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The immune system responds differently in women and in men. Generally speaking,

adult females show stronger innate and adaptive immune responses than males. This

results in lower risk of developing most of the infectious diseases and a better ability to

clear viral infection in women (1–5). On the other hand, women are at increased risk of

developing autoimmune diseases (AID) such as rheumatoid arthritis, multiple sclerosis

(MS), systemic lupus erythematosus (SLE), Sjögren’s syndrome, and the autoimmune

liver diseases autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) (6). Factors

contributing to the female sex bias in autoimmune diseases include environmental

exposure, e.g., microbiome, behavior, and genetics including X chromosomal inactivation

of genes. Several lines of evidence and clinical observations clearly indicate that sex

hormones contribute significantly to disease pathogenesis, and the role of estrogen in

autoimmune diseases has been extensively studied. In many of these diseases, including

the autoimmune liver diseases, T cells are thought to play an important pathogenetic role.

We will use this mini-review to focus on the effects of androgens on T cells and how the

two major androgens, testosterone and dihydrotestosterone, potentially contribute to the

pathogenesis of autoimmune liver diseases (AILD).
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ANDROGENS IN STEADY STATE

The androgenic steroid hormones, testosterone, dihydrotestosterone (DHT), androstenedione, and
dehydroepiandrostenone (DHEA) are generated from cholesterol (7). In men, the majority of
testosterone precursors (>95%) are produced by Leydig cells in the testes and, to a lesser degree,
by the adrenal glands. In women, testosterone precursors are produced by the adrenal glands,
the thecal cells of the ovaries, and, during pregnancy, by the placenta (7–10). Metabolism of
androgens is complex with testosterone generated from androstenedione in peripheral tissues and
the conversion of testosterone into estrogen mediated by the enzyme aromatase in a context and
tissue specificmanner. Conversion of testosterone into DHTmainly occurs in the liver by the action
of 5α-reductase, and DHT cannot be further metabolized to estrogen (11). Sixty-five to 70% of
testosterone in blood is bound to sex hormone-binding globulin (SHGB) and 30–35% to albumin,
which transport the hormone to target tissues. Only around 0.5–3% of testosterone is found freely
in blood (9). Concentrations of bioavailable testosterone can be estimated with total testosterone,
SHGB, and albumin serum levels (12).
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Interestingly, women show blood androgen levels that are
higher than the levels of estrogen. This is due to DHEA
produced by the adrenal glands which is subsequently converted
to testosterone via androstenedione (8). The levels of total
testosterone in women range from 0.35 to 2.94 nmol/l, and there
are no significant changes during daytime in testosterone and free
testosterone levels (9, 13). In premenopausal women testosterone
and free testosterone slightly peak midcycle, but DHT levels
do not seem to change during the menstrual cycle (14, 15).
With age and after menopause, testosterone levels in women
decline, leading to significantly lower levels of testosterone, free
testosterone, DHT, and SHGB (13).

In men, testosterone helps to regulate a variety of
physiological processes including muscle mass and strength,
bone mass, fat distribution, libido, and the production of sperm,
red blood cells, and immune cells (11). Due to the complex
metabolism of androgens and their tissue and context dependent
conversion into estrogen, it is difficult to delineate the action of
specific androgens within a given tissue in humans in vivo. For
example, studies suggest that the effect of testosterone on male
bone mass occurs mainly through its conversion to estrogen
(16, 17). Serum testosterone levels are significantly higher in men
than in women and typically range from 6.2 to 32.1 nmol/l (18).
During daytime, a slight decrease in testosterone levels toward
the afternoon can be observed (18). Testosterone production
in men typically decreases with age to approximately the lower
end of the mean levels observed in middle-aged adult men
(12, 18–20).

ANDROGENS SIGNAL THROUGH
CYTOSOLIC ANDROGEN RECEPTOR (AR)
AND NON-CLASSICAL MEMBRANE
BOUND RECEPTORS (mAR)

Cytosolic Androgen Receptor (AR)
Androgens, including testosterone and DHT, reach their target
cells and signal through androgen receptors. In addition to the
classical cytoplasmic androgen receptor (AR), androgens can also
bind and activate membrane androgen receptors (mAR) (21).
DHT binds the AR with a higher affinity and lower dissociation
rate than testosterone, while testosterone probably has a higher
affinity to the mAR (11). The expression of androgen receptors
has been reported in many different tissues, in epithelial and
endothelial cells, and in a variety of innate and adaptive immune
cells, including human and mouse T cells (22–24).

Abbreviations: AID, autoimmune diseases; SHGB, sex hormone-binding

globulin; DHT, dihydrotestosterone; AR, androgen receptor; mAR, membrane

bound androgen receptors; LBD, ligand-binding domain; DBD, DNA-binding

domain; NTD, N-terminal domain; ARE, androgen response elements; PI3K,

phosphoinositide-3-kinase; CREB, cAMP response element-binding protein; Treg,

regulatory T cell; BPH, benign prostatic hyperplasia; ADT, androgen deprivation

therapy; AIRE, autoimmune regulator; VAT, visceral adipose tissue; MS, Multiple

sclerosis; PBC, primary biliary cholangitis; AIH, autoimmune hepatitis; SLE,

systemic lupus erythematosus; EAE, autoimmune encephalomyelitis; AMAs,

anti-mitochondrial antibodies; ANAs, antinuclear antibodies; EAO, experimental

autoimmune orchitis.

The classical cytoplasmic AR is a member of the nuclear
receptor superfamily and can act as a ligand-dependent
transcription factor (25, 26). The human AR gene consists
of 8 exons and is located on the X chromosome (27). It
has a ligand-binding domain (LBD), a DNA-binding domain
(DBD), and an N-terminal domain (NTD) (27). In an unbound
state, the AR is residing in the cytoplasm in a complex with
chaperons, heat-shock proteins, and cytoskeletal proteins (27,
28). The binding of ligands leads to a conformational change,
receptor dimerization, and translocation to the nucleus (29). The
NTD affects the transcriptional activity and the DBD permits
the binding and recognition of androgen response elements
(ARE) on target genes (27). The complex finally disassociates
and returns to the cytoplasm (27). AR can also be post-
translationally modified through phosphorylation, methylation,
or ubiquitination, allowing for ligand-independent modulation
of signaling (27, 29, 30).

Next to the regulation of gene transcription, AR interacts with
PI3K (phosphoinositide-3-kinase), Src family kinase, and RAS
GTPase (27). This interaction affects MAPK/ERK signaling and
ERK translocates into the nucleus to affect transcriptional factors
leading to adjustment of gene expression involved, e.g., in cell
proliferation and survival (27, 28). In a complex but not yet fully
elucidated process, mTOR, FOXO1, FOXO3a, HDAC3, STAT3,
EGFR, and AKT were shown to be involved in non-genomic AR
signaling (27, 28, 31–35).

Membrane Bound Androgen Receptors
(mAR)
The zinc transporter ZIP9 (SLC39A9) has been identified as a
membrane bound androgen receptor (mAR), interacting with
several kinase pathways such as ERK1/2 and others (36–39).
In human prostate cancer cells with overexpressed ZIP9 (PC-
3-ZIP9) and breast cancer cells (MDA-MB-468), stimulation
with testosterone leads to G proteins being activated, second
messenger pathways, and elevation of intracellular free zinc,
resulting in initiation of apoptosis and upregulation of pro-
apoptotic genes such as BAX, p53, and Caspase-3 (36, 40). In the
spermatogenic cell line GC-2, testosterone was shown to induce
activation of ERK1/2 and the transcription factors ATF-1 and
CREB through Zip9, which interacted with G-protein Gnα11
(38, 39).

The G-protein coupled receptor GPRC6A was suggested as
another mAR, which has not yet been reported in a broad
range of tissues. In vitro, GPRC6A phosphorylates ERK after
testosterone stimulation in prostate cancer and bone marrow
stromal cells (11, 41). One group showed the involvement of
GPRC6A in testosterone production in Leydig cells (42). To our
knowledge, however, the expression of GPRC6A in T cells is
unknown, reflecting the general lack of knowledge on the role
of membrane bound androgen receptors in the immune system.

Androgen Independent Receptor Signaling
AR signaling can also be induced independently from androgen
binding. In prostate cancer cells, IL-6 dependent interplay
with AR interferes with the PKA/PKC/MAPK pathway
and IL-8 has been shown to promote their AR dependent
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growth and activation independent of androgens (11, 28, 42–
44). Furthermore, IGF-1 stimulated AR phosphorylation,
translocation to the nucleus, and upregulation of AR gene
expression in myoblast C2C12 cell line (45, 46). These data
suggest that inflammation associated changes in the cytokine
milieu in an organ affected by autoimmune injury may
significantly alter AR signaling. The liver is the central organ of
androgen conversion, but so far, the effects of liver inflammation
on testosterone metabolism and AR signaling have not yet
been explored.

Moreover, the length of the CAG repeat region in exon 1
of the AR gene influences its signaling activity (47–49). Studies
in men and women with systemic lupus erythematosus (SLE)
and rheumatoid arthritis (RA) demonstrated variable and sex
dependent effects of this heritable trait on disease severity and
phenotype (50–53).

Overall, the activation and signaling of AR and mAR is
complex, and crosstalk between AR transcriptional activity and
non-genomic modification of AR- or mAR induced signaling
cascades can lead to highly context dependent modification of
androgen responses (27).

ANDROGENS AND HUMAN T CELLS

AR expression was identified in the majority of innate and
adaptive immune cells suggesting that androgens directly
modulate the function and development of immune cells.
Already in the 1980s, AR expression was reported for human
thymocytes (54). Thereafter, AR was found to be expressed on
various human and mouse cells of the innate immune system,
such as monocytes and macrophages from different tissues, ILC2
progenitors, neutrophils, and mast cells (55–61). In adaptive
immunity, AR-expression was shown in human T cells, including
CD8+ T cells and CD4+ and splenic CD4+ CD25+ T cells
(55, 56, 62–64). In addition to AR, CD4+ and CD8+ T cells were
shown to express mAR (65).

The effects of androgens on T cells were studied in vitro and
by comparing male and female T cells ex vivo. It was found
that Foxp3 expression, the Treg master transcription factor, was
increased in human T cells after DHT treatment in vitro, and
increased Treg frequencies were reported in men compared to
women, and in boys already at the age of eight (66–68). Therefore,
androgens may already influence the frequencies of T cells in vivo
early in life. In adult men, there is a recent report of a negative
correlation between CD3+, CD8+, and CD4+ T cells residing
in adipose tissue and serum testosterone levels (69). Moreover,
upon stimulation of healthy human PBMC with TLR8/9 ligands,
secretion of IL-10 in male PBMC was higher than in female
PBMC. Upon TLR7 stimulation, IFNα was lower in male PBMC.
The amount of IL-10 upon TLR9 stimulation correlated to
dehydroepiandrosterone sulfate levels in males, but this study
cannot conclude whether these are direct or indirect effects on T
cells via dendritic cells (70). Microarray analysis of restimulated
T cells showed a higher expression of “pro-inflammatory” genes,
such as IFNγ, IL12Rß2, LTß, GNLY, and GZMA in female T cells,
while male T cells had a higher expression of IL10, IL5, and IL17A
(71). Moreover, healthy male human naïve CD4 cells produced

lower levels of IFNγ and had a trend of higher levels of IL-
17A upon CD3/CD28 stimulation, possibly through upregulated
PPARα and downregulated PPARγ1, and similar results were
observed in mice (72–74).

Analysis of men under hormone replacement therapy could
give new insight into the effects of androgens in vivo, although
it is impossible to delineate these in vivo effects to single
immune cell types such as T cells. Thus, in hypogonadal men
a reduction in serum IL1ß and TNF, as well as an increase in
IL-10, has been described following testosterone replacement
treatment. Whether part of these observed differences related to
changes in T cell subpopulations remained speculation (75). In
a single case study with one hypogonadal man, an increase in
naïve CD4+ CD45Ra+ cells could be observed that could be
reverted upon androgen treatment (76). In prostate tissue of BPH
(benign prostatic hyperplasia) patients undergoing 5α-reductase
type II inhibitor treatment with finasteride leading to reduced
intraprostatic DHT levels, a stronger infiltration of CD8+ T cells
and higher CCL5 expression was observed (77). Moreover, in a
follow-up study, the authors showed in vitro that in conditions
of low androgen concentrations, CD8+ T cells were able to
promote prostate epithelial cell proliferation, possibly through
the CCL5/JAK-STAT5/CCND1 pathway (78). After androgen
deprivation therapy (ADT) of prostate cancer patients, Wang
et al. found enrichment of CD4lowHLA-G+ T cells in peripheral
blood, besides generally increased CD4+ T cell frequencies (79).
In detail, these CD4low HLA-G+ T cells expressed IL-4, IL-17A,
and RORγt, indicating an enrichment of IL-4 producing TH17
cells after ADT (79).

Testosterone therapy in transgender individuals offers further
possibilities to study the effects of androgens on immune cells
in vivo. Giltay et al. reported an increase in the IFNγ/IL-4 ratio
and TNF production of PBMCs isolated fromwomen undergoing
hormone replacement therapy with testosterone. Cells were
stimulated with PHA for 36 h and the results indicated increased
TH1 differentiation (80). However, as these results contrast some
of the above-mentioned studies, they should be further validated
and it should be investigated in detail which cell type produced
these cytokines.

Taken together, these results provide evidence that androgens
influence T cell function and phenotype either directly or
indirectly. However, in-depth and comprehensive analyses of
direct and context dependent androgen effects on human T cells
are lacking.

EFFECTS OF TESTOSTERONE ON
T CELLS IN ANIMAL MODELS

Animal models have added to the knowledge on the effects of
testosterone on immune cells. Olsen et al. observed a reduced
thymus size within 2–4 h after testosterone injection of castrated
male mice already in 1998. Mechanistically, increased apoptosis
was induced in in vitro thymus tissue culture through the
AR and reduced percentages of CD4+ CD8+ double positive
thymocyte were detected in testosterone treated mice (81, 82).
However, several other studies found no direct in vitro effect
of testosterone on apoptosis of isolated thymocytes (82, 83).
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A potential explanation for this discrepancy could be that the
thymic effects of androgens are mediated by AR expression on
thymic epithelial cells (TEC) which are crucial for the negative
selection of immature T cells (22, 84, 85). Reduction of androgen
levels through castration of mice led to increased numbers of
immature triple negative T cells and early T lineage progenitors
and a decrease in mature CD4+ and CD8+ single positive cells
in the thymus (86). More recently, thymic expression of AIRE
(autoimmune regulator) in medullary TECs, which is involved in
the thymic selection of T cells by clonal deletion of autoreactive
T cells, has been reported to be higher in male human and
mouse thymus, possibly induced by the effects of androgens
through AR (87). However, ADT by castration of adult male
mice did not change TCR diversity but increased the numbers
of “naïve” CD44low CD4+ and CD8+ T cells within lymph
nodes (88). Additionally, these mice recovered their T and B cells
quicker than non-castrated controls after chemotherapy-induced
lymphocyte depletion, and these androgen-deprived T cells were
more prone to proliferate in vitro (88). Taken together, these
data suggest that androgens affect T cell maturation and selection
within the thymus either directly or indirectly via epithelial cells.

Regarding peripheral mature T cells, it has been shown that
DHT treatment in female mice resulted in decreased IL-12 and
increased IL-10 production compared to cells from untreated
mice following aCD3 stimulation in vitro, and this difference was
primarily caused by CD4+ T cells (55). Microarray analysis of
splenic CD4+ T cells from castrated or control mice showed
genes of IFN-signaling and T-helper cell pathways skewed into
TH1 differentiation, including upregulation of IFNy, T-bet, and
IL-12R (89). Additionally, CXCR3 expression was increased in
CD4+ T cells of the castrated group suggesting suppressive
effects of androgens on chemokine receptor expression relevant
for tissue homing. Along this line, after castration there was
an increase in CD3+ cells within lung and prostate tissue. A
direct suppressive effect of testosterone on T cells was confirmed
by a decrease of IFNy and T-bet expression found in splenic
derived CD4+ T cells after treatment with synthetic testosterone
in vitro (89). Further in vitro assays showed a reduction of STAT4
phosphorylation in CD4+ T cells upon androgen and IL-12
stimulation (89).

Confirming direct effects of androgens on mouse T cells,
female T cell lines selected in the presence of DHT produced
less IFNy and more IL-10 than control cell lines selected without
the addition of DHT (63). Splenic derived mouse CD4+ T cells
cultured with testosterone-enriched Leydig-conditionedmedium
showed induction of IL-10 secretion and increased Foxp3
expression, suggesting not only suppression of TH1 cytokines
but also an increase in suppressor function of T cells induced by
androgens (59, 63). In contrast to some previous reports of a shift
toward TH2 cells, Jia et al. found reduced frequencies of TH1
and TH17 cells after in vitro DHT and aCD3 stimulation of
mouse lymph node cells with no shift toward TH2 cells, possibly
through enhanced autophagy in these cells (90). Recently, a
reduction of murine in vitro TH1 and TH17 differentiation
has been demonstrated by aromatase inhibitor treatment in
combination with testosterone (91). In addition, visceral adipose
tissue (VAT) from male mice showed higher Treg (CD4+

FOXP3+) frequencies then female VAT. The isolated Tregs
showed differences regarding phenotype, chromatin accessibility,
and transcriptional landscape. In particular, the expression of
CCR2 was higher in male VAT Tregs compared to female Tregs.
Female mice treated with testosterone showed an increased
VAT expression of CCL2, the ligand for CCR2, and IL-6 and
IL1ß, which likely stem from innate immune cells (92). These
data show that the microenvironment including crosstalk with
epithelial and innate immune cells clearly contributes to sex
dependent differences observed in T cells.

Taken together, current knowledge suggests that androgens
directly or indirectly affect T cell maturation, proliferation, and
also their differentiation and cytokine production in mice and
adult males. However, little is known on the direct effects of the
different androgens on T cells, and specifically on the context
dependent cellular and molecular mechanisms involved. Overall,
androgens seem to induce a shift from TH1 effector T cells
to a more suppressive phenotype. They also seem to enhance
regulatory T cells. Clearly, more studies are needed that take
into account signaling via classical and non-classical androgen
receptors and the context dependent modulation of androgen
signaling by an inflammatory microenvironment within tissues.

EFFECTS OF ANDROGENS ON T CELLS IN
AUTOIMMUNITY

Autoimmune diseases (AIDs) are disorders characterized by
an aberrant immune response against self-antigens. There are
more than 60 different autoimmune diseases, which pose a
major medical and societal challenge. The pathophysiology of
most AIDs is complex and includes environmental, genetic, and
epigenetic components. Most AIDs present with a strong female
predisposition. MS, SLE, and the autoimmune liver disease PBC
are among the diseases with the strongest female predominance
(Table 1). While many AIDs occur more frequently in women,
the course of disease may be more severe in men, exemplified
by the worse disease course of male patients with MS or
PBC (93, 119). Male PBC patients respond less to treatment
with ursodeoxycholic acid and are at increased risk of disease
progression and hepatocellular carcinoma development (119,
120). The mechanisms behind these apparent sex differences in
disease susceptibility and severity are largely unknown.

PBC is a rare AID of the liver with a female to male
ratio as high as 9:1 and characterized by the presence of
anti-mitochondrial antibodies (AMAs), specific antinuclear
antibodies (ANAs), and strong HLA associations (98, 121, 122).
Immune responses directed against intrahepatic cholangiocytes,
leading to the destruction and loss of small bile ducts
(ductopenia) and portal inflammation with granuloma
formation, are involved in the disease pathogenesis (121–
123). In the other classical autoimmune liver disease, AIH,
the female to male ratio is 3:1, and patients can present with
elevated serum IgG-levels and/or hypergammaglobulinemia,
elevated serum transaminase levels, and non-organ specific
autoantibodies (101). The target cells of autoimmune attack
in AIH are hepatocytes. The human leukocyte antigen alleles
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TABLE 1 | Comparison of autoimmune diseases regarding female to male ratio,

knowledge on testosterone serum levels, and therapeutic testosterone application.

Autoimmune

disease

F:M ratio Testosterone serum

levels

Testosterone therapy

Human Animal

model

Multiple sclerosis

(MS)

3:1 (93) Decreased in male

patients (94, 95)

Yes

(94, 95)

Yes

(96, 97)

Primary biliary

cholangitis (PBC)

9:1 (98) Decreased in female

patients in one study

(99)

No Yes (100)

Autoimmune

hepatitis (AIH)

3-4:1 (101) Unknown No No (102)

Systemic lupus

erythematosus

(SLE)

9:1

(103, 104)

Decreased in male and

female patients (105)

Yes

(106, 107)

Yes (108)

Autoimmune

orchitis

Male only Unknown No Yes (109)

Rheumatoid

arthritis (RA)

3:1 (110) Decreased in male and

female patients

(111, 112)

Yes (113) Yes (114)

Sjögren’s

syndrome

14:1 (115) Decreased in female

patients (116)

Yes (116) Yes

(117, 118)

(HLA)-DRB1∗03:01 and HLA-DRB1∗04:01 are known risk
factors for AIH and may also correlate with disease course,
but they are not required for AIH development (124). Many
lines of evidence support the involvement of CD4+ and CD8+
T cells in both diseases’ pathogenesis (122, 125). Studies have
investigated the effect of sex hormones on immune cells and
how sex chromosomes including X chromosome inactivation
affect the sex bias in AIDs (126–130). For example, in PBC an
enhanced Xmonosomy rate within PBMC, possibly T and B cells,
compared to healthy women was found, while XCI was random
and similar to the controls (131–133). Both PBC and AIH have
their age peak of manifestation around menopause, and both
show disease modulation by pregnancy with greatly reduced
AIH activity during pregnancy and frequent flares after delivery,
strongly suggesting the involvement of sex hormones (134–137).
Deciphering these mechanisms may lead to novel therapeutic
strategies for many of these diseases. We will focus on the studies
investigating androgens in the context of autoimmunity and
T cells in mouse models and in the human autoimmune liver
diseases, AIH and PBC.

There are few mouse models for autoimmune liver
inflammation reflecting certain aspects of autoimmune
liver diseases and in some of them, a female predominance
is observed similar to human disease. In a mouse model of
PBC (ARE-Del−/−), female mice showed increased serum levels
of chemokines, such as MIG and IP-10, as well as increased
cytokine levels including TNF, IL-10, and IL-13. They also
showed increased expression of interferon Type I and II
signaling in the liver compared to the male mice (138, 139).
For chronic cholestatic liver inflammation and periductular
fibrosis, the Mdr2−/− is a well-established mouse model.
Already in 1997 Nieuwerk et al. described a more severe liver
pathology in Mdr2−/− female mice compared to male mice

which was associated with altered bile salt composition in
bile (140). However, the impact of sex hormones on disease
development in this model has not yet been investigated.
We could recently identify an immunosuppressive effect of
testosterone in an antigen dependent and T cell driven mouse
model of experimental cholangitis. Cholangitis is induced by the
transfer of antigen-specific CD8+ T cells (OT-1) which recognize
their ovalbumine peptide antigen on cholangiocytes of recipient
mice (100). This model shows a high female predominance.
Furthermore, testosterone treatment completely suppressed
liver inflammation in female mice and lack of testosterone
rendered male mice susceptible to cholangitis development.
Mechanistically, we could demonstrate that testosterone
suppressed the expression of IL-17A by liver infiltrating
lymphocytes and the hepatic expression of the lymphotropic
chemokines CXCL-9 and CXCL-10 (100). Similar protective
effects of testosterone were also shown in mouse models of
MS and murine lupus (96, 97, 141–145). In these models, an
influence of sex and androgens on the T cell expression of
IFNγ and IL-10 was reported (63, 96, 97). The protective effect
of testosterone on EAE development depended on androgen
receptor expression and also on age, since older mice were
not protected (146). In a mouse model of T cell mediated
autoimmune diabetes (NOD mice), a higher in vitro CD4+ T
cell production of IFNy was observed in female mice and of
IL-4 in male mice, which was most prominent in young NOD
mice (147). In experimental autoimmune orchitis (EAO), a rat
model of a male AID called autoimmune orchitis, testosterone
supplementation lead to a reduced incidence of EAO (109).
Testosterone treatment decreased the frequencies/numbers of
CD4+ T cells and macrophages in the testis, whereas frequencies
of Treg populations increased. Furthermore, testosterone
treatment resulted in reduced testicular expression of TNF, IL-6,
and MCP-1 (CCL2) as well as in reduced secretion of IL-2 and
IFNγ of ex vivo stimulated mononuclear testicular lymph node
cells (109).

It has been difficult to establish mouse models for AIH and
few truly represent features of human disease. In one model,
xenoimmunization with human antigens (Cytochrome P450 2D6
and formiminotransferase-cyclodeaminase, which are type 2 AIH
self-antigens) was used, based on the principle of molecular
mimicry. This model showed a higher susceptibility in females
compared to males (102, 148, 149). Adoptive transfer of ex
vivo expanded CXCR3+ Tregs recovered peripheral tolerance
and ameliorated disease, but neither castration nor estradiol
treatment of these mice had any effect (102, 150). To our
knowledge, supplementation with testosterone or DHT was
not performed to investigate the suppressive effects androgens
might exert.

In humans with autoimmune liver disease, increased serum
levels of the proinflammatory cytokines, IFNγ and IL-17 in AIH
and PBC patients were reported, while IL-10 was lower than in
healthy controls (151). TNF was reduced in the sera of these
patients compared to healthy controls, but a recent publication
showed an enhanced production of TNF by liver and blood
derived CD4+ T cells, with a majority of these cells identified
as potentially pathogenic IFNγ co-producers (151). Furthermore,
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FIGURE 1 | The influence of androgens on T cell function and differentiation: schematic representation. Many autoimmune diseases, including the autoimmune liver

diseases PBC and AIH, show a strong female predominance. Androgens modulate T cell development already in the thymus, mainly by altering thymic epithelial cell

function (not shown). Human and mouse T cells express cytosolic (AR) and membrane bound androgen receptors (mAR). Androgens lead to changes in cytokine

expression in T cells either directly or indirectly via antigen presenting cells, with a shift to a decreased pro-inflammatory cytokine expression, such as IFNγ and TNF,

and an increased secretion of anti-inflammatory cytokines such as IL-10 and IL-4. Androgens were reported to reduce TH1-, TH17-, and to increase

Treg-differentiation, while changes in other T cell subpopulations (e.g., TH2 cells) remain less clear. We postulate that these androgen-induced effects may influence

the incidence and disease course of the T cell driven autoimmune liver diseases, PBC and AIH.

CD4+ T cells of PBC patients revealed increased expression and
demethylation of CXCR3, which is the receptor for lymphotropic
chemokines produced in inflamed liver (152). Although one
older study showed reduced serum levels of testosterone in
female PBC patients, it remains unclear whether altered sex
hormone levels directly relate to some of the immunological
alterations reported above (99).

Data from other AID suggest a role of testosterone in disease
pathogenesis. Lower serum levels of testosterone were reported
in men with MS compared to age matched healthy men, and
testosterone levels seemed to correlate with disease severity (94).
Another study suggested lower levels of testosterone in female
MS patients compared to female age matched controls (94, 153).
Of note, some pilot studies showed disease improvement upon
testosterone treatment of male MS patients (94, 95, 154). Also
for SLE, lower serum levels of testosterone were reported in
affected women compared to age matched healthy women (105,
155, 156). The limitations of these and other studies, summarized
in Table 1, are small cohort sizes, and they lack detailed clinical
information and the use of now outdated analytical methods.
Thus, studies regarding hormone levels in females with AIDs
should be interpreted with caution.

Taken together, limited human data and studies using mouse
models of autoimmune liver diseases hint to a higher production
of proinflammatory cytokines by T cells, but a direct link to
sex hormones and, specifically, androgen levels remains unclear.
The novel finding of intestinal microbiota associated changes
in testosterone serum levels in mice should spark interest in
the role of the microbiome for sex differences in autoimmune
liver diseases, which are clearly linked to an altered intestinal
microbiota (157–159).

CONCLUDING REMARKS

The mechanisms behind the sex differences observed
in the autoimmune liver diseases PBC and AIH,
specifically the female predominance and worse disease
course in male PBC patients, remain largely unknown.
Emerging evidence mainly from murine studies suggests
immunosuppressive effects of androgens on T cells (Figure 1).
More studies are needed to decipher signaling pathways
involved in T cells upon androgen stimulation including
the classical and non-classical androgen receptors and their
modulation by the local microenvironment. Understanding
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the effects of androgens on immune cells may pave
the way for novel treatment strategies for autoimmune
liver diseases.
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