
fgene-09-00606 December 12, 2018 Time: 15:16 # 1

ORIGINAL RESEARCH
published: 13 December 2018

doi: 10.3389/fgene.2018.00606

Edited by:
Jordi Pérez-Tur,

Instituto de Biomedicina de Valencia
(IBV), Spain

Reviewed by:
Kinya Ishikawa,

Tokyo Medical and Dental University,
Japan

Nelson L. S. Tang,
The Chinese University of Hong Kong,

China

*Correspondence:
Shai E. Elizur

shai.elizur@gmail.com

Specialty section:
This article was submitted to

Genetic Disorders,
a section of the journal

Frontiers in Genetics

Received: 03 April 2018
Accepted: 19 November 2018
Published: 13 December 2018

Citation:
Domniz N, Ries-Levavi L,

Cohen Y, Marom-Haham L,
Berkenstadt M, Pras E, Glicksman A,

Tortora N, Latham GJ, Hadd AG,
Nolin SL and Elizur SE (2018)

Absence of AGG Interruptions Is
a Risk Factor for Full Mutation

Expansion Among Israeli FMR1
Premutation Carriers.
Front. Genet. 9:606.

doi: 10.3389/fgene.2018.00606

Absence of AGG Interruptions Is a
Risk Factor for Full Mutation
Expansion Among Israeli FMR1
Premutation Carriers
Noam Domniz1,2, Liat Ries-Levavi2,3, Yoram Cohen1,2, Lilach Marom-Haham1,2,
Michal Berkenstadt2,3, Elon Pras2,3, Anne Glicksman4, Nicole Tortora4, Gary J. Latham5,
Andrew G. Hadd5, Sarah L. Nolin4 and Shai E. Elizur1,2*

1 IVF Unit, Sheba Medical Center, Tel Hashomer, Israel, 2 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,
3 Danek Genetic Institute, Sheba Medical Center, Tel Hashomer, Israel, 4 New York State Institute for Basic Research
in Developmental Disabilities, Staten Island, NY, United States, 5 Asuragen, Inc., Austin, TX, United States

Introduction: Fragile X syndrome (FXS) is a common form of X-linked intellectual
and developmental disability with a prevalence of 1/4000–5000 in males and 1/6000–
8000 in females. Most cases of the syndrome result from expansion of a premutation
(55–200 CGGs) to a full mutation (>200 CGGs) repeat located in the 5′ untranslated
region of the fragile X mental retardation (FMR1) gene. The risk for full mutation
expansions increases dramatically with increasing numbers of CGG repeats. Recent
studies, however, revealed AGG interruptions within the repeat area function as a
“protective factor” decreasing the risk of intergenerational expansion.

Materials and Methods: This study was conducted to validate the relevance of AGG
analysis for the ethnically diverse Israeli population. To increase the accuracy of our
results, we combined results from Israel with those from the New York State Institute for
Basic Research in Developmental Disabilities (IBR). To the best of our knowledge this is
the largest cohort of different ethnicities to examine risks of unstable transmissions and
full mutation expansions among FMR1 premutation carriers.

Results: The combined data included 1471 transmissions of maternal premutation
alleles: 369 (25.1%) stable and 1,102 (74.9%) unstable transmissions. Full mutation
expansions were identified in 20.6% (303/1471) of transmissions. A total of 97.4%
(388/397) of transmissions from alleles with no AGGs were unstable, 79.6% (513/644)
in alleles with 1 AGG and 46.7% (201/430) in alleles with 2 or more AGGs. The same
trend was seen with full mutation expansions where 40% (159/397) of alleles with no
AGGs expanded to a full mutation, 20.2% (130/644) for alleles with 1 AGG and only
3.2% (14/430) in alleles with 2 AGGs or more. None of the alleles with 3 or more AGGs
expanded to full mutations.

Conclusion: We recommend that risk estimates for FMR1 premutation carriers be
based on AGG interruptions as well as repeat size in Israel and worldwide.

Keywords: FMR1 premutation, carrier screening, AGG interruptions, genetic counseling, risk assessment, full
mutation expansion
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INTRODUCTION

Fragile syndrome (FXS; OMIM 300624) is a common form
of X-linked intellectual and developmental disability (Crawford
et al., 2001) with a prevalence of 1/4000–5000 in males and
1/6000–8000 in females (de Vries et al., 1997; Crawford et al.,
2001; Coffee et al., 2009; Hill et al., 2010). It belongs to
a family of more than 40 disorders characterized by repeat
instability on transmission from parent to child (Pearson et al.,
2005).

Most cases of the syndrome result from expansion of a CGG
trinucleotide repeat located in the 5′ untranslated region of the
fragile X mental retardation (FMR1) gene to more than 200
repeats (full mutation) (Oberle et al., 1991; Verkerk et al., 1991;
Yu et al., 1991). The gene encodes the FMR1 protein (FMRP)
(Kremer et al., 1991; Verkerk et al., 1991; Yu et al., 1991), an
RNA-binding protein (Ashley et al., 1993) that is essential for
normal brain development. The CGG repeat expansion prevents
the FMRP expression through hypermethylation of the promoter
area. The full mutation allele is silenced in a process resembling
X-inactivation (Colak et al., 2014) and resulting in FXS
(Hagerman and Hagerman, 2013). This polymorphic CGG repeat
has been categorized into four groups according to the CGG
repeat length (Maddalena et al., 2001): normal (6–44 repeats),
intermediate (45–54 repeats), premutation (55–200 repeats) and
full-mutation (>200 repeats). Normal alleles are highly stable
on intergenerational transmission while intermediate alleles may
expand by a few repeats (Fernandez-Carvajal et al., 2009a).
Individuals with premutation alleles are defined as carriers. Many
alleles in this range are remarkably unstable and at risk for full
mutation expansions even in one generation. As many as 94%
of alleles with more than 90 repeats expand to a full mutation
(Nolin et al., 2011) and the smallest number of repeats to expand
to a full mutation in one generation is 56 (Fernandez-Carvajal
et al., 2009a). Expansion to a full mutation occurs almost solely
in transmission from mother to child and not from father to
daughter although rare exceptions have occurred (Zeesman et al.,
2004).

Previous studies have shown that premutation alleles are at
risk for full mutation expansions (Fu et al., 1991; Nolin et al.,
2003). More recent studies revealed AGG interruptions within
the repeat area function as a "protective factor" decreasing the risk
for intergenerational expansion (Nolin et al., 2011, 2013, 2015;
Yrigollen et al., 2012).

In Israel, all women who wish to conceive are offered genetic
screening for fragile X and other disorders free of charge.
Women who carry a fragile X premutation are also offered
prenatal diagnosis, either chorionic villous sampling (CVS)
or amniocentesis (AC). Alternatively, IVF-PGT-M (In Vitro
Fertilization with pre-implantation genetic testing for monogenic
gene diseases) is offered to couples at high risk (>70 repeats) for
expansion to full mutation.

At the present time genetic counseling for FMR1 premutation
carriers in Israel does not include AGG interruptions as a factor
in determining risks of intergenerational CGG expansion. We
have conducted this study to validate the relevance of AGG
analysis for the diverse Israeli population.

MATERIALS AND METHODS

Subjects
Blood samples were collected from women undergoing genetic
testing at the Danek Gertner Institute of Human Genetics at
Sheba Medical Center, Israel from 2011 to 2017. The study was
approved by the IRB committee of Sheba Medical Center. FMR1
premutation carriers with 55–90 CGG repeats were included in
the study because previous studies have shown that the presence
of AGG interruptions does not reduce risk of a full mutation
expansion in females with >90 CGG repeats (Nolin et al., 2015).
To increase the accuracy of our results, we combined results from
Israel with those from New York State Institute for Basic Research
in Developmental Disabilities (IBR).

Molecular Characterization
The number of FMR1 CGG repeats in the polymorphic zone,
number of AGG interruptions and position of AGG interruptions
were determined using a triplet primed PCR method as reported
in previous studies (Lyon et al., 2010; Basehore et al., 2012;
Yrigollen et al., 2012; Nolin et al., 2013), using a GeneAmp (PCR
system 9700) by Applied Biosystems, AmplideX FMR1 PCR/CE
(Asuragen), and Asuragen kit (Xpansion Interpreter), based on
the company’s protocol of AmplideXTM FMR1 PCR reagents
(ROU). The FMR1 CGG Primer is specific for CGG repeats and
will not hybridize to AGG sequences commonly found in FMR1
alleles. Therefore, signal intensity dips in the CGG RP PCR profile
correspond to the presence of interspersed AGG. Based on peak
counting and on the haplotype inference of a 5′-bias for AGG,
the exact pattern of CGG repeats and AGG interruptions can
be inferred in many cases, even in female samples. The accuracy
and validity of our systems were assured using AmplideX© PCR
process control and mPCR & Sensitivity.

A change in repeat size was defined as a difference of at least
one CGG repeat from mother to fetus.

Statistical Analysis
Statistical analyses were done using R©JMP Statistical Discovery
software, version 14.0.0 from R©SAS Institute Inc., Cary, NC,
United States.

Data of each subgroup (Israel and IBR) were analyzed
separately to explore possible differences between sets. Obviously,
the large difference in sample size makes it difficult to make
statistical inference about their similarity. However, in spite of
the large difference in sample size both data sets – Israel and IBR
show similar properties regarding the combination of maternal
CGG repeats and the number of AGG interruptions effect on the
probability of transferring a full mutation from women to their
siblings. Therefore, it is reasonable to relate to the combined data
of both studies as a single set. Logistic regression models were
used to determine the effect of the number of CGG repeats and
the number of AGG interruptions on the risk of a full mutation
expansion. With regard to the number of AGG interruptions and
their effect on full mutation expansion a different behavior was
identified between women who have 55–70 CGG repeats and
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women with 70–90 CGG repeats. This binary indicator was used
as a parameter in the logistic regression models.

RESULTS

From 2011 to 2017 a total of 408 FMR1 premutation carriers
(55–200 CGG repeats) were identified at the Danek Gertner
Institute of Human Genetics at Sheba Medical Center. A total
of 362 carriers (89% with 55–90 repeats) were separated into
seven categories, each category containing the range of five
repeats. Prenatal diagnosis was performed for 430 fetuses (425
pregnancies: 239 males and 191 females) by amniocentesis (37%)
or chorionic villus sampling (63%). The expanded allele was
transmitted to 198 fetuses (46%).

Intergenerational Repeat Instability and
Risk of Full Mutation Expansions
Israel Data
Of the 198 cases where the expanded allele was transmitted, 75
(37.9%) were stably transmitted and 123 (62.1%) increased in size
of which 24 (12.1%) were full mutation expansions. The smallest
premutation allele to expand to a full mutation had 62 repeats
with no AGG interruptions. As reported in previous studies, the
frequency of unstable transmissions and full mutation expansions
increased with increasing repeat size, reaching nearly 100% when
the CGG repeat size exceeded 80 and there were no AGG’s.

Combined Results of Israel and Institute for Basic
Research (IBR)
The combined data included 1471 transmissions: 369 (25.1%)
stable and 1102 (74.9%) unstable transmissions. A total of
303 full mutation expansions was identified (20.6% of all
transmissions). In the IBR dataset the smallest maternal allele
to expand to full mutation had 59 repeats. The risk of full
mutation expansions by maternal CGG repeats only is presented
in Table 1. There was no significant statistical difference in the
rate of full mutation expansion between the Israeli and the IBR
results. Moreover, in both populations the maternal number
of CGG repeats was shown to have a statistically significant
effect upon the risk for a full mutation expansion (p < 0.001).
Figure 1 demonstrates the effect of the maternal number of CGG
repeats upon the probability for a full mutation expansion while
Figure 2 demonstrates the effect of the maternal number of AGG
interruptions upon the probability for a full mutation expansion
in both study populations.

AGG Analysis
Israel Data
Logistic regression analysis has shown that AGG interruptions
have a significant effect on the risk of a full mutation expansion
and the main difference is between those that have some AGG
interruptions (1 or 2) and those that do not have them at all
(p < 0.04) (Table 2). The risk for full mutation expansions was
21.2% for alleles with no AGG interruptions, 9.8% for 1 AGG and
4% in transmissions for alleles with 2 or more AGG interruptions.
Table 3 demonstrates the risks for unstable transmissions and

TABLE 1 | The risk of full mutation (FM) expansion by maternal CGG repeat only.

Israel Combined

Maternal repeat No. FM/total No. FM/total

size transmissions % transmissions %

55–59 0/36 0 1/388 0.3

60–64 1/43 2.3 4/300 1.3

65–69 1/48 2.1 7/200 3.5

70–74 3/33 9.1 34/166 20.5

75–79 2/14 14.3 72/153 47.1

80–84 10/13 76.9 94/146 64.4

85–90 7/11 63.6 91/118 77.1

Total 24/198 12.1 303/1471 20.6

full mutation expansions by repeat size and number of AGG
interruptions in the Israeli population. Among the carriers with 0–
2 AGG interruptions, the AGG interruptions were shown to have
a statistically significant "protective" effect against a full mutation
expansion (p< 0.05). In the sub population of women with a small
number of CGG repeats (below 70), full mutations are observed
only in those women that do not have AGG interruptions. This
result is consistent between the Israeli data and the IBR data.

Combined Data
In the combined data for Israel and IBR, AGG interruptions
reduced the risk of unstable transmissions and full mutation
expansions. A total of 97.4% of transmissions from alleles with
no AGGs was unstable, 79.6% in alleles with 1 AGG and 47.2%
in alleles with 2 or more AGGs. The same trend was seen with
full mutation expansions where 40% of alleles with no AGGs
expanded to a full mutation, 20.2% for alleles with 1 AGG and
only 3.2% in alleles with 2 AGGs or more. None of the alleles with
3 or more AGGs expanded to full mutations and 23/27 (85.1%)
were transmitted stably. Again, as demonstrated among the
Israeli population, the number of AGG interruptions was found
to have a statistically significant negative effect upon the risk of
a full mutation expansion (p < 0.001). Table 4 demonstrates the
risks for unstable transmissions and full mutation expansions by
repeat size and number of AGG interruptions in the Israeli and
IBR populations.

Table 5 summarizes the statistical analysis results of each data
set and of the combined data. Since the vast majority of subjects
in the different data set had AGG interruptions between zero and
two, only those were considered in these models. The odds ratios
in Table 5 summarize the change in risk of transferring a full
mutation from a woman to its child. The risk of transferring a full
mutation increases dramatically when the maternal number of
CGG repeats is above 70. The number of AGG interruptions plays
an important role in such transfers. When this number is up from
zero to one, the risk of transferring a full mutation gets lower and
is statistically significant. Looking at the Israeli data, noticeably
the change from a single AGG interruption to two interruptions
makes a little difference and is not statistically significant. With
the fairly small sample size compared to that of the IBR data this
result may indicate that the important difference in terms of risk
of transferring a full mutation is between those women who have
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FIGURE 1 | The effect of the maternal number of CGG repeats upon the probability for a full mutation expansion.

FIGURE 2 | The effect of the number of AGG interruptions upon the probability for a full mutation expansion.

some AGG interruptions and those who do not. In the case of IBR
data (and obviously the combined data), all terms in the model
are statistically significant though the odds ratios are similar to
those obtained for the Israeli data, probably due to the very large
sample size.

DISCUSSION

To the best of our knowledge this is the largest cohort
of different ethnic backgrounds used to examine risks of
unstable transmissions and full mutation expansions among

TABLE 2 | The risk of unstable transmission and full mutation expansion
according to the number of AGG interruptions among Israeli’s FMR1 premutation
carriers with 55–90 CGG repeats.

No. AGG Stable Unstable Full

interruptions transmissions (%) transmissions (%) mutations (%)

0 12.1 87.9 21.2

1 41.5 58.5 9.8

≥ 2 66.0 35.6 4.0

FMR1 premutation carriers. As previously mentioned, the
two populations (Israel and IBR) were found to have similar
characteristics regarding the effect upon the risk of a full mutation
expansion, of both the number of CGG repeats and AGG
interruptions. Therefore, the combination of these databases is
justified in order to increase the study sample size.

Women who have small premutations with fewer than 70
repeats can have no AGG interruptions to as many as five.
Our study suggests that, within this group, only those who
have no AGGs are at risk to transmit full mutation alleles.
Among women with 70–90 repeats, the risk of transmitting
full mutation expansions increases as the number of AGG
interruptions decreases.

The female carrier prevalence in Israel is∼1/150 (Berkenstadt
et al., 2007) while in the United States the frequency varies from
1/150 to 1/380 (Cronister et al., 2005; Iong et al., 2011; Seltzer
et al., 2012). The global prevalence is 1/250 (Rousseau et al.,
1995; Rife et al., 2003; Fernandez-Carvajal et al., 2009b) while
the lowest prevalence of 1/788 is found in Korea (Jang et al.,
2014).

Previous studies of transmissions of fragile X alleles
demonstrated that the risk for full mutation expansions
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TABLE 3 | Unstable transmissions and full mutation expansions sorted by repeat
size and number of AGGs among Israeli population.

Maternal

repeat No. Total Unstable Full

size AGG’s transmissions transmissions % mutations %

55–59 0 6 4 66.7 0 0

1 9 1 11.1 0 0

2 15 3 20 0 0

3 3 0 0 0 0

4 3 0 0 0 0

60–64 0 10 10 100 1 10

1 18 8 44.4 0 0

2 8 1 12.5 0 0

3 2 1 50 0 0

4 5 1 20 0 0

65–69 0 23 19 82.6 1 4.4

1 22 12 54.5 0 0

2 2 1 50 0 0

3 1 1 100 0 0

70–74 0 8 7 87.5 1 12.5

1 18 16 88.9 2 11.1

2 7 6 85.7 0 0

75–79 0 5 5 100 0 0

1 7 4 57.1 1 14.3

2 2 2 100 1 50

80–84 0 8 8 100 7 87.5

1 4 3 75 2 50

2 1 1 100 1 100

85–90 0 6 5 83.3 4 66.7

1 4 4 100 3 75

2 1 0 0 0 0

increases dramatically with increasing numbers of CGG
repeats (Eichler et al., 1994; Nolin et al., 2003). Those studies
provided risk estimates of expansion to the full mutation range
depending on the number of CGG repeats and became an
important tool for genetic counseling of FMR1 premutation
carriers. However, it has been unclear why some alleles with
relatively small repeats expanded to a full mutation while other
larger alleles were transmitted stably. Sequence analysis of the
expanded alleles in the early 1990’s identified the presence of
AGG trinucleotides that are often interspersed at positions
10–11 and 20–21 within the repeat region (Eichler et al., 1994).
Nearly 95% of individuals with normal alleles have one or two
AGG interruptions whereas unstable alleles contain few or
no AGGs (Eichler et al., 1996; Falik-Zaccai et al., 1997). The
AGG interruptions may maintain stability on transmission by
preventing DNA slippage during replication (Eichler et al., 1994)
and engage a "biological brake" that curbs expansion (Jarem
et al., 2010). Until recently, however, this hypothesis was difficult
to examine due to the lack of technological means that allow
reliable and efficient interrogation of AGG structures (Latham
et al., 2014).

The introduction of a PCR-based method capable of
determining the number and pattern of AGG interruptions

TABLE 4 | Unstable transmissions and full mutation expansions sorted by repeat
size and number of AGGs based on the combined Israeli and international data.

Maternal

CGG No. Total Unstable Full

repeat size AGG transmissions transmissions % mutations %

55–59 0 52 49 94.2 1 1.9

1 171 91 53.2 0 0

2 145 21 14.5 0 0

3 16 0 0 0 0

4 3 0 0 0 0

5 1 0 0 0 0

60–64 0 74 73 98.6 4 5.4

1 121 90 74.4 0 0

2 96 42 43.8 0 0

3 7 3 42.9 0 0

4 2 1 50 0 0

65–69 0 70 66 94.3 7 10

1 77 63 81.8 0 0

2 50 34 68 0 0

3 3 1 33.3 0 0

70–74 0 54 53 98.1 28 51.9

1 79 77 97.5 6 7.6

2 33 27 81.8 0 0

75–79 0 60 60 100 43 71.7

1 65 62 95.4 26 40

2 28 28 100 3 10.7

80–84 0 51 51 100 45 88.2

1 66 65 98.5 43 65.2

2 29 29 100 6 20.7

85–90 0 36 35 97.2 31 86.1

1 65 65 100 55 84.6

2 17 16 94.1 5 29.4

Total 1471 1102 74.9 303 20.6

(Chen et al., 2010) enabled population studies of AGG
interruptions that demonstrated that AGG interruptions have a
substantial influence upon the risk of a full mutation expansion
in a given number of repeats (Yrigollen et al., 2012, 2014; Nolin
et al., 2013, 2015). In order to better estimate the risk of full
mutation expansion in the lower range of premutation, the
incorporation of AGG analysis has been previously suggested
to be included in genetic counseling (Finucane et al., 2012;
Monaghan et al., 2013; Biancalana et al., 2015; Committee on
Genetics, 2017). Indeed, the importance of AGG analysis in
identifying the specific alleles at the highest risk for a full
mutation expansion has been accumulating and may assist
in the decision making whether undergo invasive fragile X
prenatal testing (Nolin et al., 2015). In Israel and some other
countries, however, AGG analysis has not become a part of the
standard genetic counseling due to lack of validation in the local
population.

In Israel, genetic screening for fragile X is recommended
and free of charge for every woman in her reproductive years.
Genetic counseling currently provided to FMR1 premutation
carriers in Israel is based solely on the number of CGG
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TABLE 5 | Summary of P-values, odds ratios and 95% CI of odd ratios from the regression models.

Parameters P-value Odds ratio OR lower 95% OR upper 95%

Israel data Repeats size <0.0001∗ 26.31 7.24 170.72

No. of AGG’s (0-1) 0.0374∗ 0.33 0.11 0.91

No. of AGG’s (1–2) 0.6503 0.68 0.09 3.22

IBR data Repeats size <0.0001∗ 93.69 49.90 194.42

No. of AGG’s (0–1) <0.0001∗ 0.25 0.16 0.37

No. of AGG’s (1–2) <0.0001∗ 0.14 0.07 0.26

Combined data Repeats size < 0.0001∗ 77.48 51.42 122.73

No. of AGG’s (0–1) <0.0001∗ 0.28 0.21 0.36

No. of AGG’s (1–2) <0.0001∗ 0.17 0.11 0.26

∗ In the regression models the parameter of CGG repeats (55–69 and 70–90 repeats) was used as a binary indicator.

FIGURE 3 | (A,B) The effect of the maternal number of CGG repeats and AGG interruptions upon the risk for a full mutation expansion.

repeats with the risk of a full mutation expansion calculated
from published data collected from the Israeli population.
Our study demonstrates that the effect of AGG interruptions
upon the risk for a full mutation expansion is relevant to
the Israeli population as well. We have shown a significant

increase in the overall risk for a full mutation for alleles
with no AGGs compared to alleles with 1 or more AGG
interruptions (p < 0.05). However, full expansion may still
happen even in cases with 2 AGG interruptions particularly in
whom whole CGG repeat is long. We refer to the difference in
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the p-value between the Israel and IBR groups to be related to the
large difference in the sample size as the statistically significant
effects were found for the two variables (CGG, AGG) between
the two populations.

Moreover, the risks for unstable transmissions and full
mutation expansions in this study differ significantly from
the older data currently in use. The AGG interruptions,
a relatively "new" variable has proven to be a substantial
and significant factor for risk estimates for full mutation
expansions among carriers of different ethnicities. For example,
our data suggest that for FMR1 premutation carriers with
55–64 CGG repeats and 2 AGG interruptions there is no
apparent risk for full mutation expansions. Carriers with 70–74
CGG repeats should be aware of the differences in expansion
risk for alleles with 2 AGGs compared to those with none.
Figures 3A,B demonstrate graphically the considerable effect
that AGG interruptions have upon the risk for a full mutation
expansion, which can no longer be overlooked. Further, large
scale studies are needed to confirm these recommendations.
However, our study demonstrates that a consideration of
AGG interruptions should become an integral part of genetic
counseling for FMR1 premutation carriers in Israel and
worldwide.
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