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Parkinson’s disease is the secondmost important neurodegenerative disorder worldwide. It is characterized by the presence of Lewy
bodies, which aremainly composed of𝛼-synuclein and ubiquitin-bound proteins. Both the ubiquitin proteasome system (UPS) and
autophagy-lysosomal pathway (ALS) are altered in Parkinson’s disease, leading to aggregation of proteins, particularly 𝛼-synuclein.
Interestingly, it has been observed that copper promotes the protein aggregation process. Additionally, phosphorylation of 𝛼-
synuclein along with copper also affects the protein aggregation process.The interrelation among 𝛼-synuclein phosphorylation and
its capability to interact with copper, with the subsequent disruption of the protein degradation systems in the neurodegenerative
process of Parkinson’s disease, will be analyzed in detail in this review.

1. Introduction

Parkinson’s disease (PD) is the second most frequent neu-
rodegenerative disorder related to aging worldwide [1]. The
clinical symptoms of this disease are resting tremor, rigid-
ity, bradykinesia, akinesia, postural instability, difficulty in
speech, and breathing problems [2]. Most PD cases appear
to be sporadic, and only about 5–10% of the cases are due to
genetic mutations [3]. Exposure to environmental pollutants
such as herbicides (paraquat), pesticides (rotenone), and
toxic substances during the manufacture of narcotic drugs
(MPTP+) and prolonged exposure to transition metals have
been reported to be related to sporadic cases of PD [4–
6]. PD is characterized by dopaminergic neuronal loss in
the substantia nigra at the central nervous system (CNS), a
significant reduction in dopamine levels, and the presence of
Lewy bodies [7, 8]. Lewy bodies are composed of abnormal
deposits of protein aggregates, particularly 𝛼-synuclein and
ubiquitin-bound proteins [9]. Abnormal protein aggregation
results from the UPS and ALS alteration, and the latter

includes disruption of lysosomal hydrolase trafficking [10–
12]. Interestingly, some metal ions such as copper have
shown to promote the protein aggregation process [13–15].
Additionally, phosphorylation of 𝛼-synuclein, along with
copper, accelerates the protein aggregation process [16, 17].

Therefore, in order to have a better understanding of
the mechanisms involved in the neurodegenerative process
of PD, the interrelation among 𝛼-synuclein phosphorylation
and its capability to interact with copper, as well as the
consequent disruption of the protein degradation systems,
will be analyzed in detail in this review.

2. 𝛼-Synuclein

The main histological hallmark of PD is the presence of
eosinophilic cytoplasmic inclusions known as Lewy bodies,
which are localized in the substantia nigra and are formed
mostly by𝛼-synuclein [18–20].𝛼-Synuclein is a thermostable,
preserved, and unfolded cytosolic protein [21], belonging
to a family of homologous proteins called synucleins, and
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Figure 1: Schematic structure of 𝛼-synuclein. (a) 𝛼-Synuclein mutations related to familial PD are shown as red squares. Metal-binding sites
are depicted as yellow squares. Seine (S) and threonine (Y) amino acid residues targeted by phosphorylation are indicated as blue squares. (b)
Amino acid composition of 𝛼-synuclein. Residues in blue represent copper-binding sites. Red squares indicate methionine 1 and histidine 50,
which are independent anchoring sites for copper binding. Green squares show phosphorylation sites (Y125 and S129) related to an increased
copper-binding capability.

is expressed in approximately 80% of the total area of the
human brain [22, 23]. 𝛼-Synuclein consists of 140 amino
acid residues [24] organized in three structural regions: an
amphipathic amino-terminal domain from 1 to 60 amino
acid residues, responsible for the binding of 𝛼-synuclein to
lipid vesicles [25, 26]; the NAC (non-amyloid-𝛽 component)
region from 61 to 95 amino acid residues, also found in amy-
loid plaques of patients suffering from Alzheimer’s disease
[27] and responsible for 𝛼-synuclein aggregation and 𝛽 sheets
arrangement [28]; and the carboxy-terminal domain from 96
to 140 amino acid residues, which is the main target for the
protein phosphorylation [29, 30] (Figure 1(a)). 𝛼-Synuclein
is primarily expressed in neurons at cytosolic level and is
abundant in presynaptic terminals [31]. However, it has also
been linked to synaptic vesicles, plasma membrane lipid rafts
and the nucleus [32]. Up to date, themain normal function of
𝛼-synuclein has not been well defined. 𝛼-Synuclein has been
related to different functions, including inhibition of tyro-
sine hydroxylase [33], inhibition of dopamine release [34],
dopamine uptake [35], neural plasticity, synaptic maturation
and maintenance [36–38], and v-SNARE complex assembly
[39, 40].
𝛼-Synuclein has the capability to assemble into amyloid

fibers, soluble oligomers, and/or aggregates. Once the accu-
mulation of 𝛼-synuclein surpasses its degradation rate, it
leads to the formation of Lewy bodies and the subsequent
death of dopaminergic neurons in the substantia nigra
[41]. It has been suggested that 𝛼-synuclein protofibrils are
responsible for the neurotoxic effects induced by 𝛼-synuclein
[42, 43]. Among the possible mechanisms involved in the
neurotoxicity mediated by 𝛼-synuclein are the following:

mitochondrial dysfunction, oxidative stress [44], lysosomal
leakage [45], cytoskeletal disruption [46], altered axonal
transport, and subsequent synapses dysfunction, which are
all related to neurodegeneration [47]. 𝛼-Synuclein is tar-
geted for degradation by the UPS and the ALS including
the chaperone-mediated autophagy (CMA) and macroau-
tophagy (autophagy) [48–51]. Importantly, both degradation
pathways are dysregulated or inhibited in PD [52].

The relationship between 𝛼-synuclein and PD was estab-
lished with the identification of specific mutations in the
SNCA gene encoding for 𝛼-synuclein, in families with PD.
The specific mutations identified in 𝛼-synuclein were a
substitution from alanine to threonine at amino acid residue
53 (A53T), a mutation of Greek origin [53]; a substitution
from alanine to proline at amino acid residue 30 (A30P), a
mutation of Germanic origin [54]; and a substitution from
glutamic acid to lysine at amino acid residue 46 (E46K),
a mutation of Spanish origin [55] (Figure 1(a)). Recently,
two new mutations have been identified, a substitution from
histidine to glutamine at amino acid residue 50 (H50Q) [56]
and a substitution from glycine to aspartic acid at amino
acid residue 51 (G51D), a mutation of French origin [57].
Additionally, SNCA gene duplication [58] and triplication
also occur and are related to PD [59].

3. 𝛼-Synuclein Phosphorylation in Parkinson’s
Disease: Neuroprotective or Neurotoxic?

In the aggregation process of 𝛼-synuclein, its phosphoryla-
tion plays an important role [29, 60] by directing its local-
ization and interaction [61] and by modifying its secondary
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Figure 2: Cell alterations involved in the aggregation process of 𝛼-synuclein. Damaged or unrequired proteins are regulated by both the
proteasomal and lysosomal degradation pathways. UPS disruption leads to activation of the ALS and vice versa, as a compensation
mechanism. Bothmechanisms are affected in PD, which results in protein accumulation including 𝛼-synuclein and ubiquitin-bound proteins.
Accumulation of unfolded or misfolded proteins into the endoplasmic reticulum activates the unfolded protein response. Mitochondrial
dysfunction and oxidative stress are also interrelated and linked to the pathogenesis of PD. All these alterations are associated with the
phosphorylation process of 𝛼-synuclein and increase 𝛼-synuclein oligomerization, leading to Lewy body formation and subsequent apoptotic
cell death.

and tertiary conformation [62–65]. 𝛼-Synuclein is targeted
by phosphorylation on multiple sites located at its carboxy-
terminal end (S87, S129, Y125, Y133, and Y136) [66–71]
(Figure 1). Several kinases have been linked to 𝛼-synuclein
phosphorylation, such as casein kinases 1 and 2 (CK1 and
CK2), G protein-coupled receptor kinases 2 and 5 (GRK2
and GRK5), polo-like kinase 2 (PLK2) [29, 72, 73], Fyn [74],
andmore recently serine/threonine protein kinase (LK6) and
MAP kinase-interacting kinase 2a (Mnk2a) [75].

Studies performed in cell cultures with neuronal phe-
notype have demonstrated that CK2-mediated 𝛼-synuclein
phosphorylation, particularly at S129, increases the appear-
ance of eosinophilic cytoplasmic inclusions resembling the
Lewy bodies of PD [76]. A major component of these
inclusions consists of C-terminally truncated 𝛼-synuclein,
and lysosomal proteases, such as cathepsin D, may be
involved in its production for 𝛼-synuclein oligomerization

[77]. Somemechanisms are triggered by the phosphorylation
of 𝛼-synuclein, including the unfolded protein response
(UPR) and disruption of lysosomal degradation pathways,
which may lead to protein aggregation and subsequently to
cell death (Figure 2) [78, 79]. Monomers and dimers of 𝛼-
synuclein are degraded by ALS, specifically, CMA [79, 80].
In addition, it has been reported that a phosphorylated-like
mutant version of 𝛼-synuclein (S129E), which mimics the
biochemical and biophysical properties of 𝛼-syn phospho-
rylation observed in PD patients’ brains [76] and remained
“phosphorylated-like” after exposure to the lysosomal frac-
tion, cannot translocate across the lysosomal membrane
probably because of a conformational change induced by its
phosphorylation, decreasing its interaction with the CMA
receptor (LAMP-2A) at the lysosomal membrane [79, 80].

In addition, dysfunctional mitochondrial metabolism
and increased ROS production are also related to the
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Figure 3: 𝛼-Synuclein-copper complex formation process. Copper can be found in living organisms in both forms, oxidized Cu2+ and reduced
Cu+, and enters into the cell as Cu+ through CTR1 and CTR2. Afterwards, copper is transported to the nuclei, endoplasmic reticulum, and
mitochondria via chaperone proteins. An overload of copper may lead to the 𝛼-synuclein-copper complex formation by three potential
mechanisms. In the first one, a single 𝛼-synuclein molecule binds to Cu2+, folding and bringing together the amino and carboxy-terminal
ends.The secondmechanism involves twomolecules of 𝛼-synuclein with a head-to-tail arrangement, generating a copper-binding site at both
ends. In the third mechanism, the carboxy-terminal region of one molecule of 𝛼-synuclein interacts with the amino-terminal region from
another molecule of 𝛼-synuclein creating a Cu2+ binding site. Next, one of the two 𝛼-synucleins interacts with a third 𝛼-synuclein molecule,
forming a second Cu2+ binding site. This process will eventually lead to 𝛼-synuclein oligomerization.

phosphorylation of 𝛼-synuclein (Figure 3) [81]. Hydrogen
peroxide- (H

2
O

2
-) induced oxidative stress increases the

phosphorylation of 𝛼-synuclein at S129 and the formation of
cytoplasmic inclusions [76]. On the other hand, some neuro-
toxins and the UPS inhibition increase the activity of GRK5
and CK2, whose interaction with Ca2+/calmodulin increases
𝛼-synuclein phosphorylation at S129 [82–84]. Rotenone,
an inhibitor of mitochondrial complex I, along with iron,
increases the levels of 𝛼-synuclein phosphorylation at S129,
by inducing ROS production in dopaminergic cells [81].

So far, the role of 𝛼-synuclein phosphorylation is contro-
versial. Some studies have shown a neuroprotective role of 𝛼-
synuclein phosphorylation at S129 by preventing the binding
of 𝛼-synuclein oligomers to membranes and, therefore, cellu-
lar disruption [85–88]. Additionally, phosphorylation at S129
blocked 𝛼-synuclein fibrillation in vitro [89]. Many studies
had focused on the role of 𝛼-synuclein phosphorylation,

specifically at S129, and also at other residues such as
S87. 𝛼-Synuclein mutant variants, capable of mimicking or
inhibiting the phosphorylation process (S129D, S129E, and
S129A), have contributed to the elucidation of its role [66,
70, 89–92]. Phosphomimicmutants S129D/E were not able to
reproduce in vitro the structural and aggregation properties
of 𝛼-synuclein. However, a nonphosphomimic mutant S129A
showed a higher protein aggregation rate and neurotoxicity
than the wild type form [70, 71, 89].

On the contrary, there is evidence showing that 𝛼-
synuclein phosphorylation at S129 induces cytotoxicity [66,
77, 93, 94]. It has been demonstrated that 𝛼-synuclein
phosphorylation at S129 mediated by CK2 is an important
factor for its protein aggregation and toxicity, inducing
UPR dysregulation, endoplasmic reticulum (ER) stress, and
apoptosis [78]. Besides, phosphorylation at S129 is essential
for interaction of 𝛼-synuclein with synphilin-1 and parkin,
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which form the ubiquitinated inclusions [76]. Recently, it has
been reported that 𝛼-synuclein can also be phosphorylated
by LK6 andMnk2a, with subsequent dopaminergic neuronal
death and formation of cytoplasmic inclusions, respectively
[75]. Nonetheless, it has been suggested that malfunction of
the UPS increases CK2 activity, resulting in hyperphospho-
rylation of the 𝛼-synuclein at S129 [95].

Approximately 90% of 𝛼-synuclein detected in Lewy
bodies from postmortem PD samples is phosphorylated at
S129. Conversely, only 4% of 𝛼-synuclein present in normal
brains is phosphorylated [66, 70, 96, 97]. Importantly, a mass
spectrometry study in human cerebrospinal fluid (CSF) of PD
and other parkinsonian disorders determined a significantly
higher concentration of phosphorylated 𝛼-synuclein at S129,
as well as a significant increase in the ratio of phosphorylated
𝛼-synuclein at S129/total 𝛼-synuclein in PD compared to
healthy controls [98]. More recently, a marked difference
between PD patients and healthy controls was observed with
a sensitive and specific Elisa test, by combining measure-
ments of total, oligomeric, and phosphorylated (S129) 𝛼-
synuclein in CSF [99].

4. Interaction of Phosphorylated 𝛼-Synuclein
with Metal Ions

Proteins are the main biomolecules affected in most patholo-
gies; posttranslational modifications of proteins suchlike oxi-
dation, nitration, carbonylation, glutathionylation, and phos-
phorylation are related to protein inactivation. Phosphory-
lated proteins have a strong binding affinity to certain metals
[16, 100, 101]. Multivalent metal ions, like manganese, cobalt,
iron, andmainly aluminum and copper, increase 𝛼-synuclein
fibril formation by inducing conformational changes [14, 102,
103]. 𝛼-Synuclein may interact with different metal ions at
either its carboxy-terminal domain or its amino-terminal
domain, depending on the metal ion concentration [13]. For
instance, at low concentrations (40–100 𝜇M) Cu2+ ion binds
to the amino-terminal domain [13, 104], while at extremely
high concentrations (0.5–5mM), which are unlikely to occur
in tissues, metal ions such as Fe2+, Mn2+, Ni2+, Co2+, and
Cu2+ bind to the carboxy-terminal domain [105]. Cu2+ ion is
a potent inducer and accelerator of 𝛼-synuclein aggregation,
linked to the carboxy-terminal domain, which is required
for its oligomerization [106]. Phosphorylation at both Y125
and S129 residues of 𝛼-synuclein, which are close to metal-
binding sites, increments Cu2+, Pb2+, and Fe2+ binding
capability to carboxy-terminal domain (Figure 1) [17, 105].

5. Copper Mediates 𝛼-Synuclein Aggregation

On the other hand, copper has the ability to inhibit the
proteasomal chymotrypsin-like peptidase activity [107]. Cop-
per enters into the cell through the copper transporters 1
and 2 (CTR1 and CTR2), which are located on the cell
membrane (Figure 3) [108]. Two regions, 1MDVFMKGLS9
and 48VVHGV52 (Figure 1), with high-affinity binding sites
for copper were identified at 𝛼-synuclein, and may be of

great biological importance in the pathogenesis of PD [104].
Within the 𝛼-synuclein sequence, methionine 1 and histidine
50 residues function as independent anchoring sites for
copper binding (Figure 1) [104, 109, 110].

There are three models that have been suggested for
copper binding to 𝛼-synuclein (Figure 3). In the first model,
a single 𝛼-synuclein molecule binds to Cu2+, folding and
bringing together the amino and carboxy-terminal regions.
The secondmodel involves twomolecules of𝛼-synucleinwith
a head-to-tail arrangement, generating a copper-binding site
at both ends. In the thirdmodel, 𝛼-synuclein oligomerization
takes place by interaction of the carboxy-terminal region of
one molecule of 𝛼-synuclein with the amino-terminal region
from a second molecule of 𝛼-synuclein originating a Cu2+
binding site; then a second Cu2+ binding site is formed by
interaction of one of the two 𝛼-synucleins with a third 𝛼-
synuclein molecule [15].

Regarding the aggregation process of 𝛼-synuclein medi-
ated by copper, two mechanisms have been proposed. In
one of them, high levels of 𝛼-synuclein-copper complexes
will cause instability of intramolecular interactions leading
to self-assembling of 𝛼-synuclein into fibrillar complexes.
In the second one, copper redox-mediated reactions induce
oxidation of 𝛼-synuclein using electron donors (NADH,
NADPH, glutathione, etc.), causing its oligomerization and
precipitation [111–114].

Environmental exposure to metal ions (e.g., zinc and
copper) induces 𝛼-synuclein aggregates and oxidative stress,
which are also associatedwith dysregulation of theUPS in PD
[82, 115, 116].

Copper plays a dual role in the neurotoxic effect of 𝛼-
synuclein. Once intracellular copper concentration is raised,
chaperone proteins (e.g., ATOX1, CCS,MT3, andCOX 17) are
in charge to uptake this metal inside the cell, but an overload
of copper might surpass the chaperone proteins available to
regulate its levels. On the other hand, mutations affecting
the ability of chaperones to bind copper might also increase
its toxic effect [117]. Subsequently, free copper binds to the
UPS to inhibit its activity; then𝛼-synuclein is phosphorylated
increasing its affinity to metals [71]. 𝛼-Synuclein-copper
complex formation alters cell redox signaling, which results
in ROS formation including H

2
O

2
. H

2
O

2
oxidizes dopamine,

which is toxic to dopaminergic neurons [118, 119].

6. Concluding Remarks

𝛼-Synuclein is a highly relevant protein in PD etiopathology,
and since the elucidation of 𝛼-synuclein-copper interactions,
this transition metal was brought into the spotlight of neu-
rodegeneration research. Although this complex formation is
now subject of intense research,many open questions remain:
How are levels of copper regulated by 𝛼-synuclein? Does cop-
per influence 𝛼-synuclein phosphorylation and aggregation?
How important is copper and 𝛼-synuclein interaction? Can
we use phosphorylation of 𝛼-synuclein as a biomarker? Can
we exploit the inhibition of phosphorylation of 𝛼-synuclein
as a therapeutic approach? It is certain, that these therapies
need to initiate promptly in order to address pathological
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changes in a less advanced stage. Regrettably, the diagnosis of
PDnowadays is based on purely clinical signs, and these signs
aremanifestedwhenmore thanhalf of dopaminergic neurons
have died. Therefore, identification of early biomarkers such
as𝛼-synuclein phosphorylationmay be a promising approach
for diagnosis and subsequently for PD treatment and cor-
related with preclinical signs indicating incipient disease at
a nonsymptomatic stage. Since 𝛼-synuclein and copper play
such important roles in the aggregation process, a chelator
administration is currently under investigation and may be a
helpful approach against PD.
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