylation levels in later 

life

Having demonstrated that we can measure predicted changes in DNA methylation with 
age using individual methylation trajectories, we then examined the rates of change at 
individual CpGs across the genome to understand which loci might show changes in 
DNA methylation levels with age in LBC.

Of the 345,895 CpGs in the dataset, 182,760 (52%) show significant changes in DNA 
methylation levels with age in the LBC blood samples (Bonferroni-corrected p < 0.01, 
T-test of individual linear model slopes). Many changes in DNA methylation with age 
have been attributed to changes in the proportions of cell types in the blood [22]. To 
understand the degree to which variation in cell type proportions might explain our 
observations, we made use of directly measured neutrophil, lymphocyte, monocyte, 
eosinophil and basophil counts from the same blood samples. We estimated rates of 
change for the 5 measured cell types by fitting a linear model to the counts in each indi-
vidual. We then modelled the rate of change in DNA methylation with age as a linear 
function of these cell type rates across individuals for each of the 182,760 significantly 
changing CpGs. The rate of change in DNA methylation at 17,862 CpG sites was sig-
nificantly explained by these models (9.77%, F-tests, Bonferroni-corrected p < 0.01). 
At these sites, the proportion of variation in rate of change of DNA methylation with 
age explained by variation in the blood cell count rates was low (mean R2 = 0.150, 
Additional file 1: Fig S2a). This suggests that relatively few of the age-associated meth-
ylation changes we observe were caused by changes in the proportions of cell types in 
the blood with age. Estimates of cell type proportions can also be derived using cell-
type-specific DNA methylation differences [39]. We applied the Houseman algorithm 
to estimate the proportions of granulocytes, B-cells, CD4 T-cells, CD8 T-cells, natural 
killer cells, and monocytes present in each DNA methylation sample before repeating 
our analysis. Using these estimated white blood cell counts, 118,059 of the age-associ-
ated CpGs showed variation that was significantly explained by rates of change in cell 
counts (64.60%, F-tests, Bonferroni-corrected p < 0.01). However, again the proportion 
of variance explained by the variation in blood cell rates of change was modest (mean 
R2 = 0.197, Additional file 1: Fig S2b).

Taken together, these analyses suggest that a large number of CpGs show age-associ-
ated changes in DNA methylation levels in LBC. While some of these changes are par-
tially explained by changes in the proportions of cell types within the blood, variation in 



Page 6 of 28Higham et al. Genome Biology          (2022) 23:216 

the blood cell counts explains a small proportion of the variation in DNA methylation 
levels observed at most of these CpGs.

A subset of CpGs gain methylation in later life

In order to understand what else might explain the age-associated changes in DNA 
methylation levels we observed in the LBC blood samples, we then examined the distri-
bution of mean slopes for the CpGs showing a significant change in DNA methylation 
with age.

This distribution was significantly skewed towards loci gaining DNA methylation 
(Fig.  2a, p < 2.2 × 10−16 by T-test of mean linear model slopes). A distinct shoulder of 
CpGs with more rapid gains of methylation was also apparent on the histogram. We 
defined these rapidly gaining CpGs as those with a rate of methylation change > 0.016 
beta per year (>0.16% methylation per year,  8322 rapid gain CpGs, Additional file  2: 
Table S1; example cg22926528 shown in Fig. 2b). Rapid gain CpGs also showed signif-
icantly higher rates of methylation gain than other CpGs when slopes were corrected 
for measured white blood cell counts from the LBC cohort (Additional file 1: Fig S2c, 
p < 2.2 × 10−16 Wilcoxon test) suggesting that the observed gains of DNA methylation did 
not result from altered blood composition with age. They also had significantly higher 
rates of change when the data were corrected for cell counts estimated from DNA meth-
ylation data using the Houseman algorithm (Additional file  1: Fig S2d, p < 2.2 × 10−16 
Wilcoxon test).

To understand why these CpGs might gain methylation, we examined where they were 
located in the genome. Compared to all other CpGs in the dataset, the rapid gain CpGs 
were significantly depleted from CpG islands and the regions surrounding CGIs which 
have been termed shores [40] (Fig. 2c). They were instead enriched in the bodies of cod-
ing genes (63.3% of CpGs, Fig.  2c) and large genomic regions of reduced methylation 
termed partially methylated domains (PMDs) [41] defined across 40 tumor and 9 normal 
samples (34.6% of CpGs, Fig.  2c) [16]. PMDs are known to be heterochromatic, gene 
poor and have a lower CpG density than other regions of the genome [16, 41, 42]. Con-
sistent with their enrichment in PMDs, the regions surrounding rapid gain CpGs had 
a significantly lower CpG density than other CpGs analyzed (Additional file 1: Fig S2e, 
Wilcoxon test p < 2.2 × 10−16).

To further understand the characteristics of this set of CpGs, we cross-referenced 
them to chromatin state data generated by the ENCODE and Roadmap Epigenomic pro-
jects [43, 44]. These projects have used hidden Markov models to partition the genome 
into distinct chromatin states (ChromHMM) [45]. Consistent with their observed 
enrichment in gene bodies and PMDs, the rapid gain CpGs were significantly enriched 
in ENCODE-defined transcriptional and heterochromatic chromatin states in GM12878 
lymphoblastoid cells (11.0% and 57.7% of CpGs with transcriptional and heterochroma-
tin annotations respectively, Fig. 2d)36. Similarly, they were most enriched in the hetero-
chromatin-associated quiescent state across a set of 23 primary blood cell types whose 
chromatin states were defined by the Roadmap Epigenomics project (Additional file 1: 
Fig S2f )37. Transcriptional states were also enriched in these primary blood cells but to a 
lesser degree (Additional file 1: Fig S2f ).
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Our analyses therefore suggest that changes in methylation in the LBC cohort are 
most apparent at a subset of CpGs, largely located in heterochromatic, low CpG density 
regions.

Local SNPs associate with altered CpG methylation trajectories

Having uncovered a set of CpGs which rapidly gained methylation with age, we then 
asked what factors led to differences in the trajectories of DNA methylation alterations 
between CpGs. Previous reports suggest a potential influence of genetic variation on 

A

C

B

D

68 70 72 74 76 78 80
age (years)

m
C

 (
be

ta
)

0

0.2

0.4

0.6

0.8

1.0

rapid gain CpG cg22926528

chromatin states
at rapid gain CpGs

%
 fo

ld
 c

ha
ng

e

1

0

2

promoter enhancer transcribed repressed

ac
tiv

e

w
ea

k

po
is

ed

st
ro

ng

w
ea

k

in
su

la
to

r

tr
an

si
tio

n

el
on

ga
tio

n

w
ea

k

po
ly

co
m

b

he
te

ro
ch

ro
m

at
in

p<2.2x10-16

p<2.2x10-16

p<2.2x10-16

T
S

S

C
G

I

C
G

I-
sh

or
e

ge
ne

-b
od

y

in
te

rg
en

ic

H
M

D

P
M

D
genome annotations
at rapid gain CpGs

p<2.2x10-16

p<2.2x10-16

p<2.2x10-16

%
 fo

ld
 c

ha
ng

e

1

0

0.5

1.5

re
la

tiv
e 

fr
eq

ue
nc

y 
(x

10
-3

)

-0.0125 0 0.0125 0.025
mean mC rate of change (beta/year)

rate of change at
significantly changing CpGs

0

2

4

6

8

p<2.2x10-16

p<2.2x10-16

p<2.2x10-16

p=4.5x10-10

Fig. 2  A subset of CpGs gain methylation in later life. a A subset of CpGs gain methylation in LBC. Histogram 
of the mean methylation trajectories for the 182,760 CpGs whose slope significantly deviates from 0 (T-test, 
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age-associated DNA methylation changes [28, 29] so we tested for associations between 
local (cis; within 1 Mb) SNPs and the rate of change of DNA methylation at individual 
CpGs with age across the cohort.

Our analysis uncovered 4673 slope-Quantitative Trait Loci (slope-QTLs) represent-
ing 1456 unique CpGs (examples in Fig.  3a). The linkage disequilibrium structure of 
the human genome means that linked SNPs would be expected to be associated with 
the same CpG. In order to determine the number of independent associations, we used 
conditional analysis to resolve these slope-QTLs into 1487 SNP-CpG pairs designating 
the closest independent SNP in each case as the lead SNP (Additional file 2: Table S2). 
Only 31 CpGs were independently associated with more than 1 SNP. Each lead SNP was 
significantly associated with the rate of change of methylation at a mean of 1.06 CpGs 
(range 1 to 16, Additional file 2: Table S2). We validated these associations using another 
method by testing for an age × genotype interaction effect in a standard linear model. 
Nearly all of these SNP-CpG pairs (1334, 90.3%) had a significant interaction (Bonfer-
roni-corrected, p < 0.05) and the effect size determined from the slope of the individual 
linear models, and the effect size of the age × genotype interaction within the population 
were significantly correlated (Spearman Rho = 0.977, p < 2.2 × 10−16, Additional file 1: Fig 
S3a). All slope-QTL CpG-SNP pairs were also significant when re-analyzed using beta 
values that had been corrected for variation in the proportions of different blood cell 
types both when directly counted or estimated from DNA methylation data using the 
Houseman algorithm (Additional file 2: Table S2). We found that 93 (6.66%) of the slope-
QTL SNPs were present in the NHGRI-EBI GWAS catalog (Additional file 2: Table S4) 
[46]. The most frequent annotation was for SNPs associated with “Hip circumference 
adjusted for BMI” (8 SNPs). In addition, 20 of the SNPs were annotated as being previ-
ously associated with blood cell traits such as “platelet count” and “eosinophil counts” 
(for full list see “Materials and methods”).

We also tested for trans-slope-QTLs independent of SNP-CpG genomic distance. This 
analysis uncovered 9 significant SNP-CpG pairs (Additional file  2: Table  S5). The low 
number was likely due to the multiple testing burden associated with testing every SNP 
against every CpG. Given the low number of observed trans-slope-QTLs, we focused on 
the analysis of cis-slope-QTLs.

Although we had set a threshold of 1  Mb when uncovering cis-slope-QTL, the lead 
SNPs were located close to the slope-QTL CpGs (Fig. 3b). At 53% of the slope-QTLs, 
the lead SNP and CpG were within 1 kb of each other. Whereas most SNPs (1346/1397, 
96.3%) were only associated with a single CpG at the genome-wide Benjamini-Hoch-
berg-corrected significance FDR < 0.05, we observed that other CpGs close to those in 

(See figure on next page.)
Fig. 3  Local SNPs associate with altered CpG methylation trajectories. a Examples of slope-QTLs. Spaghetti 
plots and boxplots of 3 slope-QTL CpG-SNP pairs. Left, spaghetti plots of individual methylation trajectories 
separated by genotype. Thin lines represent individual methylation trajectories and thick lines the mean 
methylation trajectory for that genotype. Right, boxplots of slope separated by genotype. Lines = median; 
Box = 25th–75th percentile; whiskers = 1.5 × interquartile range from box. SNP genotypes are annotated 
relative to the forward strand. b Slope-QTL SNPs are located in close proximity to the CpGs they affect. 
Histogram of the distances between slope-QTL lead SNPs and the CpGs they are paired with. c Nearby 
CpGs are also affected by slope-QTL SNPs. Line plot of the effect sizes calculated for CpGs within − / + 1 Kb 
of slope-QTL CpGs using each slope-QTL’s lead SNPs. Plotted is the mean normalized effect size in 50 bp 
Windows. Bold lines show the mean effect size and dashed lines and shaded area show the 95% confidence 
intervals. The data are shown in red and the results of 1000 random permutations shown in black
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slope-QTLs showed correlated effects that were below the multiple testing-corrected 
significance threshold (Fig. 3c). This strongly suggests that these slope-QTLs are driven 
by specific effects of genotype on methylation change with age within local genomic 
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regions. It also makes it unlikely that slope-QTLs are caused by the disruption of a single 
CpG probe by a SNP linked to the lead SNP as the rate of change at multiple CpGs was 
associated with the lead SNP in many cases.

Overall, our analyses suggest that local SNPs can affect the rate at which DNA meth-
ylation changes with age at CpGs located in their vicinity.

Slope‑QTLs are located in CpG‑poor regions of the genome

To understand the mechanistic basis of slope-QTLs, we analyzed their genomic loca-
tions. CpGs that were part of slope-QTLs were significantly depleted from CpG islands 
and their shores but significantly enriched in intergenic regions and PMDs (35.4% and 
27.6% of CpGs respectively, Fig.  4a). Consistent with this, slope-QTL CpGs were also 
significantly enriched in chromatin states associated with enhancers and heterochroma-
tin in GM12878 lymphoblastoid cells (12.3% and 39.1% of CpGs respectively, Fig. 4b). 
Significant enrichments in enhancer and quiescent heterochromatin states were also 
seen in 95.7% and 100% of the 23 primary blood cell types analyzed in the Roadmap Epi-
genomics project (p < 0.05, Additional file 1: Fig S4a).

Fig. 4  Local CpG density affects age-associated DNA methylation trajectories. a Slope-QTL CpGs are 
enriched in intergenic regions. Barplot showing the % fold change observed for slope-QTL CpGs in different 
genome annotations versus the background of all analyzed CpGs. P-values are from 2-sided Fisher’s exact 
tests. b Slope-QTL CpGs are enriched in enhancer and heterochromatin states in GM12878 cells. Barplot 
showing the % fold change observed for slope-QTL CpGs in different chromatin states in GM12878 cells 
versus the background of all analyzed CpGs. Shown are significant P-values from 1-sided Fisher’s exact tests. 
c Slope-QTL CpGs are found in regions of low CpG density. Line plot showing the mean CpG density around 
slope-QTL CpGs in different window sizes. Red shows slope-QTL CpGs and black shows all other CpGs 
assayed. d Slope-QTL SNPs are found close to CpG sites. Histogram of the distances between slope-QTL 
SNPs and their nearest CpG site. Red shows the distribution for slope-QTL SNPs and gray shows all other 
SNPs assayed. e CpG density is a major determinant of variation in methylation trajectories with age. Boxplot 
showing mean methylation trajectories plotted against CpG density ± 300 bp from the CpG. The Spearman 
correlation, Rho, and p-value, T-test, for the association are given. For plotting, CpG density is binned into 
equally sized groups. Lines = median; Box = 25th–75th percentile; whiskers = 1.5 × interquartile range from 
box
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Cis-meth-QTLs have previously been shown to be enriched at enhancers and asso-
ciated with SNPs altering local transcription factor (TF) binding sites [24, 25]. We 
therefore asked whether this might also be the case for slope-QTLs. We compared the 
locations of slope-QTL CpGs to binding sites defined for 111 TFs in GM12878 cells [43]. 
Only a single TF, NFE2, was significantly enriched at slope-QTL CpGs and this was only 
observed at 6 loci (Additional file 2: Table S6). The vast majority of TF binding sites ana-
lyzed were instead significantly depleted from slope-QTLs (90, 84.91%, Additional file 2: 
Table S6). We similarly analyzed the lead SNPs associated with slope-QTLs to ask if they 
overlapped TF binding sites in GM12878. In this analysis, the binding sites for 14 TFs 
were significantly enriched at the SNPs (Additional file 2: Table S7). However, even the 
most significantly enriched, CTCF, was only observed at 4.44% of the slope-QTL SNPs. 
Overall, this suggests that unlike cis-meth-QTLs, the majority of cis-slope-QTLs are not 
associated with TF binding sites.

Previous work has highlighted local CpG density and the sequence surrounding inter-
genic CpGs as being associated with their methylation levels [16, 47]. Given the enrich-
ments, we observed in intergenic annotations for slope-QTL CpGs and the observation 
that rapid gain CpGs have a low surrounding CpG density, we wondered if slope-QTLs 
might also be located in regions of low CpG density. Slope-QTL CpGs were located in 
regions with a significantly lower local genome CpG density than other CpGs assayed on 
the Infinium array (Fig. 4c). The difference persisted across different window sizes sur-
rounding the slope-QTL CpG although the effect was strongest around ± 325 bp (Fig. 4c, 
Additional file 1: Fig S4b). We then asked whether the SNPs associated with alterations 
in methylation trajectories at slope-QTLs might affect the local sequence composition 
around CpGs. To do so, we measured the distance between the slope-QTL lead SNP and 
its nearest genomic CpG (irrespective of whether it is the Infinium array assayed slope-
QTL CpG). Despite being located in CpG-poor regions, slope-QTL lead SNPs were also 
found significantly closer to their closest CpG than non-slope-QTL SNPs in our analysis 
(T-test, p = 5.4 × 10−12) and 11.4% directly affected a CpG site or the bases adjacent to 
one (159 out 1397).

This suggests that slope-QTLs are found within low CpG density regions and SNPs 
associated with them frequently alter the regions CpG density or the bases neighboring 
CpGs.

Local CpG density affects age‑associated DNA methylation trajectories

These results suggest that alterations in the local sequence context around CpGs affect 
their methylation trajectory, particularly in regions of low CpG density. To understand 
the relationship between methylation trajectories and CpG density more generally, we 
analyzed how methylation trajectories varied with local CpG density genome-wide. We 
observed that the magnitude of change at CpGs with age was significantly negatively 
correlated with their local CpG density (Rho =  − 0.214, p < 2.2 × 10−16, T-test, Fig. 4e). 
CpGs with a lower surrounding CpG density were more likely to have altered meth-
ylation levels than those in higher CpG density regions, and this was skewed towards 
gains of methylation. The relationship between mean methylation trajectories and CpG 
density was also observed when we corrected for measured and Houseman estimated 
white blood cell counts from the LBC cohort (Rho =  − 0.218 and − 0.237 respectively, 
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both p < 2.2 × 10−16  T-tests, Additional file  1: Fig S4c, d respectively) demonstrating 
that the relationship between CpG density and age-associated methylation changes 
did not result from altered blood composition with age. The strength of the association 
was also similar when we removed CpG probes located in CpG islands (Rho =  − 0.213, 
p < 2.2 × 10−16, T-test, Additional file 1: Fig S4e), suggesting it was driven by CpGs lying 
outside of CpG islands.

While the mean trajectories of CpGs located in low CpG density regions had a median 
gain of methylation with age, mean trajectories were also far more variable in low CpG 
density regions (Fig. 4e). The squared residuals of the model fitted between mean slope 
and CpG density were significantly negatively correlated with CpG density (Spearman’s 
Rho =  − 0.561, p < 2.2 × 10−16), and a Breusch-Pagan test for heteroscedasticity was 
highly significant (p < 2.2 × 10−16). This confirms that mean methylation trajectories 
were significantly more variable for low CpG density regions than for high CpG density 
regions. We wondered whether this variability might also occur between individuals. To 
test this hypothesis, we calculated the variance in slope across individuals for each CpG. 
This slope variance displayed a parabolic relationship with the mean level of methyla-
tion at CpGs across the timepoints (Additional file 1: Fig S4f ). After accounting for this 
relationship (see “Materials and methods”), we validated whether predicted differences 
in slope variance between CpGs could be observed. Given their utility in measuring age, 
CpGs which are part of the Hannum and Horvath epigenetic clocks would be expected 
to have consistent methylation trajectories and thus low inter-individual variance in 
slope. We found that this was the case and the slope variance of clock CpGs was signifi-
cantly lower than other CpGs (Additional file 1: Fig S4g, Wilcoxon test, p = 8.72 × 10−6). 
Analyzing CpG slope variance between individuals more globally, we found a significant 
association between slope variance and local CpG density with CpGs in lower density 
regions having a greater slope variance (Additional file  1: Fig S4h, p < 2.2 × 10−16 by 
T-test).

Our genome-wide analyses therefore suggest that local CpG density affects a CpG 
methylation trajectory with age and in particular that methylation trajectories in low 
CpG density regions are more variable than those of high CpG density regions.

Many age‑associated changes in DNA methylation are specific to older individuals

We next sought to determine whether the effect of CpG density of age-associated DNA 
methylation changes was observed in individuals across a wider range of ages. We 
therefore examined DNA methylation patterns in 5101 individuals from the Genera-
tion Scotland cohort whose blood methylation patterns had been profiled on Illumina 
EPIC arrays. We first fitted linear models of beta value against age to 758,255 CpGs for 
the 406 individuals aged > 65 years to match the age range present in LBC. The p-values 
associated with the linear models of the 182,536 CpGs significantly changing in LBC 
and present on the EPIC array were significantly lower than those for the other CpGs 
analyzed in the LBC cohort (one-sided Wilcoxon p < 2.2 × 10−16, Additional file  1: Fig 
S5a). In addition, there was a significant correlation between the estimated slopes of 
the LBC significantly changing CpGs in the Generation Scotland individuals aged > 65 
(Rho = 0.651, p < 2.2 × 10−16). However, the p-values of LBC significantly changing CpGs 
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were not significantly shifted and an inverse correlation in slopes was observed when 
we analyzed the 4695 individuals whose age was ≤ 65 in Generation Scotland (one-sided 
Wilcoxon p = 1.00, Rho =  − 254, Additional file  1: Fig S5b). This suggests that similar 
age-associated changes in DNA methylation were observed in LBC and older individuals 
from the Generation Scotland cohort, but that these were distinct from DNA methyla-
tion changes in younger individuals.

We then asked whether an association between age-associated DNA methylation 
changes and CpG density was also observed in Generation Scotland. By considering 
all 593,850 non-CpG island CpGs on the EPIC array, we observed a weak correlation 
between CpG density and the estimated rate of change of DNA methylation in the mem-
bers of Generation Scotland aged > 65 (Rho =  − 0.050, p < 2.2 × 10−16, T-test, Fig.  5a). 
However, we observed greater variation in estimated rates of change at CpGs with lower 
surrounding CpG densities (Fig. 5a). Consistent with this, there was a significant nega-
tive correlation between the squared residuals of a linear model fitted to the estimated 
rate of change of DNA methylation with age and local CpG density (Rho =  − 0.228, 
p < 2.2 × 10−16) and a Breusch-Pagan test for heteroscedasticity was highly significant 
(p < 2.2 × 10−16). The summed absolute residuals for the models fitted to each CpG 
against age for individuals > 65 were also significantly negatively correlated with CpG 
density (Rho =  − 0.219, p < 2.2 × 10−16, Additional file 1: Fig S5c) with higher residuals 
observed for CpGs found in low CpG density parts of the genome. This suggests that 
in Generation Scotland members aged > 65, DNA methylation changes with age were 
significantly more variable at CpGs in low CpG density parts of the genome than in 
high CpG density regions. In contrast, we observed a stronger correlation between the 

Fig. 5  Many age-associated changes in DNA methylation are specific to older individuals. a CpG density 
associates with variation in age-associated methylation changes in a second independent cohort. Boxplot 
showing estimated rates of change in DNA methylation from the 406 individuals aged > 65 in Generation 
Scotland cohort set 1 plotted against CpG density ± 300 bp from the CpG. The Spearman correlation, Rho, 
and p-value, T-test, for the association are given. For plotting, CpG density is binned into equally sized 
groups. Lines = median; Box = 25th–75th percentile; whiskers = 1.5 × interquartile range from box. b CpG 
density associates with changes in DNA methylation in younger individuals. Boxplot showing estimated 
rates of change in DNA methylation from the 4695 individuals aged ≤ 65 in Generation Scotland cohort set 
1 plotted against CpG density ± 300 bp from the CpG. The Spearman correlation, Rho, and p-value, T-test, 
for the association are given. For plotting, CpG density is binned into equally sized groups. Lines = median; 
Box = 25th–75th percentile; whiskers = 1.5 × interquartile range from box
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estimated rate of change in DNA methylation and CpG density in individuals aged ≤ 65 
with low CpG density regions more likely to lose methylation with age (Rho = 0.279, 
p-value = 2.2 × 10−16, T-test, Fig.  5b). Here we also observed significant heteroscedas-
ticity in the residuals (p < 2.2 × 10−16, Breusch-Pagan test) and the summed absolute 
residuals of the linear models fitted for individual CpGs negatively correlated with CpG 
density (Rho =  − 0.236, p < 2.2 × 10−16, T-test) suggesting the existence of variability in 
low CpG density regions.

We then asked whether these associations were reproduced in an independent group 
of 4450 individuals from Generation Scotland (Generation Scotland set 2) who had also 
been profiled on Illumina EPIC arrays. Estimated rates of change weakly correlated with 
CpG density in the 519 individuals > 65 from this 2nd set (Rho = 0.086, p < 2.2 × 10−16, 
Additional file 1: Fig S5d). However, like in Generation Scotland set 1, highly significant 
heteroscedasticity in the squared residuals was observed (p < 2.2 × 10−16, Breusch-Pagan 
test) and the summed absolute residuals of the linear models fitted to individual CpGs 
were significantly negatively correlated with CpG density (Rho =  − 0.150, p < 2.2 × 10−16, 
Additional file 1: Fig S5e). In the 3931 individuals of Generation Scotland set 2 aged ≤ 65, 
we observed that CpGs in low CpG density regions were significantly more likely to lose 
DNA methylation (Rho = 0.173, p < 2.2 × 10−16, Additional file 1: Fig S5f ) and that there 
was a significant negative correlation between summed absolute residuals for the linear 
models fitted to CpGs and CpG density (Rho =  − 0.163, p-value = 2.2 × 10−16) replicat-
ing observations made in Generation Scotland set 1.

Taken together, our analyses of Generation Scotland suggest that the CpGs in lower 
CpG density regions have more variable changes in DNA methylation with age in older 
individuals and in addition are more likely to lose methylation with age in younger 
individuals.

Discussion
While alterations in DNA methylation patterns with age have been widely observed in 
humans and are associated with health, the molecular mechanisms underpinning them 
remain unclear. Here we use human longitudinal DNA methylation profiles to demon-
strate a strong effect of local CpG density on how DNA methylation changes with age 
(Fig. 6a) and that this can be altered by polymorphisms around CpGs (Fig. 6b).

Previous work has described genetic influences on how DNA methylation patterns 
change with age. Genome-wide association studies (GWAS) find a number of loci that 
affect aging as estimated by epigenetic clocks [48–50]. In addition, analyses of rare Men-
delian traits suggest that epigenetic aging is accelerated in two growth disorders, Sotos 
syndrome and Tatton-Rahman-Brown syndrome [51, 52]. These two sets of studies ana-
lyzed overall changes in the methylome with age rather than factors influencing the rate 
of change at individual loci. Further population analyses have also demonstrated the 
potential for genetic effects on how methylation changes with age at individual loci [28, 
29] but did not define the mechanisms that underpin these associations. In contrast, an 
experiment analyzing DNA methylation in mice possessing a copy of human chromo-
some 21 found that the introduced human loci changed their methylation status at a 
rate consistent with the mouse rather than human genome [30]. Based on these observa-
tions, the authors suggested that local sequence has little effect in determining the rate 
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of change in DNA methylation with age. They suggested that this is instead primarily 
determined by the cellular environment. Here, we demonstrate that local DNA sequence 
does play a role in age-associated methylation changes by showing that local SNPs can 
alter methylation trajectories and that local CpG density affects how DNA methylation 
changes with age at individual CpGs in humans in vivo.

Our analyses in three groups of individuals show that lower CpG density regions dis-
play more variation in their trajectories with age than regions of high CpG density. Pre-
vious work has reported an overall increase in the disorder of DNA methylation patterns 
with age [23]. An analysis of entropy in Whole Genome Bisulfite Sequencing (WGBS) 
from a small number of samples also suggested that disorder increases with age at the 
single molecule level [53]. Specific loci which become more variable with age have also 
been defined in cross-sectional [23] and longitudinal [54] cohorts. These studies did not 
specifically examine CpG density of the loci reported. However, a longitudinal study of 
twins from birth to 18 months old reports that loci which vary between twins are located 
outside of CpG islands [55].

CpG density is known to be a determinant of steady-state DNA methylation patterns 
in cells. The most highly CpG dense portions of the genome are CpG islands which 

Fig. 6  Local CpG density affects the trajectory of age-associated epigenetic changes. We propose that 
collaborative interactions between CpGs reinforce maintenance of methylation patterns in CpG dense 
regions (a). These interactions are weaker in CpG-poor regions leading to the degradation of methylation 
patterns with time and emergence of variation. These interactions can also be altered by SNPs leading to 
differences in epigenetic trajectories between individuals who inherit different alleles (b)
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are typically DNA methylation free [56]. Variation in CpG density alone can also pre-
dict the methylation levels of bacterial DNA fragments integrated into the genome of 
mouse embryonic stem cells [57]. Analysis of WGBS from human cell lines also revealed 
a strong relationship between CpG density and DNA methylation in heterochromatic 
PMDs independently of CpG islands [47]. These are typically gene and CpG poor com-
pared to euchromatic portions of the genome [41]. They display disordered, variable 
patterns of methylation where at individual CpGs within PMDs, methylation levels are 
positively correlated with the surrounding CpG density [47]. PMDs overlap with the HiC 
defined nuclear heterochromatic B-compartment [42, 58]. These genomic regions have 
more disordered methylation patterns when quantified from single WGBS reads [53]. 
Analysis of diverse methylomes by WGBS also suggests that PMDs lose methylation 
with age [16]. However, these observations are all derived from static snapshots of indi-
vidual samples from cell lines and tissues. Here we provide the first analysis of how CpG 
density affects DNA methylation changes with age observed longitudinally in humans in 
vivo.

Interactions and collaborative reinforcement of DNA methylation between adjacent 
CpG sites has been proposed as being vital to maintain DNA methylation patterns by 
mathematical modelling [59]. Detailed analysis of methylation dynamics in mES cells 
possessing a sole DNMT, DNMT1, also finds evidence of neighbor-guided error cor-
rection as being important in maintaining DNA methylation patterns [60]. These col-
laborative interactions between CpGs are likely to be strongly influenced by the distance 
between CpGs. Thus, in lower CpG density regions, the greater distance between CpGs 
could result in weaker collaboration between neighboring CpGs enabling greater degra-
dation of developmentally established methylation patterns with age and the establish-
ment of variation (Fig. 6a). These interactions are likely to be mediated by the molecular 
properties of the DNA methylation machinery. DNMT1 and DNMT3B both methylate 
processively along DNA strands whereas DNMT3A methylates in a distributive manner 
but can form multimers along the DNA fiber [61]. A computational analysis of DNA 
re-methylation dynamics suggests these processes are required to explain the observed 
rates of DNA re-methylation following replication [62]. The efficiency of DNMTs is also 
influenced by bases surrounding CpGs in vitro [63, 64] and in vivo [65]. These prefer-
ences could affect the efficiency by which some CpGs are methylated and could explain 
the effect of some of the SNPs we have uncovered that do not directly affect CpGs. As 
well as being the target of DNMTs, unmethylated and methylated CpG nucleotides are 
also bound by CXXC and Methyl-Binding Domain (MBD) respectively [66–69]. It is 
possible that these proteins also mediate the effects of CpG density on DNA methylation 
changes with age. CXXC proteins include TET1 which plays a role in demethylation as 
well as CFP1, MLL1, and MLL2 which deposit the histone modification H3K4me3 [70]. 
H3K4me3 inhibits the activity of de novo DNMTs through their ADD domains [71]. 
Thus, dense unmethylated CpGs can recruit proteins that reinforce their unmethylated 
status. It is unclear whether MBDs positively reinforce methylation patterns through 
binding to methylated CpGs; however, their binding in the genome tracks CpG density 
[72].

Genetic effects on steady-state DNA methylation levels have been widely documented 
in human populations as allele-specific methylation and meth-QTLs [24]. These are 
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hypothesized to reflect the alteration of TF binding by sequence polymorphisms with 
downstream effects on DNA methylation particularly at enhancers. TFs have been 
strongly implicated in programming DNA methylation in cell lines [27]. TF binding can 
be both promoted or hindered by DNA methylation [73]. However, the majority of TF 
binding sites in the genome have reduced methylation [74]. The hypothesis that changes 
in TF binding underpin meth-QTLs is also supported by a study showing that many 
trans-meth-QTLs correspond to TF genes [75] and the analysis of a subset of SNPs 
affecting TF binding motifs in lymphoblastoid cell lines [76]. We find that the major-
ity of slope-QTLs are in intergenic, heterochromatic regions with a low CpG density. 
These regions are depleted in both genes and enhancers [41] suggesting slope-QTLs may 
be explained by alternative mechanisms. However, it is likely that slope-QTLs are not 
all explained by a single mechanism. 12.3% of slope-QTL CpGs are located in regions 
marked with enhancer-associated histone modifications in blood cells and these may be 
explained by TF-dependent mechanisms. However, we did not find strong evidence that 
any particular TF was strongly associated with slope-QTLs suggesting that if this is the 
case a range of TFs are involved.

Previous work has suggested that variation in the proportions of cell types present 
in the blood may underpin many changes in DNA methylation levels with age [22] and 
some epigenetic clocks are thought to capture similar changes [8]. However, another 
study has suggested that up to 151,537 loci tested display age-associated changes in 
DNA methylation when controlling for variation in cell type proportions [77]. Here, 
we find that between 9.77% and 64.60% of the 182,760 loci we find show age-associated 
changes in DNA methylation in LBC can be partly explained by variation in the pro-
portions of cell types depending on whether we use directly measured or estimated cell 
counts. However, the proportion of variation explained by cell type variation at these 
CpGs is modest in both cases. While the majority of studies estimate cell type propor-
tions from DNA methylation data, directly measured cell counts have the advantage of 
not been confounded by changes in cell-type-specific DNA methylation patterns with 
age (e.g. as recently described in monocytes) [78]. Furthermore, we observe that the 
effects of slope-QTLs and the association with CpG density we observe are not affected 
by correction for either directly measured or estimated blood cell counts.

In the current work, we have modelled methylation trajectories linearly. Previous stud-
ies of cultured fibroblasts [79] and cross-sectional human cohorts [80] suggest non-lin-
ear dynamics at some CpGs. Given the number of observations available per individual 
in the LBC cohort, non-linear trajectories cannot be fitted sufficiently robustly. By com-
parison to Generation Scotland, we find that the changes in methylation we observe in 
LBC are replicated in individuals aged over 65 but not in younger members of Genera-
tion Scotland. In younger individuals, we observe that low CpG density regions show an 
overall loss of DNA methylation but in older individuals low CpG density regions instead 
show variable trajectories between individuals. These observations are consistent with a 
non-linear trajectory for low CpG density regions over the life course. Previous work has 
shown an overall loss of DNA methylation with age [5]. This is particularly prominent 
at low CpG density intergenic regions [16] consistent with our observations in people 
under 65. The nature of the specific changes in DNA methylation that occur with age in 
older people remains understudied. One previous study of epigenetic clocks found that 
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their rate of change slows down in later life [81]. Taken together this suggests that the 
nature of DNA methylation changes at different regions varies non-linearly and changes 
at different points in the life course including in later life. The reasons for the difference 
in the behavior of low CpG density regions in older individuals remain unclear and war-
rant further investigation.

In addition to cis-slope-QTLs, we also find evidence for the existence of trans-slope-
QTLs. Previous work has documented large numbers of trans-meth-QTLs [82] which 
have been ascribed to alterations in the expression of TFs or DNA methylation regula-
tory factors [75, 83]. It is likely that more trans-slope-QTLs exist. However, due to the 
large multiple testing burden incurred by searching every CpG against every possible 
SNP, it was not possible to detect large numbers of them in the current study. Future 
investigation of trans-slope-QTLs will require larger studies with a higher statistical 
power in combination with approaches which reduce the multiple testing burden by tak-
ing account of the lack of independence between SNPs [84].

Conclusions
Taken together, our study suggests that DNA sequence, and CpG density in particular, 
has a major influence on the local tick rate of age-associated DNA methylation changes 
and how this varies between individuals. We ascribe this effect to interactions between 
neighboring CpGs reinforcing maintenance of methylation patterns through the action 
of the DNA methylation machinery.

Materials and methods
Statistical analysis

Statistical testing was performed using R v4.0.2 unless otherwise stated. All tests were 
two-sided, unless otherwise stated. All linear models were fitted using the lm command 
from the base R package unless otherwise stated. Breusch-Pagan tests were conducted 
using the bptest function from the R package lmtest (v4.02). Further details of specific 
analyses provided in the relevant methods sections below.

Cohort details

The Lothian Birth Cohort 1936 [31–33] is derived from a set of individuals born in 
1936 who had mostly taken part in the Scottish Mental Survey 1947 at a mean age of 
11  years as part of national testing of almost all children born in 1936 who attended 
Scottish schools on 4 June 1947. A total of 1091 participants who were living in the 
Lothian area of Scotland were re-contacted in later life. DNA methylation was measured 
for this cohort around 70 years of age and subsequently at a mean of 73, 76, and 79 years 
on Illumina 450 k arrays. In total, this corresponds to 2852 samples from 1056 unique 
individuals. In this study, we focused on the 600 individuals for whom ≥ 3 methylation 
measurements existed (283 females and 317 males). A breakdown of the sample demo-
graphics can be found in Table 1.

The Generation Scotland dataset was derived from a subset of individuals in the 
Generation Scotland or Scottish Family Health Study cohort. Generation Scotland 
is a family-based population cohort investigating the genetics of health and disease in 
approximately 24,000 individuals across Scotland [37, 85]. Baseline data were collected 
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between 2006 and 2011. Two sets of individuals are analyzed here. These two sets con-
tain 5101 and 4450 individuals respectively for whom Illumina EPIC array data had been 
collected from blood at baseline contact [37]. The age ranges of participants in the two 
sets were 18–95 and 18–93 respectively.

All participants provided written informed consent. Ethical permission for the Lothian 
Birth Cohort 1936 study protocol was obtained from the Multi-Centre Research Eth-
ics Committee for Scotland (Wave 1: MREC/01/0/56), the Lothian Research Ethics 
Committee (Wave 1: LREC/2003/2/29), and the Scotland A Research Ethics Commit-
tee (Waves 2–4: 07/MRE00/58). All components of Generation Scotland received ethical 
approval from the NHS Tayside Committee on Medical Research Ethics (REC Reference 
Number: 05/S1401/89). GS has also been granted Research Tissue Bank status by the 
East of Scotland Research Ethics Service (REC Reference Number: 20/ES/0021), provid-
ing generic ethical approval for a wide range of uses within medical research.

Processing of Illumina Infinium array data

Infinium arrays from both the LBC and Generation Scotland cohorts were processed 
from IDAT files. These were normalized using the ssNoob method from the Bioconduc-
tor package minfi (v1.22.1) to derive beta values and detection p-values (beta thresh-
old = 0.001) [86, 87]. Individual beta values were excluded where detection p-value 
was > 0.01. Infinium probe locations in the hg38 genome build were taken from Zhou 
et  al. [34]. Probes categorized as overlapping common SNPs or having ambiguous 
genome mapping in that paper were excluded from the analysis (MASK.snp5.common, 
MASK.mapping, MASK.sub30.copy from Zhou et al.) [34]. Non-CG probes and probes 
not located on autosomes were also excluded from the analysis.

Processing of SNP data

DNA samples from the Lothian Birth Cohort 1936 were genotyped at the Wellcome 
Trust Clinical Research Facility using the Illumina 610-Quadv1 array (San Diego) [88]. 
Individuals were excluded based on relatedness (n = 8), unresolved sex discrepancy 
(n = 12), low call rate (≤ 0.95 n = 16), and evidence of non-European descent (n = 1). 
SNPs were included if they had a call rate ≥ 0.98, a minor allele frequency ≥ 0.01, and a 
Hardy–Weinberg equilibrium test with p ≥ 0.001.

Modelling of DNA methylation trajectories

DNA methylation trajectories for each CpG in each individual were modelled by fitting 
linear models of beta value with age for each CpG and individual using R:

where betaij is the beta value of CpG j for individual i , agei is the age of individual i , αij 
is the age effect for CpG j in individual i , and γi is the intercept for CpG j in individual 
i . This was only done for individuals and CpGs for which ≥ 3 datapoints were present in 
the processed dataset. Slopes for each individual and CpG were taken from the linear 

(1)betaij = αijagei + γij
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models ( αij ). Mean slopes were calculated as the mean of αij across all N  individuals for 
CpG j:

CpGs were considered to have a rate of change significantly different from 0 if the 
distribution of slopes for all individuals had a Bonferroni-corrected p-value < 0.01 by 
T-test. We defined rapid gain CpGs as those with significant slopes where the mean 
change in Beta per year was greater than the local minimum on a histogram of all 
CpGs with a significant slope (bin size = 0.0005 and threshold > 0.0159, both in beta/
year).

When modelling methylation trajectories in the Generation Scotland dataset, linear 
models of beta with age were calculated across all individuals present in the analysis 
and slope coefficients and residuals extracted. To compare individuals of a similar age to 
those in LBC we used only the 406 or 519 individuals aged > 65 years from Generation 
Scotland set 1 and 2 where indicated.

To correct for variation in blood cell populations, we used white blood cell counts 
(neutrophils, lymphocytes, monocytes, eosinophils, and basophils) for each sample 
collected on a Sysmex HST system under standard operating procedures within the 
National Health Service Haemotology laboratory, Western General Hospital, Edinburgh. 
We then used these to derive residualised beta values corrected for variation in these 
blood cell populations by fitting a linear model:

where: nc = neutrophil count, lc = lymphocyte count, mc = monocyte count, ec = eosino-
phil count, and bc = basophil count. The residuals of this model were then used as cor-
rected beta values and methylation trajectories were then modelled from them as above.

Blood cell type counts were also estimated for the LBC samples from DNA methylation 
levels using the Houseman approach [39] as previously described [89]. This approach 
resulted in estimated counts for granulocytes, B-cells, CD4 T-cells, CD8 T-cells, natural 
killer cells, and monocytes. Beta values were then corrected for these counts by deriving 
residualised beta values in a manner similar to that used for the directly measured cell 
counts.

The variability in methylation trajectories at each CpG was investigated by calculating 
the variance of all individual linear model slope coefficients for that CpG. As the vari-
ance was strongly related to the mean beta value of each CpG (Additional file 1: Fig S4f ), 
we normalized variance of CpGs by calculating the median of 20 equal bins based upon 
the mean beta and then subtracting the calculated median from all the CpGs in that bin. 
These residualised variances were then analyzed.

(2)µj =
1

N

N

i=1

αij

(3)beta ∼ nC + lC +mC + eC + bC
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Mixed effect models of DNA methylation trajectories

The lme4 package (v1.1–28) in R (v4.1.2) was used to model the beta value as a linear 
mixed effects model with random intercepts, where age was incorporated as a fixed 
effect and samples were group based on the individual, leading to the equation:

where betaij is the beta value of CpG j for individual i , agei is the age of individual i , αj is 
the age effect for CpG j , γi is the random intercept for individual i , and εij is the random 
error associated with CpG j for individual i . Data corresponding to the 600 individu-
als from the Lothian Birth Cohort for whom three or more methylation measurements 
existed was used for this model. Of the 345,895 reliably measured autosomal CpGs for 
which analysis was attempted, 345,890 had sufficient data to fit a mixed model.

Analysis of variation in cell type proportions on age‑associated DNA methylation changes

Analysis was conducted using the lm base package in R (v4.1.2) to investigate the 
extent to which the change in beta value with age can be explained by changes in the 
proportion of cell types with age. The rate of change with age in each cell-type pro-
portion was estimated for the 587 individuals for whom at least three methylation and 
at least three direct cell-type count measurements (for five different cell types) were 
available. For each individual and time point, the cell counts were used to calculate 
the proportion of each cell type contained in the sample. The proportion of each cell 
type was fit as a linear model of age:

where pij is the proportion of cell type j for individual i , �pij is the rate of change of 
cell type j for individual i , agei is the age of individual i , and εij is the intercept associ-
ated with cell type j for individual i.

For each of the 182,760 CpGs that show significant change in methylation with age, 
the rate of change in beta was fit as a linear model of the rates of change associated 
with the different cell types:

where �βik is the rate of change of CpG k for individual i , cjk is the effect of the rate of 
change in cell type j for CpG k , and ǫk is the intercept associated with CpG k . Only four 
of the five cell types were included in this model since the proportions of all cell types 
sum to one. Since the proportion of lymphocytes was highly correlated with the propor-
tion of neutrophils, lymphocytes were chosen to be removed from the analysis. Variance 
inflation factors indicated that the remaining variables were not highly correlated with 
each other. For each CpG, the p-value (Bonferroni-corrected, p < 0.01) and R2 value were 
extracted from the model to evaluate the ability to explain changes in methylation by the 
changes in cell types.

(4)betaij = αjagei + γi + εij

(5)pij = �pij ∗ agei + εij ,

(6)�βik =

4∑

j=1

cjk�pij + ǫk ,
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The analysis above was then repeated, with the cell-type proportions derived from 
measured cell counts being replaced by cell-type proportions estimated by the House-
man algorithm.

Analysis of epigenetic clocks

Horvath epigenetic clock CpGs were taken from Horvath 2013 Supplementary 
Table  3 [6]. This table contains details of the age relationship these CpGs displayed 
in the original derivation of this clock [6]. We defined Horvath clock increasing and 
decreasing CpGs from these coefficients. Hannnum epigenetic clock CpGs were taken 
from Hannum et al. Supplementary Table 3 [7]. As this did not include details of the 
rate of change at each clock CpG over time, we determined increasing and decreas-
ing CpGs using the Generation Scotland set 1 cross-sectional dataset by fitting linear 
models to each as described above.

Analysis of CpG annotation

CpGs were annotated to CGIs based on Illingworth et  al. [90]. Overlapping CGI 
intervals were merged using BEDtools (v2.27.1) [91] before they were converted to 
hg38 positions using the UCSC browser liftover tool. CpGs were then overlapped 
with CGIs using BEDtools. CGI shores were defined as the 2 kb on either side of each 
CGI using BEDtools and similarly overlapped with CpGs. CpGs were annotated rela-
tive to genes using BEDTools to overlap them with ENSEMBL protein coding genes 
(Ensembl Release 98/GCRh38). CpGs were annotated as being located at a transcrip-
tion start site (TSS) if they overlapped a protein coding TSS and as located in a gene 
body if they overlapped a transcript but not a TSS. The remaining CpGs which did 
not overlap a TSS or transcript were annotated as intergenic. PMD and highly meth-
ylated region (HMD) definitions were taken from Zhou et al. [16] from commonPMDs 
and commonHMDs defined across 40 tumor and 9 normal samples and overlapped 
with CpGs using BEDtools.

Infinium probes were mapped to existing ChromHMM annotations [92] using the 
BEDtools intersect function (v2.27.1) [91]. Identical ChromHMM labels were merged 
for analysis. To test for enrichment of an annotation, Fisher’s exact test was per-
formed for number of rapid gain CpGs or slope-QTL CpGs against number of control 
probes. ENCODE GM12878 ChromHMM [43] annotations were downloaded as bed-
files from the UCSC genome browser. Roadmap Epigenomics ChromHMM annota-
tions for primary human cell types were downloaded as mnemonics BED files from 
the Roadmap Epigenomics site [44, 93]. The 23 primary blood cell types analyzed here 
were selected by manual examination of Roadmap Epigenomics sample annotations.

To calculate local CpG density, windows of sequence (e.g., − / + 300  bp) were 
extracted around each CpG analyzed from the hg38 genome sequence using BED-
tools (v2.23.0) and the number of CpG dyads within this window counted.
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Slope‑QTL analysis

Associations between genotype and local rates of methylation change (quantified 
as the slope coefficient for each individual linear model) were analyzed using the 
matrix-eQTL R package (v2.23) [94]. For cis-associations, we set a distance cut-off of 
1  Mb. Significant associations were those where the Benjamini-Hochberg-corrected 
p-value was < 0.05. The analysis of trans-associations was carried out similarly with 
the distance threshold removed. We removed loci where apparent differences in the 
rate of change associated with genotype were caused by effects on the variability of 
the slope because this could result from technical effects of SNPs on the hybridisation 
of Infinium probes. To do so, we tested for associations between SNPs within 1 Mb 
and the variance of methylation at each CpG (quantified as the residual sum of each 
individual linear model). CpG-SNP pairs with a significant association to variability 
were defined as those with a matrix-eQTL Benjamini-Hochberg-corrected p < 0.05.

We then performed a conditional analysis to determine how many independent 
SNP-CpG pairs were present. The SNP with the most significant p-value associated 
with each CpG was designated the lead SNP, and then all other associated SNPs were 
tested against the residuals of the linear model of the lead SNP. Other SNPs were then 
designated as independent hits if their p-value of association was < 0.05 following 
Bonferroni correction.

Age × genotype interaction modelling

A linear model (methylation ~ age × genotype) was fitted to each CpG in LBC. The 
correlation between these age × genotype effect sizes and the rate of methylation 
change ~ genotype effect size in the LBC was calculated using Pearson’s coefficient.

Overlap of slope‑QTLs with GWAS catalog

Slope-QTL SNPs were overlapped with the NHGRI-EBI GWAS catalog downloaded as 
a text file on 7 January, 2022 [46] The following traits were defined as associated with 
blood traits: basophil count, eosinophil counts, eosinophil percentage of white cells, 
erythrocyte sedimentation rate, hematocrit, IgE levels, lymphocyte counts, lymphocyte 
percentage of white cells, mean corpuscular hemoglobin, mean corpuscular volume, 
monocyte count, neutrophil percentage of white cells, neutrophil-to-lymphocyte ratio, 
platelet count, platelet distribution width, plateletcrit, white blood cell count, white 
blood cell count (monocyte).

Analysis of TF binding sites at slope‑QTLs

ENCODE-defined TF binding clusters were downloaded from the UCSC browser [95] 
and filtered for those present in GM12878 cells using the unix grep command before 
being overlapped with CpG and SNP probes using the BEDtools intersect function 
(v2.27.1) [91]. Counts of individual TF binding sites overlapping slope-QTL CpGs 
and SNPs were then compared to the background of all probes in their respective 
analyses using Fisher’s exact tests. Binding sites for the following ENCODE TFs were 
removed from the analysis because they are chromatin modulating factors rather than 
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sequence-specific TFs: POLR2A, ARID3A, RAD21, EZH2, SUZ12, HDAC6, SIN3A, 
HDAC2, BMI1, CBX3, KDM1A, ASH2L, EP300, SMC3, CBX5, CBX3, KAT2A.
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