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Abstract

Attention network theory distinguishes three independent systems, each supported

by its own distributed network: an alerting network to deploy attentional resources

in anticipation, an orienting network to direct attention to a cued location, and a con-

trol network to select relevant information at the expense of concurrently available

information. Ample behavioral and neuroimaging evidence supports the dissociation

of the three attention domains. The strong assumption that each attentional system

is realized through a separable network, however, raises the question how these net-

works relate to the intrinsic network structure of the brain. Our understanding of

brain networks has advanced majorly in the past years due to the increasing focus on

brain connectivity. The brain is intrinsically organized into several large-scale net-

works whose modular structure persists across task states. Existing proposals on

how the presumed attention networks relate to intrinsic networks rely mostly on

anecdotal and partly contradictory arguments. We addressed this issue by mapping

different attention networks at the level of cifti-grayordinates. Resulting group maps

were compared to the group-level topology of 23 intrinsic networks, which we

reconstructed from the same participants' resting state fMRI data. We found that all

attention domains recruited multiple and partly overlapping intrinsic networks and

converged in the dorsal fronto-parietal and midcingulo-insular network. While we

observed a preference of each attentional domain for its own set of intrinsic net-

works, implicated networks did not match well to those proposed in the literature.

Our results indicate a necessary refinement of the attention network theory.
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1 | INTRODUCTION

In order to react adequately and to act purposefully in a dynamic and

ever-changing environment, the brain needs to prioritize information

processing, for example, by anticipating when and where sensory

information will appear, or by selecting more relevant over less rele-

vant information. Attention refers to the cognitive function that

guides the prioritization and selection of some at the expense of other

information (Cowan, 1999; Posner & Fan, 2008). Converging evidence

from single cell recordings, electrophysiology, and neuroimaging
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suggests that ongoing neural information processing is enhanced in a

highly specific and targeted way when attention is shifted toward a

certain location in the visual field (Brefczynski & DeYoe, 1999; Heinze

et al., 1994; Kastner, Pinsk, De Weerd, Desimone, & Ungerleider,

1999; Luck, Chelazzi, Hillyard, & Desimone, 1997; Müller, Bartelt,

Donner, Villringer, & Brandt, 2003) or toward task-relevant stimulus

features (Egner & Hirsch, 2005; O'Craven, Rosen, Kwong, Treisman, &

Savoy, 1997; Rees, Frith, & Lavie, 1997). While the effects of atten-

tion become apparent in increased firing rates and BOLD activity in

sensory areas, which process the currently attended information, the

recruitment and control of attention signals is realized by neural sys-

tems that additionally include areas upstream on the cortical

processing hierarchy (Posner & Dehaene, 1994; Posner & Petersen,

1990). Attention network theory assumes three largely independent

systems that realize one out of three different types of attention: the

alerting system initiates a state of increased arousal in direct anticipa-

tion of upcoming stimuli, the orienting system shifts the attentional

focus to locations in space, and the control system selects and

amplifies relevant information when distracting or task-incompatible

information is present (Posner & Petersen, 1990). The three systems

are thought to dissociate neuroanatomically into independent “atten-
tion networks” (Posner & Rothbart, 2007). Evidence for the relative

independence of the three attention systems comes from research

with the attention network test (ANT; Fan, McCandliss, Sommer,

Raz, & Posner, 2002). The ANT is a reaction time task that combines

the flanker task (Eriksen & Eriksen, 1974) to study the attentional

selection of relevant information at the expense of irrelevant dis-

tractors with the Posner cueing task (Posner, 1980) where briefly

presented cues carry information when and where an upcoming target

stimulus will appear. Behavioral indices of the efficiency of alerting,

orienting, and control are uncorrelated (Fan et al., 2002) which is

interpreted as an indication of independent systems. Moreover,

genetic work points toward different genetic contributions and under-

lying susceptibility variants for the attention systems (Fan, Wu, Fos-

sella, & Posner, 2001; Fossella et al., 2002; Reuter, Ott, Vaitl, &

Hennig, 2007). Furthermore, neuroimaging work with the ANT has

revealed nonoverlapping activation patterns for task contrasts that

probe alerting, orienting, and attentional control (Fan, Mccandliss,

Fossella, Flombaum, & Posner, 2005), adding further evidence for dis-

sociable and presumably independent systems. More recent work,

however, has documented partially overlapping activations for the dif-

ferent attention systems (Xuan et al., 2016), which is interpreted as

the neural manifestation of interactions between the attention sys-

tems. Such interactions have also been observed at the behavioral

level (Callejas, Lupiáñez, & Tudela, 2004; Fan et al., 2009). Finally, it

has been hypothesized that the three attention systems dissociate at

the level of intrinsic connectivity networks (Petersen & Posner, 2012).

This, however, has not been addressed empirically.

Attention network theory uses the term “network” to refer to the

distributed activation foci in the ANT. As the term “network” is also

used to describe a set of intrinsic connectivity networks in the brain,

it is imperative to clarify how attention networks and intrinsic connec-

tivity networks relate to each other. Our understanding of brain

networks has advanced majorly in the past years due to the increasing

focus on brain connectivity. Several large-scale networks that delin-

eate along functional boundaries of the brain have been identified in

spontaneous intrinsic BOLD fluctuations in the task-free resting state

(Fox & Raichle, 2007; Smith et al., 2013; van den Heuvel & Hulshoff

Pol, 2010). Importantly, the intrinsic network architecture persists into

task states and matches the topology of task-evoked activations

(Cole, Bassett, Power, Braver, & Petersen, 2014; Gordon, Stollstorff, &

Vaidya, 2012; Nickerson, 2018; Smith et al., 2009). If the three atten-

tion systems were actually independent networks, we would assume

that each system activates a distinct or distinct group of intrinsic con-

nectivity network (ICN). This has also been suggested previously, for

instance, that the three attention networks segregate within an

“extended fronto-parietal network” (Xuan et al., 2016), that the

orienting network corresponds to a dorsal and a ventral fronto-

parietal network and the attention control network to a distinct

fronto-parietal and an insular-opercular network (Petersen & Posner,

2012). The fronto-parietal and insular-opercular network have also

been discussed regarding their role in alerting (Sadaghiani &

D'Esposito, 2014). Some of these previous propositions, however, rely

only on anecdotal arguments and appear in conflict with each other.

At present, it is unclear how the idea of three separable and inde-

pendent attention networks as activated by the ANT is reflected in

the overall network structure of the brain. We designed the current

study to directly probe the spatial correspondence between ICN and

the three attention networks. Since attention networks are often

equated with the activation patterns elicited by the ANT at the mea-

surement level, such comparison would also clarify the relationship

between two distinct concepts for which the term “network” is

widely used.

We first recorded resting-state fMRI data in order to delineate

ICN and second recorded task fMRI data from the same participants

with the most recent version of the ANT (the revised ANT, (Fan et al.,

2009; Xuan et al., 2016). We made use of recent developments by

the Human Connectome Project to achieve high spatial precision

through multimodal surface matching (Robinson et al., 2018) and

minimal spatial smoothing (Glasser et al., 2016). We expect to repli-

cate previous findings with the ANT: We expect behavioral indices

for the efficiency of different attention systems to be uncorrelated

and we expect significant activations at previously reported voxel

locations.

We probed the relationship between ICN and different attention

contrasts through separate spatial regression analyses (Gordon et al.,

2012). We first ask whether attention systems dissociate at the ICN

level. Since the regressions' beta weights quantify bivariate spatial

correspondence, a dissociation of the attention systems at the ICN

level would be reflected in a nonsignificant or significantly negative

correlation of the beta weights from different attention contrasts.

Furthermore, we would expect that no single ICN contributes to all

attention contrasts. We ask second, if certain ICN contribute specifi-

cally to any of the attention systems, in order to obtain evidence in

favor of any of the previous proposals how the attention networks

relate to different ICN.
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2 | METHODS

2.1 | Participants

We recruited N = 86 healthy young adults (age: M = 26.17 years,

SD = 5.41 years; n = 39 females, n = 47 males) through flyer

advertisements on campus, mailing lists, and announcement in

undergraduate psychology classes. Participants were screened

during a telephone interview to meet the following inclusion

criteria: Native-level proficiency in German, right-handedness, and

age between 18 and 35 years. We targeted an equal amount of

male and female participants. Participants were excluded when

they indicated past or present psychiatric or neurological illness,

psychotropic substance use in the past 6 months, or any contrain-

dication to MRI. Participants reported to have normal or

corrected-to-normal vision during the experiment. Informed writ-

ten consent was obtained prior to enrollment in the study. Partici-

pants were remunerated with the usual rate of 10 EUR/hr (i.e., 25

EUR for the entire study) or its equivalence in course credit, if

desired by the participant. The study protocol was in accordance

with the Declaration of Helsinki and approved by the ethics com-

mittee of the University Hospital Bonn.

2.2 | Attentional network test

We adapted the Attentional Network Test in its revised form (Xuan

et al., 2016). The ANT-R combines a spatial cueing with a flanker task

and is the standard protocol to activate different attentional systems

in the brain. We administered a total of 288 trials in four runs of 72 tri-

als each. A typical trial sequence is shown in Figure 1. The ANT-R fol-

lows a 4 � 2 design with the factors cueing condition (no cue, double

cue, valid spatial cue, and invalid spatial cue) and target (congruent

flanker, incongruent flanker). Activation maps and behavioral indices

for the attention networks were computed by contrasting different

cue and target conditions as described below (see task analysis and

behavioral analysis). Each run lasted for 420 s, leading to a total time

of around 30 min for the whole experiment.

Throughout each run a fixation cross was presented in the middle

of the screen, surrounded by a rectangle on its left and right side (the

F IGURE 1 Schematic overview over stimuli and stimulus timing in a typical trial sequence. Each trial started with a 100 ms presentation of
either no cue, a double cue, or a spatial cue. After a cue-target interval of 0, 400, or 800 ms, five arrows were flashed for 500 ms as target
stimulus. Participants indicated via button press whether the central arrow pointed to the left or to the right. Flanking arrows were either
congruent or incongruent (half of the trials each). Target offset and onset of the next cue were spaced by a jittered interval (mean interval across
trials: 4,000 ms, range: 2,000–12,000 ms). Targets appeared either at the cued position (valid spatial cues) or at uncued position (invalid spatial
cue). A total of 288 trails was presented in four runs
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rectangles subtended 4.69� of visual angle to both sides). The fixation

cross and the rectangles remained visible during the whole run. In

every trial, arrows were presented in one of the rectangles: An arrow

in the center (target) was surrounded by two arrows each on the left

and the right side (flankers). Each arrow subtended 0.58� of visual

angle and the distance between arrows was 0.06� of visual angle. The

arrows pointed either to the left or to the right and the five arrows

could either be congruent (i.e., the target arrow pointed to the same

direction as the surrounding flankers) or incongruent (i.e., the target

arrow pointed to the opposite direction as the flankers). Participants

were instructed to select as fast and accurately as possible the direc-

tion of the middle arrow by either pressing a button in the left or the

right hand. In some trials, a cue was presented before the flankers

appeared via brightening of one or both of the rectangles. As a spatial

cue, only one of the rectangles flashed, while a brightening of both

rectangles (double cue) served as a temporal cue. Spatial cues could

either be valid, that is, the arrows were presented in the rectangle that

brightened, or invalid, that is, the arrows were presented in the oppo-

site rectangle. A short interval was implemented between cue and

flanker presentation.

Each trial consisted of three phases: a cue phase (100 ms), a short

interval (0, 400 or 800 ms, equally distributed), and a target phase

(500 ms). The different conditions were spread across two blocks con-

sisting of 144 trials: Of the 144 trials, one sixth, that is, 24, were no

cue, double cue, and invalid spatial cue trials, respectively. The other

half, that is, 72 trials, consisted of valid spatial cues. Each cue type

was followed by each other cue type equally often (Fan et al., 2009).

The 24 combinations of interval between cue and target phase,

flanker type (congruent or incongruent) and target location (left or

right rectangle) were randomized for each cue condition. The interval

between offset of target and onset of the next trial was distributed

systematically between 2,000 and 12,000 ms with a mean of around

4,000 ms (for details see Fan et al., 2009). While the target was only

presented for 500 ms, participants had additional 1,200 ms to press

the button after offset of the target, leading to a total time frame of

1,700 ms to respond.

The experiment was programed with Presentation software ver-

sion 20.1 (Neurobehavioral Systems, Inc., Albany, CA) and presented

via a projector in the MR scanner. The projection screen had a resolu-

tion of 1,024 � 768px (24 � 18 cm) and the distance between screen

and participants' eyes was around 62 cm. Participants took part in a

short training block consisting of 10 trials outside of the MR scanner

to get familiar with the setup.

2.3 | Image acquisition

All MR images were acquired in a single session on a Siemens 3T Pri-

sma equipped with a 32 channel head coil at the Berlin Center for

Advanced Neuroimaging between March and December 2019. We

adopted MR sequences from the HCP-Lifespan project (Harms et al.,

2018). The following protocols were acquired in a fixed order:

(a) T1-weighted structural (Multiecho MPRAGE, voxel size 0.8 mm

isotropic, time to repeat TR = 2.4 s, time to echo TE = 22 ms, flip

angle 8�), (b) T2-weighted structural (SPACE, voxel size 0.8 mm isotro-

pic, TR = 3.2 s, TE = 563 ms, flip angle 120�), (c) BOLD rfMRI

(multiband echoplanar, 72 slices, 805 volumes, TR = 800 ms, voxel

size 2 mm isotropic, TE = 37 ms, flip angle 52�, A-P encoding direc-

tion) including two spin echo fieldmaps (A-P and P-A encoding), and

(d) tfMRI in four runs with run-specific spin echo fieldmaps and the

same pulse sequence as for rfMRI 4) Diffusion-weighted images

(DWI). DWI data will not be part of the present report. A reference

image without multiband acceleration was acquired for each

functional run.

2.4 | Preprocessing

We adapted the HCP minimal preprocessing pipelines (github.com/-

Washington-University/HCPpipelines) for structural and functional

preprocessing (Glasser et al., 2013). If not stated otherwise, we used

version 4.1 of the pipelines, Freesurfer 6.0.0, and FSL 6.0.1 under

Linux Debian 10. Structural images (T1 and T2) were corrected for

gradient distortions, aligned, brain extracted, bias field corrected, and

registered to MNI space using nonlinear transformation. Structural

images where then further processed with HCP's Freesurfer pipeline

with improved brain extraction, alignment, and adjustment of the

white matter surface. The Freesurfer output was converted to Nifti

and Gifti files and used to create a brain mask for all further analyses.

Cortical surfaces were then registered to template space based on

cortical folding (MSMsulc, Robinson et al., 2018) and downsampled to

the 32k_LR surface space. All functional data (rfMRI and task fMRI)

and the corresponding field maps were processed with the

fMRIVolume pipeline, which included correction for gradient distor-

tions, motion, EPI image distortions, co-registration with the T1 struc-

tural image, and normalization to MNI volumetric space. All

transformations were applied in one step. Functional data were then

intensity normalized to their global 4D mean and masked. The

resulting volume timeseries were further processed with the

fMRISurface pipeline to create individual CIFTI dense timeseries

grayordinate files by resampling subcortical gray matter voxels to

standard subcortical parcels and by partial-volume-weighted and

cortical-ribbon-constrained-mapping of cortical gray matter voxels

onto standard surface vertices. In this step, we applied light volume-

and surface-based smoothing with a Gaussian filter with 2 mm full

width at half maximum.

Resting state timeseries were processed further to remove arti-

facts. Each participants' volumetric rfMRI timeseries were first run

through FSL's Multivariate Exploratory Linear Optimized Decomposi-

tion into Independent Components (MELODIC) tool (ve3.15) and then

processed using FSL Fix (v1.06.15). We used a classifier that had been

trained on the HCP young adult sample as distributed with FIX. Auto-

matic component classification worked excellent despite small differ-

ences in acquisition parameters between our data and the training

data. Manual inspection indicated that no component had to be re-

labeled. Artifactual components were regressed out together with the
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six head motion parameters and their first temporal derivatives. The

cleaned rfMRI time series were then converted to grayordinates as

described above. The FIX pipeline was run on a 12-core Mac Pro

(High Sierra 10.12.6) machine using R (v3.3.3), Matlab (v2018b), and

HCPpipelines (v4.2.1). Relevant R-packages were used in the respec-

tive version mentioned in the FIX documentation and re-compiled

when needed.

2.5 | Independent component analysis

We identified ICN at the group level by running a group ICA in

MELODIC after concatenating all participants' FIX-cleaned dense

timeseries grayordinate files in time and reducing the data matrix into

a 1,609 dimensional subspace. We requested 27 components, after

estimating the ICA's dimensionality in Matlab using HCP code

(icaDim.m). Four artifactual noise components were identified through

visual inspection and the remaining 23 components were kept for fur-

ther analyses.

We labeled these ICN based on (a) the similarity of associated

time courses obtained through hierarchical clustering of the IC time

courses based on the time courses' full correlation network matrices

using the Ward method in FSLnets (v0.6.3) (see Figure 2), (b) pairwise

comparison of each thresholded and binarized (jzj > 3) ICN with publi-

shed atlases (the Cole-Anticevic cortical and subcortical partition, the

Yeo 7 and 17 cortical networks, and the Power partition, see

Table T1), and (c) visual inspection and comparison with a detailed

map of cortical areas (see Figure S1).

2.6 | Task analyses

First level analyses were performed in SPM12 (www.fil.ion.ucl.ac.uk/)

using a general linear model. Surface images were converted to “fake-
volumetric” nifti-images using wb_command. Condition specific

regressors were created by convolving a train of delta functions with

SPM's canonical hemodynamic response function. Following the

ANT's four (cues) by two (targets) design, separate regressors

reflected the onsets of the following events: Congruent targets fol-

lowing double cues, congruent targets following valid cues, congruent

targets following invalid cues, congruent targets following no cues,

incongruent targets following double cues, incongruent targets fol-

lowing valid cues, incongruent targets following invalid cues, incon-

gruent targets following no cues. In addition to these eight regressors,

we added one additional regressor with the onsets of error trials,

12 regressors with the 6 head motion parameters and their temporal

derivatives, and one constant per run. The final design matrix con-

tained (8 + 13 + 1) * 4 columns.

Linear weighted contrasts were computed on the estimated beta

images to derive the attention network maps (see Fan et al., 2005;

Xuan et al., 2016): Alerting network: Double cue minus no cue (across

target conditions). Control network: all incongruent targets minus all

congruent targets (across cue conditions). The orienting network was

operationalized via the Validity effect (invalid cue minus valid cue,

across target conditions), which is a combination of disengaging atten-

tion from an invalid location (invalid cue minus double cue, the Dis-

engaging effect) and moving and engaging the attentional focus to a

validly cued location (valid cue minus double cue, the Moving

+ Engaging effect). Individual contrast images were back-converted

to cifti-files and then passed on to second level group analysis.

We used the Sandwich Estimator (SwE) Toolbox for SPM12

(Guillaume, Hua, Thompson, Waldorp, & Nichols, 2014) for group-

level analyses of individual contrast images to assess activation of

attentional systems across all participants. SwE's main application is

longitudinal and repeated measures neuroimaging data, but SwE is

also suitable for more simple designs like ours. We used the modified

SwE procedure with a small sample size correction (type c) and a wild

bootstrapping procedure with 999 bootstraps. The family-wise error

was corrected at the cluster level (p <.05) with a cluster-forming

threshold of p <.001. The thresholding of the activation maps was also

F IGURE 2 Thresholded statistical maps of independent components and their grouping into ICN through hierarchical clustering of associated
time courses. The components in the red cluster belong to the executive control and fronto-parietal network, the components in magenta to the
default mode and language networks, the components in light green represent the (visual) occipital network, the components in blue the
midcingulo-insular and dorsal fronto-parietal “attention” networks, and the components in the darker green cluster represent the somatomotor
and auditory networks. The numbers of the components correspond to the order of the ICA output (ordered by variance explained), the ordinal
position in the figure was determined by the clustering
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done for display purposes: All follow-up analyses on spatial corre-

spondence with ICN made use of the unthresholded maps.

In order to establish that our adaptation of the ANT led to similar

activations as reported in previous work, we repeated the second

level analysis in SPM12 with volumetric data (4 mm smoothing ker-

nel). We created volumetric masks for each of the five attention con-

trast with 8 mm spheres around the peak voxel locations reported in

Xuan et al. (2016) and controlled the familywise error at the voxel

level within these masks. The masks are shown in the supplementary

Figure S3 and Table T2.

2.7 | Spatial regression

Our main question focuses on the spatial relationship between intrin-

sic ICN and the different attentional “networks” as activated by the

ANT-R. We used a multiple spatial regression approach (Gordon et al.,

2012) to predict group-level ANT-activation maps from the 23 group-

level ICN. Separate models were estimated for each activation map.

Unthresholded activation maps (z-images) were reshaped to column

vectors that included all cortical vertices and subcortical voxels. These

vectors served as criterion in the regression analyses. On the predic-

tor level, all 23 nonartifactual unthresholded IC maps were reshaped

into a grayordinate * component matrix. Ordinary least square regres-

sions were fitted using Matlab's fitlm function. Possible confounds

due to collinearity were ruled out by inspecting condition indices and

variance decomposition proportions from the predictor matrix. Effect

sizes for individual ICN were calculated as partial regression coeffi-

cients by residualizing each ICN from all remaining ICN, fitting a linear

regression model, and obtaining the adjusted R2.

2.8 | Behavioral analysis

We analyzed reaction times and error rates to compute behavioral

indices of the different attention networks. For reaction time ana-

lyses, all error trials and responses outside a response window of

1,700 ms after target onset were excluded (see Xuan et al., 2016).

Behavioral indices were computed as differences between experimen-

tal conditions: Alerting: no cue minus double cue, Orienting: Invalid

Cue minus Double Cue (Disengaging), Double Cue minus Valid Cue

(Moving + Engaging), and Invalid Cue minus Valid Cue (Validity

Effect), and Control: Incongruent minus congruent target. We calcu-

lated five (attention contrasts) * two (reaction times, error rates) one-

sample t-tests to test whether the behavioral index differed signifi-

cantly from zero. To test for independence of different attention sys-

tems, we computed linear correlations between all five indices. We

also quantified behavioral interactions between alerting and control,

orienting and control, and the validity effect and control as detailed in

Fan et al. (2009). Significance was assessed by separate two-way

ANOVAs (no cue vs. double cue by congruent vs. incongruent for the

alerting-control interaction, double vs. valid cue by congruent

vs. incongruent for the orienting-control interaction, and valid

vs. invalid cue by congruent vs. incongruent for the validity-control

interaction).

2.9 | Final sample

We had to exclude two participants because of incidental findings.

The final rfMRI sample included N = 84 (mean age M = 26.34,

SD = 5.35, n = 38 female, n = 46 male). Six participants were

excluded from the task analysis for committing an excessive number

of errors in the ANT (n = 4), large artifacts in the task fMRI data

(n = 1), and incomplete task fMRI data (n = 1). The final tfMRI sample

included N = 78 subjects (mean age M = 26.19, SD = 5.34, n = 35

female, n = 43 male).

3 | RESULTS

3.1 | Behavioral results

Mean differences and test statistics for reaction times and committed

errors are presented in Table 1. As expected, the presence of tempo-

ral and valid spatial cues led to faster reaction times while invalid cues

and incongruent flankers led to slower responses. The same pattern

was also visible in the error rates, except for the alerting contrast

where the difference was not statistically significant.

As expected, behavioral indices for the major attention contrasts

(alerting, validity, control) where not correlated (see Table 2). Signifi-

cant correlations were only obtained for contrasts that shared a refer-

ence condition.

For reaction times, a 4 (cue conditions) by 2 (congruency) ANOVA

revealed significant main effects for cue (F(3,231) = 188.92, p <.001),

congruency (F(1,77) = 647.89, p <.001), and a significant interaction

(F(3,231) = 3.52, p = .016). For error rates, a similar ANOVA model rev-

ealed significant main effects for cue (F(3,231) = 5.55, p = .001), con-

gruency (F(1,77) = 45.54, p <.001), but no significant interaction

(F(3,231) = 1.87, p = .135). The significant interaction suggests a modu-

lation of the congruency effect by cue condition. Running 2 * 2 post

hoc ANOVAs, we confirmed interaction effects between orienting

and control and between validity and control for reaction times (see

Table 1).

In sum, we replicated previous findings on the behavioral inde-

pendence and interactions of attention networks (Fan et al., 2009;

Xuan et al., 2016).

3.2 | Intrinsic connectivity networks

Figure 2 shows the 23 group-level ICN and the hierarchical clustering

of their time courses. High resolution maps of the 23 ICN are publi-

shed on BALSA. Pairwise comparison of each thresholded and

binarized ICN with published atlases and a list of implicated cortical

regions are documented in Table T1 and Figure S1. The springgreen
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cluster on the very right of Figure 2 represents the larger somatomotor

network (SMN): ICN #13 (“mouth” network) as well as #15 and #21

(“hand” network). ICN #23 corresponds to the auditory network.

Components #7, #12, and #8 in the blue cluster on the left overlap

with networks labeled cingulo-opercular, ventral attention, and

salience network in different published partitions. These labels refer

often to the same midcingulo-insular network (Uddin, Yeo, & Spreng,

2019). The other two components in the blue cluster (#14 and #18)

include most prominently areas along the intraparietal sulcus and cor-

respond to the dorsal fronto-parietal “attention” network. The four

components in the yellowgreen cluster in the middle represent the

larger visual network: IC #6 is the primary or peripheral, and #1, #17,

and #19 are the secondary or central visual network. Components #2,

#4, and #11 in the magenta cluster on the left represent the default

mode network. The other component in the magenta cluster (ICN #9)

is left-lateralized and overlaps with the language network first

described in Ji et al. (2019). The Power et al. (2011) parcellation inter-

prets this component as the ventral attention network, which has

been criticized and corrected by Ji et al. (2019). Implicated regions are

more consistent with a role in language than attention: auditory cor-

tex, premotor area 55b, and includes inferior prefrontal cortex with

areas 44 and 45 that represent Broca's area. Components #3, #5, and

#22 in the red cluster on the very left correspond to the lateral fronto-

parietal network. The remaining three components #10, #16, and #20

are more difficult to label. The hierarchical clustering grouped the net-

works together on a hierarchy level, which allowed a clear interpreta-

tion for all other components. Pairwise spatial comparisons with

published templates indicate overlap with different task positive net-

works. Inspecting the precise boundaries of the components indicate

involvement of higher order association areas including inferior and

dorsolateral prefrontal cortex. We will therefore use the label execu-

tive control network when referring to these three components.

3.3 | Attentional networks

Figure 3 shows activation maps for all task contrasts (i.e., the atten-

tion networks) Alerting (a), disengaging (b), moving and engaging (c),

the validity effect (d), and control (e). At large, activation patterns are

consistent with the patterns reported in Xuan et al. (2016): We found

significant activation increases at 11/37 reported peak coordinates

for alerting (set-level inference c = 15, p <.001), 8/20 for the validity

TABLE 1 Behavioral main effects
and interactions for reaction times and
error rates

Attention effects

Reaction times Accuracy

M SD T df p M SD T df p

A 33.18 31.29 9.36 77 <.001 0.11 2.87 0.33 77 .74

D 33.37 27.61 10.67 77 <.001 0.9 3.07 2.60 77 .01

M 39.66 25.31 13.84 77 <.001 0.43 2.51 1.53 77 .13

V 73.02 35.65 18.09 77 <.001 1.34 3.01 3.92 77 <.001

C 150.07 51.44 25.77 77 <.001 3.83 5.01 6.75 77 <.001

Interactions

M SD F df p M SD F df p

A*C �10.82 48.08 3.95 1,77 .05 �0.96 5.52 2.35 1,77 .13

O*C 15.77 39.02 12.74 1,77 <.001 1.09 4.54 4.46 1,77 .04

V*C 13.47 48.67 5.98 1,77 .02 1.29 5.70 3.98 1,77 .05

Note: A, alerting; D, disengaging; M, moving and engaging; V, validity effect; C, control; A*C, alerting by

control; O*C, orienting by control; V*C, validity by control.

TABLE 2 Correlations between
behavioral indices of attention network
efficiency

Alerting Disengaging Moving Validity Control

Alerting .296** �.469** �.103 �.049

Disengaging .271* . 094 . 707** .024

Moving �.545** �.431** .636** �.025

Validity �.177 .660** .394** .001

Control .063 �.024 .263 .195

Note: The upper triangle gives correlation coefficients for behavioral indices based on reaction times. The

lower triangle gives corresponding correlations based on accuracy.

*p <.05.

**p <.01.
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effect (set-level inference c = 11, p <.001), and 15/25 for control (set-

level inference c = 16, p <.001). We found only significant activation

increase at one location for disengaging and none for moving and

engaging. The replicated peak locations implicate all activation clus-

ters reported by Xuan et al. (2016), except for the left anterior insula

and the locus coeruleus for alerting, and the left inferior occipital

gyrus for the validity effect. We refer to the Supporting Information

for volumetric versions of the activation maps, depictions of the

masks, and detailed statistics.

3.4 | Spatial regression

We fitted five linear models that regressed the spatial distribution of

task-evoked activity in the five attention contrasts onto the 23 ICN.

The 23 predictor variables did not show any signs of collinearity (all

condition indices <1.61, all variance decomposition proportions <.5,

see Figure S2). The adjusted coefficients of determination (R2) of the

regression models indicated that the spatial brain-wide topology of

the 23 ICN accounted for 53.52% of the variance in alerting

(RMSE = 1.03), 53.6% of the variance in disengaging (RMSE = 1.005),

29.84% of the variance in moving and engaging (RMSE = .9261),

61.19% of the variance in the validity effect (RMSE = 1.0774), and

65.96% of the variance in control (RMSE = 1.195).

If the attention systems dissociated at the level of ICN, we would

expect the beta coefficients from the spatial regression analyses to be

uncorrelated (or negatively correlated). The correlations are presented

in Table 3. The significant positive correlations between alerting,

validity, and control indicate that ICN that contribute stronger to one

of the attention systems contribute also to the other attention sys-

tems, placing doubts on the presumed dissociation of attention sys-

tems at the intrinsic connectivity level.

Figure 4 shows regression weights for each ICN and task con-

trast. We will discuss involvements of ICN that explain at least 1% to

the overall variance in the attention contrasts.

We first asked how many different ICN were involved in each

attention contrast. Eleven ICN explained at least 1% of the vari-

ance in alerting, thirteen in disengaging, five in moving and engag-

ing, thirteen in validity, and eleven in control. We then assessed

whether implicated ICN were particularly enriched in any of the

higher-level groups identified in the hierarchical clustering: Permu-

tation testing revealed that the visual (p = .0394), dorsal attention

(p <.001), and default mode network (p <.001) were recruited by

alerting, the somatomotor (p <.001), and dorsal attention network

(p <.001), by disengaging, and the visual (p <.001) and dorsal atten-

tion network (p = .042) by moving and engaging. The dorsal atten-

tion network (p <.001) was engaged by the validity effect. The

visual (p = .0376) and dorsal attention network (p <.001) were

engaged while the default mode network (p <.001) was suppressed

by control.

We next asked whether any ICN was involved in all attention

functions (alerting, control, and at least one of the orienting contrasts).

We found that ICN #4 and #11 (parts of the default mode network).

ICN #1 and #17 (parts of the visual network), ICN #12 (midcingulo-

insular network), and ICN #14 and #18 (the dorsal attention network)

were recruited by all attention functions. From the two default mode

network components, ICN #4 (default mode network) was consis-

tently suppressed during all attention functions while ICN #11 was

F IGURE 3 Group level activation maps (surface data) of the five contrasts. All maps show Gaussianized t-statistics, thresholded at p <.05,
FWE-corrected. Underlying anatomical images are HCP's midthickness surface mesh and HCP's average T1-weighted structural image. We did
not find significant clusters in the volumetrtic subcortical data, possibly due to the small smoothing kernel of 2 mm

TABLE 3 Correlations between beta estimates from the spatial
regression for five attention contrasts

Alerting Disengaging Moving Validity Control

Alerting .286 �.869* .677* .645*

Disengaging .037 .874* .659*

Moving �.451* �.381

Validity .773*

Control

*p <.001.
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F IGURE 4 Results from the spatial regression analyses. Different panels correspond to different attention contrasts. Bars represent
regression beta weights for the 23 ICN. The numbers on the x-axis reflect the order in the MELODIC. Bars in darker gray indicate components
that explained at least 1% of variance in the criterion
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engaged by alerting and the orienting contrasts, but suppressed dur-

ing control.

We then examined whether any ICN was specifically involved in

only one attention contrast. This was the case for eight ICN: ICN #16

(executive control network) was only activated by disengaging, and

ICN #5 and #22 (fronto parietal network) and ICN #7 (midcingulo-

insular network) were only activated by orienting (disengaging and the

validity effect). ICN #8 (midcingulo-insular network) was suppressed

by control, ICN #13 and #15 (somatomotor network) were suppressed

by disengaging, and ICN #21 (somatomotor network) was suppressed

by the validity effect. We also examined which ICN did not contribute

to any attention contrasts: This was the case for ICN #4 (fronto-

parietal network), ICN #9 (language network), and ICN #23 (auditory

network).

Finally, we examined which ICN showed the largest positive con-

tribution to each attention contrast.

ICN with largest positive individual contributions were ICN #1

(primary visual network) for alerting (21.13%), ICN #7 (midcingulo-

insular network) for disengaging (9.81%) and moving and engaging

(2.66%), and IC #18 (dorsal attention network) for the validity effect

(6.84%) and for control (14.39%).

3.5 | Overlap between attentional networks

The spatial regression analysis pointed at seven ICN components that

were recruited by all attention domains. Leaving out the two visual

components that are likely to be the target of top down modulation

and one component in the default mode network that showed oppos-

ing contributions (positive and negative) to different attention net-

works, we are left with four components which are detailed in

Figure 5. The right column shows grayordinate-level overlaps of

F IGURE 5 Overlapping activation in the midcingulo-insular, dorsal fronto-parietal “attention,” and default mode network. The flat maps on
the left show the unthresholded IC maps. The flat maps on the right show overlapping activations for alerting, validity, and control (yellow, top
three panels) and overlapping deactivations for validity and control (red, bottom panel). The outline of significant deactivations for validity (purple)
and control (yellow) is given for comparison. The thresholded IC maps are shown in white-gray with black outlines for spatial reference
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significant activations for alerting, validity, and control: All three atten-

tion systems activated overlapping areas in superior parietal cortices

and the dorsal stream along the intraparietal sulcus, which are key

areas of the dorsal fronto-parietal network.

Within superior premotor cortex, all three attention systems

overlapped in the frontal eye field (dorsal fronto-parietal network),

and the premotor eye field as well as area 6a (both midcingulo-insular

network). The default mode network (IC #4) was suppressed in all

attention contrasts. The bottom panel of Figure 5 shows grayordinate

level overlap of significant deactivations for the validity and the con-

trol contrast (there was no deactivation for alerting above the statisti-

cal threshold). While the control contrast led to more widespread

deactivations that traced the outline of default mode component #4,

the deactivations for the validity contrast were more focal, yet mostly

at the same grayordinate locations as control deactivations.

3.6 | Alternative parcellation

We used our own ICA-based parcellation for the assessment of spatial

overlap between ANT networks and ICN. For an easier comparison

with other parcellations, we computed bivariate spatial overlap

between all five ANT contrasts and the Yeo networks (7 networks

and 17 networks, Yeo et al., 2011). Analyzing the Yeo networks

yielded highly similar results: Across ANT networks, the correlation

coefficients quantifying spatial correspondence with ICN were posi-

tively correlated (particularly for alerting, the validity effect, and con-

trol). For both partitions, the dorsal attention network showed highest

and most consistent contributions to alerting, validity, and control. Of

note, the ventral attention network of the Yeo-7 partition and the

salience-ventral-attention network of the Yeo-17 partition did not

contribute substantially to any ANT contrast. Detailed results are

documented in Figures S9 and S10, Table T2.

4 | DISCUSSION

Attention network theory distinguishes three types of attention that

work together in any given situation but are realized by separate net-

works. The present work utilized the widely used ANT and success-

fully replicated previous work on the topology of activations and

behavioral independence of the attention systems. It has been pro-

posed that the attention networks dissociate in the intrinsic connec-

tivity architecture of the brain, and different propositions have been

made how these attention networks correspond to the various ICN

described in the literature, yet none of them has been addressed com-

prehensively. To achieve a better understanding of how attention is

represented at the network level, we reconstructed 23 independent

components from high-resolution resting-state data and utilized a spa-

tial regression approach (Gordon et al., 2012) to study the topological

correspondence between ICNs and the activation of the attention

networks. We did not find evidence for a dissociation at the intrinsic

network level: If an ICN increased its activation during one type of

attention, it was also more likely to activate during other types of

attention. We also did not find a clear correspondence between atten-

tion networks and single ICNs. Instead, we observed that each atten-

tion system activates components in multiple ICNs, that the majority

(around) 87% of all components contribute to at least one attention

system, and that the components activated by different attention net-

works overlap substantially. The dorsal fronto-parietal network, which

included large stretches of superior parietal as well as premotor and

inferior parietal cortices and areas along the dorsal visual stream

(IC #14 and IC #18) was recruited by all attention systems. Further,

parts of the midcingulo-insular network which included premotor and

midcingular cortex, the paracentral lobule, and the posterior as well as

the insular and frontal opercula (IC #12) were also recruited by all

attention systems, while parts of the default mode network which

included the typical midline regions (IC #4) were deactivated by all

attention contrasts. This is suggestive of a shared neural resource

among the three different attention systems in the form of at least

three different ICN.

We grouped the 23 components into nine larger ICN and

assessed whether the different attentional networks preferably rec-

ruited components from any of these ICN. We observed that the dor-

sal fronto-parietal network as a whole was recruited by all attention

systems. Regarding other ICN, we observed some differences: The

somatomotor network as a whole was suppressed during disengaging

from an invalidly cued location, the default mode network was

suppressed during the attentional control of irrelevant information

but also involved in establishing alertness. The visual network was

engaged by alerting and control. As these findings are based on a

direct comparison between the intrinsic network structure and acti-

vated attention networks, they provide important insights into the

correspondence of ICN and the attention networks, which may clarify

previous propositions, which we are going to discuss in the following.

4.1 | Attentional networks: the extended fronto-
parietal network hypothesis

It has been suggested that the fronto-parietal network underlies

attention (Toro et al., 2008), which is supported by correlations

between network properties of the fronto-parietal network and

behavioral indices of attention (Markett et al., 2014; Visintin et al.,

2015). Accordingly, Xuan et al. (2016) have argued that the three

attention networks activate different parts of an extended fronto-

parietal network. The fronto-parietal network described in the original

reports is a larger network and hierarchically organized into separable

networks: the ventral attention, dorsal attention, and fronto-parietal

control network (Fox, Corbetta, Snyder, Vincent, & Raichle, 2006;

Power et al., 2011; Thomas Yeo et al., 2011; Vincent, Kahn, Snyder,

Raichle, & Buckner, 2008). The ventral attention network is thought

to support stimulus-driven bottom-up attention which is conceptually

similar to alerting, the dorsal attention network is thought to support

top-down attention which is conceptually similar to orienting, and the

control network is thought to underlie executive functioning and

MARKETT ET AL. 1441



cognitive control which is conceptually similar to the attention control

system (Vincent et al., 2008; Vossel, Geng, & Fink, 2014). While our

network partition did find three larger networks that involved lateral

frontal and posterior parietal cortex, they do not fully match to the

three described networks. Our dorsal fronto-parietal network (IC #14

and #18) corresponds well to the dorsal attention network. Our exec-

utive control network (IC #16, #20, and #10) includes dominantly dor-

solateral and medial prefrontal cortex and the anterior cingulate and

matches the description of the fronto-parietal control network. Our

third fronto-parietal network (IC #3, #5, and #22), however, matches

only partly the description of the ventral attention network. Our net-

work included ventro- and dorsolateral, orbitofrontal and frontopolar

cortex, as well as inferior parietal and lateral temporal cortex, but did

not include the temporo-parietal junction which represents the major

posterior hub in this network Fox et al., 2006; Vossel et al., 2014). In

addition to the less optimal correspondence of our fronto-parietal

networks with the three previously described networks, we did not

observe a close fit with attention-evoked activations as well. From the

three fronto-parietal networks in our partition, only the dorsal net-

work showed clear involvement in all attention networks. Single com-

ponents from the executive control network were involved in

orienting and alerting (IC #10, which included mostly superior parietal

and posterior cingulate cortex) and control (IC #20 which included

mostly dorsolateral and anterior medial prefrontal cortex and the

anterior cingulate). The third fronto-parietal network showed compar-

atively little involvement in any attention network, with the exception

of IC #3, a right lateralized component, that was suppressed during

alerting. We therefore conclude that an “extended fronto-parietal net-

work” does not capture the nature of the three attention networks

well. Rather, we see major overlap of the three attention systems

within the dorsal fronto-parietal network and parts of the insular mid-

cingular network. If we would define the “extended fronto-parietal

network” to include these two network components, we would cap-

ture the ICN underlying attention, however, we cannot then conclude

that the attention systems dissociate within the “extended fronto-

parietal network” but that the “extended fronto-parietal network” is

the attention network.

4.2 | Orienting: the dorsal and ventral attention
network hypothesis

The dorsal and ventral attention network have been proposed as two

anatomically and functionally distinct networks (Corbetta & Shulman,

2002). In an attempt to incorporate the dorsal and ventral attention

networks into attention network theory, the two networks have been

equated to the orienting network (Petersen & Posner, 2012). We will

first discuss the representation of the dorsal and ventral attention net-

works in our ICN partition before discussing their activation by

the ANT.

The ventral attention network was initially described as right-

lateralized but later work suggests similar organization in the left

hemisphere (Vossel et al., 2014). The ventral attention network

features in prominent atlases of canonical ICN (Power et al., 2011;

Thomas Yeo et al., 2011) but the labeling as “ventral attention” has

been contested. Others have used the labels “salience network”
(Seeley et al., 2007) or “cingulo-opercular network” (Dosenbach,

Fair, Cohen, Schlaggar, & Petersen, 2008) to refer to a network with

similar anatomy and function. The label ventral attention network

has also been used to describe a left-lateralized network whose

implicated brain regions are more suggestive of an involvement in

language (Ji et al., 2019; Power et al., 2011). The ventral attention

network could represent a right-lateralized version of the language

network (Bernard et al., 2020) but neither we nor others (Ji et al.,

2019) have detected a similar right lateralized version of the lan-

guage network. We decided to follow recent suggestions and use

the anatomical label midcingulo-insular network (Uddin et al., 2019)

for three network components that correspond closely to the

cingulo-opercular network in the Cole-Anticevic and Power-

partition and the ventral attention and salience network in the Yeo-

partition. Of the three components, IC #7 includes bilaterally the

tempero-parietal junction and ventrolateral prefrontal cortex which

have been described as hubs in the ventral attention network. The

identification of the dorsal attention network in our data was more

straightforward. The dorsal attention network is well described in

several canonical ICN atlases and we found very consistent corre-

spondence between our components #14 and #18 and the dorsal

attention network as described in these atlases.

To assess the correspondence between ICN and the orienting

network, we followed previous recommendations and distinguished

between different orienting effects: neural activity associated with

the disengaging from an invalid spatial cue, the moving and subse-

quent engaging of the attentional focus to a validly cued spatial

location, and the combination of the two (the validity effect) which

corresponds to previously described orienting contrasts (Fan et al.,

2009; Xuan et al., 2016). Our results confirm the involvement of

the dorsal fronto-parietal and midcingulo-insular network in

orienting. We also observed contributions from a component that

we classified as part of an executive control network. This compo-

nent, however, included many cortical regions that have been

ascribed to the dorsal attention network in previous work (Ji et al.,

2019; Thomas Yeo et al., 2011). Of note, the component within

midcingulo-insular network that matched most closely the descrip-

tion of the ventral attention network contributed only marginally to

the orienting contrasts. While the present results are well in line

with the hypothesis by Petersen and Posner (2012) that the

orienting network encompasses two networks that correspond to

what has been described as dorsal and ventral attention network, it

needs to be noted that this relationship is far from specific. We

observed similar contributions of the ICN to alerting and control,

which does not support the idea of a specific contribution to an

anatomically distinct orienting network. Rather, our results indicate

that the dorsal fronto-parietal and midcingulo-insular network play

a domain-general role in the prioritization of relevant information

processing that exceeds a specific contribution to the allocation of

attentional resources in space.
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4.3 | Attentional control: the fronto-parietal
cingulo-opercular hypothesis

Attention network theory assumes an attention control system that is

involved in the detection of targets for focal and conscious processing

(Posner & Petersen, 1990), guided and controlled visual search

(Posner & Dehaene, 1994), and the selection of relevant over dis-

tracting information (Fan et al., 2002). Ongoing control involves the

maintenance of task-sets that set the context for moment-to-moment

adjustments of cognitive processing: Previous studies indicate that

set-maintenance is supported by the cingulo-opercular network and

adjustments of the attentional focus is carried out by the fronto-

parietal network (Dosenbach et al., 2007, 2008). This has led to the

proposal that the attention control network relies on these two sepa-

rate ICN: A fronto-parietal network that is distinct from the dorsal

attention network and the cingulo-opercular network that we labeled

midcingulo-insular network (Petersen & Posner, 2012). While our data

confirm that parts of the midcingulo-insular network were recruited

by the flanker contrast, we saw the strongest contributions from fron-

tal and parietal regions that belonged to the dorsal fronto-parietal net-

work. From the other two ICN with fronto-parietal involvement, only

one component classified into the executive control network showed

additional contribution. This component included dorsolateral pre-

frontal and anterior cingulate cortex, key regions that have been

unequivocally ascribed to the attention control system (Fan et al.,

2005; Fan & Posner, 2004; Petersen & Posner, 2012). While our pre-

sent results are thus consistent with previous findings, they cast

doubt that attentional control relies solely on a fronto-parietal net-

work distinct from the dorsal network and the midcingulo-insular net-

work. Rather, attentional control seems to be implemented by the

dorsal attention network with additional contribution from lateral pre-

frontal and anterior cingulate cortex. We also observed strong deacti-

vations of the default mode network during attentional control. The

traditional view of the default mode network is that of a task-negative

network that stands in an antagonistic relationship with fronto-

parietal networks and de-activates unspecifically in demanding tasks

(Fox, Zhang, Snyder, & Raichle, 2009; Raichle et al., 2001; Shulman

et al., 1997). Newer evidence, however, suggests that deactivations in

the default mode network encode spatial vision (Szinte & Knapen,

2020) which opens the possibility that the default mode network

plays a more direct role in visual attention than expected. Future work

is needed to address this hypothesis, but for now we content that the

default mode network also contributes to the attentional control

network.

4.4 | Alerting and the midcingulo-insular network

Alerting refers to a state of increased sensitivity to incoming stimuli

(Posner, 2008). In addition to tonic alertness as a self-initiated state of

sustained vigilance, phasic alertness can use external cues to tempo-

rarily increase vigilance in anticipation of upcoming information. While

both types of alertness are thought to be realized by the same alerting

network, the typical alerting contrast in the ANT uses temporal cues

to induce a state of alertness and thus taps primarily into the phasic

component. The midcingulo-insular network has been shown to

increase its activity and functional connectivity in a task that required

tonic alertness (Sadaghiani & D'Esposito, 2014) and increased pre-

stimulus activity in the midcingulo-insular network leads to faster

responses to unpredictable stimuli (Coste & Kleinschmidt, 2016). The

midcingulo-insular network also activates in reaction to rare oddball

stimuli, which implies a similar involvement in phasic alerting (Kim,

2014). We subsumed three distinct components under the

midcingulo-insular network and found one of these components to be

strongly involved in the alerting contrast, supporting these previous

observations. But while we do find evidence for the alerting-

midcingulo-insular network hypothesis, we cannot conclude that this

network is specifically involved in the alerting component of atten-

tion. The ICN was consistently recruited by all attention networks and

we found widespread activation overlap in the premotor part of the

ICN (see Figure 5). The other two components of the midcingulo-

insular network, encompassing either lateral frontal, inferior parietal,

and the tempero-parietal junction or superior parietal and mid-

cingulate cortices did not contribute to alerting. Additionally to the

midcingulo-opercular network we found that alerting activated the

dorsal attention network and deactivated a fronto-parietal component

including dorsolateral prefrontal and inferior parietal cortex, as well as

the default mode network. As much as we confirm the role of the

midcingulo-insular network in alerting, we neither found a one-to-one

correspondence between this ICN and the alerting network nor did

we find evidence for a specific relationship between the midcingulo-

insular network and alerting in the context of other attention systems.

4.5 | Overlap between attention networks

We found several ICN components that were involved in all three

attention networks. While different brain regions within ICN also tend

to co-activate together during tasks (Smith et al., 2009), there would

still be chance that the three attention networks proposed by atten-

tion network theory dissociate within a given ICN component. But to

the contrary, we found major overlap of the attention systems in pos-

terior parietal cortex along the intraparietal sulcus (the dorsal fronto-

parietal network) and in premotor cortex (dorsal fronto-parietal and

the midcingulo-insular network). Overlapping activations in premotor

cortex occurred in three distinct regions: the bilateral frontal eye field,

the bilateral area 6v, and the bilateral premotor eye fields. Covert spa-

tial attention, that is, the adjustment of the attentional focus in the

absence of overt eye movements, has been tightly linked to the

premotor cortex (Moore, Armstrong, & Fallah, 2003; Rizzolatti, Riggio,

Dascola, & Umiltá, 1987) and the frontal eye fields have been identi-

fied as the neural origin of the “attentional spotlight” that modulates

activity in visual areas (Thompson, 2005). The premotor eye field has

also been linked to saccadic eye movements, but also to attention,

and the integration of hand and eye movements (Amiez & Petrides,

2009; Genon et al., 2018; Neromyliotis & Moschovakis, 2018). Area
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6v is an area in superior premotor cortex adjacent to the frontal eye

field and delineates from the frontal eye field regarding its myelin con-

tent and its response profile to different tasks (Glasser et al., 2016).

We found area 6v involved in the midcingulo-insular network while

the frontal and premotor eye fields belonged to the dorsal fronto-

parietal network. The frontal eye fields and surrounding areas have

been previously associated with different attention networks (Xuan

et al., 2016) but more work is needed to directly contrast the role of

the frontal and premotor eye fields and area 6v within attention net-

works. We believe that the regions play a role in covert spatial atten-

tion by adjusting the attentional focus, irrespective of whether it is

moved in space, activated in preparation of upcoming stimuli, or tuned

to select relevant over irrelevant information. We also found that

visual ICNs contributed to all attention contrasts. While visual activa-

tions have been reported previously with the ANT (Xuan et al., 2016),

attention network theory dissociates the attention networks from

stimulus processing areas (Petersen & Posner, 2012). We presume

that visual activations are most likely the result of top down modula-

tion by the attention networks; attentional modulation, for instance,

has been described as early as area V1 (Luck et al., 1997). However,

we cannot rule out that eye movements in reaction to the cues have

led to some spurious activations in visual areas. Future work with a

modified ANT is needed to dissociate the source and target of atten-

tional modulation in early visual areas.

4.6 | Methodological considerations

In the following, we are going to address methodological aspects

regarding the definition of attention networks, our resting-state

decomposition into ICNs, and the spatial regression approach.

We defined the attention networks as the set of activated

grayordinates in different contrasts in the ANT, the standard protocol

proposed by the authors of attention network theory (Fan et al.,

2009; Fan & Posner, 2004). This decision was motivated by previous

work on attention networks (Fan et al., 2002; Xuan et al., 2016).

Defining a network solely on task co-activations, however, is not

without criticism. The term “network” is commonly used to describe a

set of network nodes including their mutual relationships (Albert &

Barabási, 2002). By simply focusing on task-evoked activations we

thus omitted any information on functional interactions within the

attention network. Work on task-evoked whole-brain functional con-

nectivity changes suggests that task-activations and task-connectivity

carry different information (Gerchen & Kirsch, 2017) and task-

connectivity can point toward important network nodes that do not

show strong activation changes between task conditions (Markett,

Jawinski, Kirsch, & Gerchen, 2020). While the current

operationalization of attention networks is thus consistent with previ-

ous work and aids interpretability in the context of previous findings,

future work will want to utilize methods that aim at functional con-

nectivity to map attention networks in more detail. When combined

with analytic approaches from network science, such approach can

also highlight different roles of brain area in the context of distributed

systems (Zink, Lenartowicz, & Markett, 2021). While we kept the defi-

nition of attention networks consistent with previous work, we

applied a slightly modified statistical model than Xuan et al. (2016)

and did not separate the cue from the target stage in separate regres-

sors. The reason for this was the short onset asynchrony between

cues and targets, which is common in the ANT. Despite this differ-

ence, our model was able to reproduce the activations for the three

main attention networks as described in the literature.

Our main focus was a detailed comparison between activation

maps from different task contrasts and the topology of ICN. While

the general pattern of ICN has been well-replicated across studies,

acquisition protocols, and analytical approaches, it needs to be noted

that ICN are statistical abstractions of BOLD fluctuations and the

exact number and topology of reconstructed ICN depends on hyper-

parameter choices and preprocessing strategies. Different modular

decompositions of resting-state time series have been proposed

throughout the literature that feature for instance 6 (Dosenbach et al.,

2010), 10 (Smith et al., 2009), 7 or 17 (Thomas Yeo et al., 2011), 12 (Ji

et al., 2019), or 13 (Power et al., 2011) ICN. In the absence of a uni-

versal ground truth, we decided to achieve our own ICN decomposi-

tion of the same participants' resting state timeseries. We applied

independent component analysis, an established approach that results

in consistent and stable ICN maps (Beckmann, DeLuca, Devlin, &

Smith, 2005), does not depend on a priori node definitions (Smith

et al., 2011), allows for an automated optimization of the model order

parameter (Beckmann & Smith, 2004), and most importantly, operates

on the grayordinate-level which makes a direct comparison of ICN

maps and task-activation maps straightforward. Nevertheless, it needs

to be pointed out that the exact parameter has a major impact on the

results of the spatial regression analysis. We therefore repeated the

analysis with a published ICN partition that follows a similar hierarchi-

cal network structure (Thomas Yeo et al., 2011). This analysis yielded

similar results and supports the main conclusions.

Despite all progress in network neuroscience, the field has yet to

agree on a comprehensive list of ICN and their names (Uddin et al.,

2019). To a certain extent, the apparent differences between studies

might arise from the rather indirect approach to neural activity inher-

ent to functional neuroimaging, and from parameter choices for clus-

tering and community detection. But more importantly, they can also

reflect the hierarchical structure of functional interactions in the brain

where larger networks delineate into several smaller networks at

higher resolution levels (Betzel et al., 2013; Hilgetag & Goulas, 2020;

Meunier, Lambiotte, & Bullmore, 2010). The hierarchical nature of

ICN was also reflected in our present ICN partition. We found our

reconstructed 23 signal components to correspond to nine larger ICN

that have all been described in the literature. Importantly, we

observed clear sensory (auditory and visual) and motor networks,

which is an essential criterion for a valid network parcellation. Inde-

pendent component analyses allow the different components to

overlap.

We probed the relationship between ICNs and the attention net-

work maps through a spatial regression approach as described previ-

ously (Gordon et al., 2012). Since we were interested in the spatial

1444 MARKETT ET AL.



covariation of signals across the entire brain, which is expressed in single

statistical parameters, no adjustment of the task activation and IC maps

for multiple comparison was required and we submitted unthresholded

maps to the regression analyses. By analyzing unthresholded maps, we

also made use of the full set of grayordinates and included the full range

of grayordinate loadings which aids the interpretation of the spatial

regressions' beta weights (positive signs indicate recruitment, negative

signs indicate suppression). We verified the absence of multicollinearity

between IC components, which is not only a prerequisite for the spatial

regression analysis but also a confirmation that our ICA-approach was

successful in yielding spatially independent components. It needs to be

noted, however, that the present approach assumes static ICNs that per-

sist across task and resting states and are invariant across participants.

While these assumptions hold at large (Cole et al., 2014; Smith et al.,

2009), there is still ample evidence for subtle yet reliable variation in net-

work structure across tasks, time, and individuals (Cole et al., 2014;

Muldoon & Bassett, 2015; Seitzman et al., 2019). We hope that the pre-

sent comparison between attention networks and the intrinsic network

architecture will stipulate more research into the network-level repre-

sentation of attention that will extend the current focus to temporal

dynamics and individual differences.

Unfortunately, we did not have the technical equipment to record

eye gaze data, which is a shortcoming of the present work that needs

to be mentioned. Participants were instructed to maintain fixation

throughout each trial, to encourage covert shifts of attention. Stimulus

display and timing did not require eye movements, but without eye

tracking data, there is no direct way to confirm that all participants

followed this instruction at all times. While it seems to be possible to

infer gaze location from functional MRI directly, relevant software tools

had not been publicly available yet (Frey, Nau, & Doeller, 2021).

4.7 | Conclusions regarding attention network
theory

While we found a good overall correspondence between the atten-

tion network maps and the brain's intrinsic connectivity architecture,

we did not find unique relationships between any attention network

maps and single ICN, challenging most previous conjectures on the

representation of attention at the network level. Each attention con-

trasts activated several ICN, and we found that all attention networks

converged within the dorsal fronto-parietal and midcingulo-opercular

network, pointing toward a shared neural resource between the dif-

ferent attention networks. Given that interactions and spatial overlap

between attention networks have been described previously (Xuan

et al., 2016), we argue to reconsider the notion of separable and inde-

pendent attention networks. Instead, we propose that attention is

supported by a distributed network in which different subroutines of

attention (alerting, orienting, and control) segregate into different sub-

networks and are integrated by hubs in the dorsal fronto-parietal and

midcingulo-insular network. While this proposal requires further

empirical investigations, it would be well in line with several discover-

ies regarding the network-level representation of cognitive control

and higher cognition (Braun et al., 2015; Cohen & D'Esposito, 2016;

Cohen, Gallen, Jacobs, Lee, & D'Esposito, 2014; Cole et al., 2013; Zink

et al., 2021). At the same time, we propose to reconsider terminology:

Using the term “network” for the distributed patterns of task-evoked

activations and for distributed patterns of intrinsically generated func-

tional connectivity alike suggests too much of a conceptual equiva-

lence which is not supported by the data.
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