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INTRODUCTION

In 1990, approximately 6 million people died of 
cancer globally, while in 2010 the number had risen to 
about 8 million [1]. Moreover, the incidence of cancer is 
increasing rapidly [2]. Current cancer treatments include 
surgical therapy, radiation therapy, and chemotherapy; 
however, these treatments also damage normal tissues. 
Many researchers are focused on developing targeted 
molecular therapies that specifically damage tumor tissues 
with little damage to normal tissue [3]. Comprehensive 
understanding of the molecular mechanisms underlying 
cancer is necessary for designing efficacious drugs.

The molecular mechanisms of cancer development 
are very complicated, and include lasting proliferation, 
malfunction of cell death programs, induction of 
angiogenesis, metastasis of cancer cells, changes of 
cellular energy metabolism, and evasion of immune 
destruction [4]. This complexity, along with a lack of 
reliable methods for the large-scale identification of 
cancer-related proteins, causes cancer progression to 
remain a puzzle and greatly hampers the development 
of effective therapies. Traditional experimental methods 
are not suitable for the large-scale identification of 

cancer-related proteins because they are both time-
consuming and inefficient. Computational methods rely 
on systematic comparisons between the genomes of 
cancer cells and normal cells, using correlation analysis 
to search for mutated genes associated with tumorigenesis 
[5]. However, many of these methods only utilize DNA 
sequence information [6–8], and overlook protein 
information that is more closely related to biological 
pathways and phenotype.

In 2015, Chien-Hung Huang et al. developed a 
prediction model of cancer proteins based on proteomic 
data [9]. They demonstrated the accuracy of this method 
on two independent datasets of lung cancer and lung 
cancer microarray. Their prediction achieved hit ratios 
of 89.4% and 72.8%, respectively. Two other groups 
predicted cancer-related proteins as new drug targets for 
cancer treatment with network analyses [10, 11]. These 
predictions were mainly based on protein interaction 
networks, protein sequences, or motif information. 
Importantly, no cancer-related small-molecule activity 
data were considered in these studies. Taking into 
consideration the limitations of these approaches, there 
is a great demand for new methods to infer key proteins 
in cancer.
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ABSTRACT
In this study, we proposed an improved algorithm for identifying proteins 

relevant to cancer. The algorithm was named two-layer molecular similarity ensemble 
approach (TL-SEA). We applied TL-SEA to analyzing the correlation between anticancer 
compounds (against cell lines K562, MCF7 and A549) and active compounds against 
separate target proteins listed in BindingDB. Several associations between cancer 
types and related proteins were revealed using this chemoinformatics approach. An 
analysis of the literature showed that 26 of 35 predicted proteins were correlated 
with cancer cell proliferation, apoptosis or differentiation. Additionally, interactions 
between proteins in BindingDB and anticancer chemicals were also predicted. We 
discuss the roles of the most important predicted proteins in cancer biology and 
conclude that TL-SEA could be a useful tool for inferring novel proteins involved in 
cancer and revealing underlying molecular mechanisms.
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With the open-source drug discovery campaign, 
massive bioactivity data have been accumulated using 
assays ranging from phenotypes to enzymes. For example, 
the National Cancer Institute (NCI) has launched many 
programs for screening compounds against cancer cell 
lines and has acquired a large list of active anticancer 
chemicals [12]. On the other hand, BindingDB catalogues 
an enormous number of active compounds that act on 
various proteins [13]. 

Chemoinformatics approaches can be applied to 
compare anticancer compounds from the NCI database 
and bioactive compounds against different proteins 
from BindingDB, and infer proteins that are involved 
in the genesis and proliferation of cancer cells. The 
underlying assumption, named similarity principle or 
general neighborhood behavior, is that structurally similar 
molecules are likely to possess similar biological activities 
[14–18]. Provided that anticancer chemical a is very akin 
to chemical b, which is active against a protein, it is 
possible that a can also change the state of this protein and 
the anticancer effects of a depend on the same protein. The 
more similar molecule pairs are found, the more correct 
is the assumption. Therefore, the association between 
these proteins and cancer development can be confirmed 
through a systematic statistics probability analysis on 
massive activity data about the phenotype and the proteins.

However, the similarity between the ligand set of a 
protein and that of a phenotype is very weak and protein-
phenotype relationships can be inferred only with very 
careful statistical analysis. In 2007, Michael J Keiser et al. 
proposed a Similarity Ensemble Approach (SEA) to infer 
relationships among receptors [19]. The SEA algorithm 
can be applied to two compound sets at the same level 
[20, 21], but is not suitable for systems at two different 
levels, such as active compounds against cancer cell lines 
and against proteins. Therefore, in this work, we proposed 
a modified association algorithm, named two-layer SEA 
(TL-SEA), and applied the algorithm to the analysis of the 
activity data from the NCI database and BindingDB. Three 
cell lines, K562, MCF7 and A549 were used as example 
systems. The K562 cell line was derived from the blastic 
phase of chronic myelogenous leukemia. It also has some 
characteristics of chronic leukemia and acute leukemia 
[22]. MCF7 and A549 were derived from human breast 
cancer and human lung cancer, respectively. Using TL-
SEA, we attempted to infer which proteins play roles in 
the genesis and proliferation of these cancer cells. 

RESULTS

Prediction of cancer-related proteins

Important cancer-related proteins were successfully 
predicted with our algorithm (TL-SEA) based on the 
existing active compounds against the three cancer cell 
lines and BindingDB proteins. Proteins with a smaller 

association value (AS score) were more likely to impact 
on the development of cancer. In this study, we selected 
the proteins with AS scores smaller than 0.03 for further 
analysis, resulting in a total of 35 cancer-related proteins 
(31, 35, and 28 proteins for K562, MCF7 and A549 cell 
lines, respectively; Table 1). There were 25 common 
proteins in the three systems. Most of the predicted 
proteins were human proteins or their close homologs 
except luciferin 4-monooxygenase of firefly. According to 
previously published literature, 26 of the 35 proteins are 
relevant to the proliferation, apoptosis, or differentiation 
of cancer cells. The references are listed in the last column 
of Table 1.

Among the 26 proteins, melatonin receptor type 1B 
occurs twice. One of them is from chicken (ranked 
first in all the cell lines) and the other one from human 
(ranked 22nd, 24th, 22nd in the 3 cell lines, respectively). 
BLASTP showed that these two proteins were very 
similar with E-Value = 7e–150, sequence identity = 71% 
and sequence cover = 100%. Melatonin receptors play 
an important role in cancer development [23–27], and 
have anticancer functions through binding with melatonin 
[26]. Melatonin is involved in redox processes of cells, 
augments natural killer cell activity, stimulates cytokine 
production (IL-2 and IL-6), and protects hematopoietic 
precursors from the toxic effect of chemotherapy and 
radiotherapy [27]. Studies revealed that breast cancer cell 
differentiation is regulated by the MT-1 signaling pathway 
[28, 29], while the anticancer function of melatonin is 
mediated by MT-1 receptor and G protein-coupled signal 
transduction in liver cancer cells [30]. Clinical data also 
showed high MT-1 expression is associated with cancer 
resistance in people with lower melatonin levels [31]. 
Melatonin may also protect against gastric cancer in mice 
by up-regulation of membrane receptor MT-1 and MT-2 
expression [32].

The second and the third proteins in the predicted 
list are tubulin beta-1 chain and tissue factor (TF). Tubulin 
beta-1 chain is the primary component of microtubules. 
Microtubules play a key role in the process of mitosis 
[33], which is necessary for cancer cell proliferation. Thus, 
disruption of cell mitosis can block the increase in cancer 
cells. As early as 2004, there was research on microtubules 
as targets for anticancer drugs [34]. Similarly, TF 
expression in the cell surface accelerates tumor 
progression [35, 36]. TF accelerates malignant tumor 
growth, invasion, and metastasis mainly by promoting 
vascular endothelial growth factor (VEGF) release to 
regulate tumor cell angiogenesis [37]. Interestingly, the 
VEGF receptor 2 is ranked 23rd in the predicted protein 
list. Reduced TF expression can decrease cancer cell 
growth, and selective reduction of TF expression with 
mRNAi in colorectal cancer cells reduced tumor growth in 
mice [38]. These results have been replicated in vitro [39], 
and higher TF expression was found in primary carcinoma 
of the rectum, breast cancer and pancreatic cancer. Thus, 
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Table 1: List of the predicted cancer-related proteins

Protein ID* Protein name Source
AS score (rank)

Reference
K562 MCF7 A549

P51050 Melatonin receptor type 1B Chicken 0.0021 (1) 0.0025 (1) 0.0025 (1) [53]
Q9H4B7 Tubulin beta-1 chain Human 0.0062 (2) 0.0064 (3) 0.0083 (4) [54]
P13726 Tissue factor Human 0.0065 (3) 0.0077 (6) 0.0080 (3) [55]
P25106 Atypical chemokine receptor 3 Human 0.0066 (4) 0.0067 (4) 0.0093 (6) [56]
Q8CA95 cAMP and cAMP-

inhibited cGMP 3′,5′-cyclic 
phosphodiesterase 10A

Mouse 0.0083 (5) 0.0075 (5) 0.0090 (5)  

P35355 Prostaglandin G/H synthase 2 Rat 0.0093 (6) 0.0084 (7) 0.0103 (7) [57]
P60842 Eukaryotic initiation factor 4A-I Human 0.0103 (7) 0.0102 (8) 0.0137 (9) [58]
P34960 Macrophage metalloelastase Mouse 0.0125 (8) 0.0118 (9) 0.0149 (10) [59]
Q6B856 Tubulin beta-2B chain Bovine 0.0139 (9) 0.0124 (10) 0.0155 (11) [60]
P30549 Substance-K receptor Mouse 0.0149 (10) 0.0143 (13) 0.0175 (13) [61]
P06795 Multidrug resistance protein 1B Mouse 0.0154 (11) 0.0137 (12) 0.0176 (14) [62]
P52895 Aldo-keto reductase family 

1 member C2
Human 0.0160 (12) 0.0191 (19) 0.0187 (15) [63]

Q63008 Sodium/iodide cotransporter Rat 0.0172 (13) 0.0168 (15) 0.0208 (19) [64]
P08575 Receptor-type tyrosine-protein 

phosphatase C
Human 0.0177 (14) 0.0216 (22) 0.0189 (16)

Q9QUK6 Toll-like receptor 4 Mouse 0.0180 (15) 0.0201 (20) 0.0286 (28) [65]
P41586 Pituitary adenylate cyclase-

activating polypeptide type I 
receptor

Human 0.0188 (16) 0.0176 (17) 0.0171 (12) [66]

O02747 Aryl hydrocarbon receptor Rabbit 0.0198 (17) 0.0176 (16) 0.0202 (17) [67]
O43526 Potassium voltage-gated channel 

subfamily KQT member 2
Human 0.0226 (18) 0.0261 (28) 0.0267 (24) [68]

Q12791 Calcium-activated potassium 
channel subunit alpha-1

Human 0.0235 (19) 0.0298 (35) 0.0253 (23) [69]

Q27757 Luciferin 4-monooxygenase Firefly 0.0239 (20) 0.0153 (14) 0.0241 (20)
Q8R2Y0 Monoacylglycerol lipase 

ABHD6
Mouse 0.0245 (21) 0.0272 (29) - [70]

P49286 Melatonin receptor type 1B Human 0.0247 (22) 0.0245 (24) 0.0247 (22) [53]
P35968 Vascular endothelial growth 

factor receptor 2
Human 0.0248 (23) 0.0179 (18) 0.0204 (18) [71]

P51787 Potassium voltage-gated channel 
subfamily KQT member 1

Human 0.0268 (24) 0.0216 (21) 0.0244 (21)

P23097 Collagenase 3 Rat 0.0269 (25) 0.0281 (31) - [72]
P48039 Melatonin receptor type 1A Human 0.0270 (26) 0.0260 (27) 0.0259 (24) [53]
Q8TCW9 Prokineticin receptor 1 Human 0.0278 (27) 0.0252 (26) - [73]
Q13370 cGMP-inhibited 3′, 5′-cyclic 

phosphodiesterase B
Human 0.0292 (28) 0.0223 (23) 0.0280 (27)

P48145 Neuropeptides B/W receptor 
type 1

Human 0.0294 (29) 0.0284 (33) - [74]

O76074 cGMP-specific 3′,5′-cyclic 
phosphodiesterase

Human 0.0296 (30) 0.0282 (32) - [75]



Oncotarget32397www.impactjournals.com/oncotarget

TF expression is related to the invasiveness of cancer [40], 
and multiple experimental models have demonstrated that 
increasing TF expression promotes tumor growth [41].

For those proteins without direct evidence regarding 
their involvement in cancer development, there is a great 
chance that they also play important roles in cancer-related 
cellular pathways. Of course, this hypothesis remains to 
be confirmed with further studies. We analyzed protein 
Q8CA95 (cAMP and cAMP-inhibited cGMP 3′,5′-cyclic 
phosphodiesterase 10A), which is ranked 5th in all the 
predicted proteins and first in the proteins without direct 
proof in the literature. The protein hydrolyzes both cAMP 
and cGMP, regulating the intracellular concentration of 
cyclic nucleotides in the striatum [42]. As a target for 
signal transduction regulation, it has not been reported 
to have anticancer effects; however, cAMP mediates the 
translation of cancer cells into healthy cells [43, 44].

In our algorithm, we needed to calculate the 
significance twice, PZ and PO, for the anticancer 
compounds-protein association (initial score, I) and the 
cell line-protein association (original score, PO). Because 
I was summed at different length (m, number of active 
compounds against a specific protein), it was translated 
into comparable Z score with formula 4. The constants 
(a, b, k) were obtained by fitting the initial score and 
the number of active compounds with formulae 2 and 3 
(Figure 1). The results showed a linear correlation between 
the initial score I and compound number m, indicating 
the feasibility of the SEA algorithm in such a system. As 
mentioned in the methods section, it is unnecessary to 
standardize the original score, PO.

Analysis of chemical-protein matrices 

In the process of inferring cancer-related proteins, 
three anticancer compounds vs BindingDB proteins 
association matrices (PZ) emerged. The matrices contained 
the significant scores (PZ) between the active chemicals 
targeting the cancer cell lines and the BindingDB proteins. 
PZ can be used to deduce whether a compound can interact 
with a protein. Smaller PZ indicated higher possibility 
of interaction. By retaining the matrix elements with 
PZ less than 0.0001, the matrices were translated into 

three networks as shown in Figure 2 and Supplementary 
Figure S1. The nodes in the networks represent proteins 
or chemicals, while the edges denote their association. 
The three networks are presented with the same layout. 
The position of the nodes was optimized with forces 
according to the reciprocal of the PZ. For nodes that were 
missed in the cell lines, they were fade out to gray. The 
other nodes were highlighted with distinguishable colors. 
Through this way, the differences between the cell lines 
can be visually analyzed. For example, the major prion 
protein (node P23097, highlighted with the red rectangle 
in Figure 2A) did not existed in K562 but existed in other 
two cell lines. Experimental studies showed that the over-
expression of P23097 failed to protect DNA fragmentation 
in leukemia cancer cell line but it converted TNF-sensitive 
cells into TNF-resistant cells in MCF7 breast cancer cell 
line [45–46]. Moreover, the expression of major prion 
protein were associated with increased lung colonization 
[47]. These results are consistent with our predictions. 

Some of the predicted interactions in Figure 2 were 
reported earlier and truly existed. For example, the PZ 
score between anticancer compound thapsia villosa 
(NCI_ ID 299934) and sarcoplasmic/endoplasmic 
reticulum calcium ATPase 1 (Uniprot_ID P04191, 
SERCA 1) was 1.500 × 10–7, ranking first in MCF7 dataset 
(see Supplementary information Table S2). This 
compound is indeed a potential inhibitor of the SERCA 
pump [48]. In addition, the PZ score between compound 
GW805758X (NCI_ID 756364) and protein O14920 
(inhibitor of nuclear factor kappa-B kinase subunit beta) 
was 1.015 × 10–4. Through database searching, this 
interaction can be found in ChEMBL (http://ebi.ac.uk/
chembl, ChEMBL Assay ID: CHEMBL2007663).

We analyzed the proteins linked to more than 15 
compounds in the three networks (Table 2). Protein 
Q61614 (Endothelin-1 receptor) linked to 59 compounds 
in the MCF7 dataset, ranked first in all the proteins. The 
AS score (PO) between this protein and MCF7 is 0.0033, 
indicating that this protein is a potential target for MCF7 
cells. Kusuhara M et al. found that breast cancer cells can 
release Endothelin-1 [49]. The binding of Endothelin-1 
(ET-1) to ET-1 receptor can stimulate growth of breast 
cancer cells by autocrine and paracrine signaling, and 

P48974 Vasopressin V1b receptor Rat 0.0299 (31) 0.0293 (34) -
Q61614 Endothelin-1 receptor Mouse - 0.0033 (2) 0.0043 (2)
P23907 Major prion protein Sheep - 0.0134 (11) 0.0122 (8)
O43603 Galanin receptor type 2 Human - 0.0251 (25) 0.0272 (26) [76]
Q13698 Voltage-dependent L-type 

calcium channel subunit alpha-
1S

Human - 0.0275 (30) -

The list was sorted by K562 significance (AS score), and then by MCF7. References regarding to the proteins related to 
proliferation, apoptosis, or differentiation of cancer cells were listed in the last column.
*Uniprot ID of the proteins [77].
- AS score larger than 0.03.
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increased expression of ET-1, Endothelin A receptor 
(ETAR), and Endothelin B receptor (ETBR) in breast 
cancer patients lowers disease-free survival time and 
overall survival [50].

Among the 27 proteins in Table 2, only 4 proteins 
(Q9H4B7, P41586, Q61614 and O02747) were associated 
with the cell lines with an AS score (PO) less than 0.03. 
This result was caused by different thresholds used in 
the original score calculation process and in Figure 2, 
which illustrates the protein-compound interactions with 
a visual network. Only connections with Pz < 0.0001 were 
retained to simplify the networks. For PO calculation, more 
information was needed for association analysis. Thus, 
we used a threshold of Pz < 0.01. If the threshold of the 
connections was changed to Pz < 0.001, all the 11 proteins 
with more than 70 connections were associated with the 
cell lines (PO < 0.03). The results proved the capability of 
our algorithm for deep data mining. That is, the association 
score was deduced with large numbers of weak similarities 
between the active compounds of the cell lines and the 
proteins instead of fewer but stronger similarities.

We also analyzed two sub-networks (Figure 2C’, 
2C”) extracted from the interaction network of MCF7 
active compounds and the proteins (Figure 2C). Figure 2C’ 
shows the predicted interactions between a MCF7 active 
compound (NCI_ID 727680) and 7 proteins, while 
Figure 2C” shows the interactions between a BindingDB 
protein (Uniprot_ID P05227) and 17 anticancer 

compounds for the MCF7 cell line. Detailed information 
about the subnetworks, including proteins, compounds 
and PZ between them can be found in Supplementary 
Table S1. Full information on PZ < 0.0001 data in MCF7 
can be found in Table S2. We randomly selected 4 active 
compounds (NCI_ID 353, 8591, 695939, 743862) 
from these 17 anticancer compounds in Figure 2C’’ and 
calculated the similarity between these NCI compounds 
and the active compounds against the BindingDB proteins 
(Uniprot_ID P05227). Most of the similarities were around 
0.2, except very few high similarity scores (Supplementary 
Table S3). This result is consistent with Keiser’s research, 
which found that for most ligand pairs the similarity was 
low, ranging from 0.2 to 0.3 [19]. This result also indicates 
the necessity to use strict statistical algorithms in such 
systems and confirms our previous deductions. 

DISCUSSION 

Prior methods for large-scale identification of 
cancer-related genes or proteins were primarily based on 
the discrepancies between the genomes of cancer cells and 
normal cells, and rarely took into consideration ligand-
protein interactions. Our research employed the activity 
data of the chemicals targeting proteins or cancer cells in 
existing databases, enabling us to analyze the mechanisms 
underlying tumorigenesis from the perspective of 
chemistry. A chemoinformatics approach (TL-SEA) was 

Figure 1: Scatter graph of the mean value (top) and standard deviation (bottom) of random initial score (I) with different 
sampling lengths (m, horizontal axis). (A) For K562 dataset. Fitting with formulae 2, 3, constant parameters were estimated (a = 0.0088, 
b = 0.9950, k = 0.0088). (B) For MCF7 dataset, a = 0.0086, b = 0.9952, k = 0.0090. (C) For A549 dataset, a = 0.0083, b = 0.9969, k = 0.0089.
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proposed to compare anticancer compounds with active 
chemicals binding to a particular protein target. By this 
means, possible associations between cancer cell lines and 
proteins were predicted if the two groups of chemicals 
showed similarity. Literature searches showed that most 
of the high-ranked proteins were related to proliferation, 
apoptosis, or differentiation of cancer cells. 

Additionally, a chemical-protein interaction matrix 
was produced, which can help explain the mechanism 
of the anticancer drugs and also boost the repurposing of 
anticancer drugs to other fields. In fact, the drugs active 
against the predicted proteins are also potential active 
compounds against cancer. This can be quantitatively 
measured using the TL-SEA algorithm in reverse, to 
calculate the association between active compounds against 

the predicted protein targets and NCI cell lines. The above 
results confirmed the effectiveness of our algorithm. Of 
course, further laboratory experiments are needed to validate 
the predicted associations/interactions. Pathway analysis 
and systems biology simulation can also be performed to 
interpret the roles of the proteins in tumorigenesis.

The applications of this chemoinformatics approach 
can be expanded to elucidate the molecular mechanisms 
of other diseases. For instance, by comparing the active 
compounds against a bacterium with those targeting a 
variety of proteins, it is possible to deduce important 
proteins for the growth of this bacterium. The primary 
mission in the post-genomic era is to illuminate the 
relationships among genes, proteins, diseases, pathways and 
chemicals at an -omics level. It is impossible to finish this 

Table 2: List of the proteins linked to more than 15 anticancer compounds according to Pz < 0.0001
Protein_ID Number of linked compounds

K562 MCF7 A549
Q61614 - 59* 58*

Q9H4B7 30* 27* 32*

P41586 17* 20* 25*

P07382 31 31 45
P00378 30 28 42
P11387 29 - -
P00375 22 25 26
P49892 21 40 31
Q6Y1R5 21 41 31
P07900_P08238 18 15 -
P22102 18 22 24
P34970 18 37 28
Q8TEK3 18 40 28
O02747 17* - 21*

Q05932 17 23 25
P17707 - 44 35
O02667 - 31 22
P23526 - 26 23
P05227 - 19 22
P15328 - 18 20
P28647 - 18 -
O00142 - 15 -
P41148 - 15 -
Q62645 - 15 17
P48544 - - 20
P48549 - - 19
Q01782 - - 15

- with less than 15 linked compounds.
*predicted as a cancer related protein.
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work using traditional methods. Currently, a large number 
of small molecule activity data are becoming available to 
the public, such as ChEMBL and Pubchem [51, 52]. These 
datasets include the results of high throughput screening at 
the molecular level and all kinds of phenotypic activity. The 
relationship between the phenotypes (diseases) and proteins 
can be inferred using the TL-SEA algorithm proposed here. 

Compared with traditional approaches, our approach 
is economically feasible and fast, and therefore suitable 
for rapid preliminary screening before further validation. 
Compared with conventional genome correlation analysis, 
TL-SEA utilizes the activity data directly, reflecting 
protein function in the organism. Thus, the results of 
TL- SEA can be interpreted more easily with pathway 
analysis. However, the limitations of this approach should 
not be ignored. The method relies on the activity data 
of small molecules and only applies to the diseases or 
proteins whose active molecules are known.

MATERIALS AND METHODS

General study protocol

The overall protocol of this study is illustrated in 
Figure 3. Activity data and structures of small molecules 
against cancer cell lines and against a variety of proteins 
were collected from the NCI database and BindingDB. 
Physicochemical properties and activity thresholds were 
used to filter off inactive or non-druglike compounds. Then 
the similarity matrix (target similarity matrix) formed by 
these two groups of active compounds was calculated with 
ECFP_4 molecular fingerprint and the Tanimoto coefficient. 
At the same time, large numbers of chemicals satisfying 
aforementioned physicochemical properties were randomly 
sampled from BindingDB. The similarity matrix (random 
similarity matrix) formed by these random BindingDB 
chemicals and the NCI active compounds of the corresponding 

Figure 2: Chemical-protein association networks. The NCI compounds are represented with triangle nodes. Proteins are denoted 
with round nodes. Among the proteins, the important ones are denoted as orange squares. (A) Main network for blastic phase of chronic 
myelogenous leukemia (K562) cell line active compounds and proteins. Gray nodes denote that it does not appear in this system. (B) Main 
network for Non Small Cell Lung cancer (A549) cell line. (C) Main network for breast cancer (MCF7) cell line. C’) and C’’) are two 
sub-networks extracted from the MCF7 network. See text for details.



Oncotarget32401www.impactjournals.com/oncotarget

cell line was also calculated in the same manner. Finally, 
the TL-SEA algorithm was employed to compare the target 
similarity matrix with the random similarity matrix, and 
therefore give the association score (AS) between each protein 
and the cell line. The AS score was used to infer whether a 
given protein plays a role in the growth of cancer cells. Details 
about the association algorithm are described below. 

NCI database

Activity and structural data of cancer cell line 
inhibitors were downloaded from NCI website (https://wiki.
nci.nih.gov/display/NCIDTPdata/Chemical+Data). NCI 
database uses GI50 (growth inhibition of 50%) as an 
endpoint, which is the drug concentration giving a 50% 
reduction in the cancer cell proliferation. According to the 
distribution of GI50 value of the cell lines, leukemia cell 
lines were generally more sensitive than other cell lines. 
Therefore, K562 leukemia cells (September 2012 release) 
were selected as the study material and its activity data were 
used for the next analysis. We also selected two other cancer 
cell lines, MCF7 and A549 (September 2014 release), to 
confirm the stability and effectiveness of our algorithm. The 
three cancer cell lines were analyzed separately.

Activity data sets of K562, MCF7, and A549 cell 
lines contained 47,497; 36,801; and 51,170 entries, 
respectively. 2D structures of the corresponding active 
compounds were extracted and linked with the activity 
values. The distribution of compounds’ GI50 values, 
ranging from micromole to nanomole, was analyzed 
with the cumulative frequency plot (Supplementary 
Figure S2). 90% of the active compounds possessed 
a pGI50 (the negative logarithm of GI50 values in 
base 10) less than 6 (GI50  ≥ 10–6 mol/L). Therefore, 
compounds with pGI50 over 6 were defined as active, 
which included 3658, 3744 and 4646 compounds in the 
three data sets, respectively. Inactive compounds were 
discarded.

The distributions of molecular weight and AlogP  
(oil water distribution coefficient) of the anticancer active 
compounds were compared and analyzed (Supplementary 
Figure S3). AlogP thresholds were set to [2, 7], [–3, 8], 
and [–3, 8] for the three cell lines, respectively. Molecular 
weight thresholds were set to [150, 750], [200,800], 
and [200,800]. After property filtering, 3160, 3362, and 
4150 anticancer active compounds were retained for the 
following analysis.

Figure 3: The overall protocol of this study.



Oncotarget32402www.impactjournals.com/oncotarget

BindingDB database

Active data against proteins were obtained from 
BindingDB (http://bindingdb.org/bind/index.jsp, accessed 
on 2 March 2014). The binding data and 2D structures 
of small molecules were collected. There were four 
types of endpoints used in BindingDB, i.e. Ki, IC50, Kd 
and EC50. Compounds were defined as active when any 
of these values were smaller than 10–6 mol/L. To ensure 
the consistency of physical and chemical properties, 
BindingDB compounds were also filtered with the 
property criteria as discussed above. The final BindingDB 
active ligand set contained 505,600 compounds.

Generation of the similarity matrices

A similarity matrix (M) was generated by calculating 
the similarities between the NCI and BindingDB active 
compounds. Each column of the matrix corresponds to 
a NCI active compound, while each row corresponds 
to a BindingDB active compound. The similarity was 
calculated with ECFP_4 molecular fingerprint and 
Tanimoto coefficient. ECFP is Extended-Connectivity 
Fingerprints based on the Morgan algorithm [78]. It is 
a circular topological fingerprint designed for molecular 
characterization, similarity calculation, and virtual 
screening. The diameter of a circular atom neighborhood 

Figure 4: Schematic representation of the TL-SEA algorithm. First, the target protein similarity matrix (Mt) was extracted from 
the overall NCI-BindingDB similarity matrix (M). Then, the matrix was translated into an initial score vector. Next, the initial score vector 
was normalized to the Z score vector through random column sampling. Finally, the association score (AS) was calculated based on the Z 
score vector and another random sampling of random similarity matrixes. Here, n is the number of the active compounds of a NCI cell line. 
S and S’ are the similarity value between NCI compound and BindingDB compound. I is the sum of the similarity values over 0.15 in the 
corresponding column. Refer to the text for a detailed description.
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is set to 4. Tanimoto coefficient (St) is one of the most 
widely used similarity indices and is defined as St = C/
(A + B – C). Here, A and B are the numbers of fingerprint 
bits of molecules A and B, and C is the number of bits 
coexisting in both molecules.

As background sampling, around 50,000 compounds 
were randomly selected from BindingDB. The compounds 
were filtered using physicochemical properties as described 
above. Similarity matrices of the randomly selected 
BindingDB compounds against all NCI active compounds 
of each cell line (Mr) were also calculated. Three random 
compound sets (similarity matrices) were prepared with 
different property thresholds for the three NCI cell lines.

Calculating association scores using the TL-SEA 
algorithm

The similarity between two unrelated compound 
sets was usually very weak. Therefore, a sensitive 
association recognition algorithm with careful statistical 
inference was required to predict cancer-related proteins. 
This algorithm needed to be able to find out the implicit 
association of cancer cells with particular proteins using 
their active molecules. Based on the SEA algorithm, which 
was originally proposed by Keiser [19], we proposed an 
improved two-layer approach (TL-SEA). The protocol of 
this algorithm is described as follows (Figure 4).
Extract the row vectors corresponding to a BindingDB 
protein active set

To analyze the association between the NCI cell 
line and a certain protein, the row similarity vectors 
corresponding to the protein’s active compounds were 
extracted from M. The extracted row vectors composed 
a target sub-matrix (Mt). Proteins with less than 10 active 
compounds (vectors) were discarded.
Translate the similarity matrix Mt into an initial score 
(I) vector by adding up all the similarity values over a 
threshold in each column

The frequency histograms of the random similarity 
values (in Mr) were analyzed and shown in Supplementary 
Figure S4. By analyzing the distribution of random 
similarity values in the random similarity matrices, we 
chose 0.15 as the threshold and used it to filter off weak 
similarity noise.

Then, by summing up all the similarity values 
over 0.15 in each column (NCI active compound i), the 
similarity matrix (Mt) was translated in to a row vector. 
The element of the vector was defined as the initial 
score (I) between the protein and a particular anticancer 
compound.

 ( 0.15)i ji jiI S S= Σ >  (1)

Here, the summation was made over all the 
similarities between the active compounds against the 
protein (j) and the anticancer compound.

Translate the initial score vector into significance  
score (PZ)

The initial score reflected the association between 
each protein and the corresponding anticancer compound. 
However, the initial score varied when the number of 
active compounds changed. For proteins with more active 
compounds, their initial scores were generally higher than 
proteins with less active compounds. Therefore, the initial 
score was translated into a comparable standardized score 
(Z) and significance score (PZ). This was achieved with 
row sampling and linear regression.

a) Random sampling was conducted against all 
columns in the random similarity matrix (Mr). For each 
randomly selected column, the sampling was performed 
with 2000 different lengths (m). The lengths were 
randomly selected from 1 to 10,000. The operation was 
repeated for 5000 times, which produced 10 million 
random compound sets.

b) As we did in step 2, for each sampling, an 
initial score vector was obtained by summing up the 
similarity values larger than the threshold (0.15). Then, 
the distribution of the initial score over different sampling 
length (m) was obtained through analysis of the 10 million 
similarity sets (2000 × 5000). Here we used the same 
protocol to Keiser’s [19]. First, by fitting the distribution 
pattern over sampling length with the following equations, 
constants (a, b and k) were obtained. 

m k mµ = ×  (2)
b

m a mσ = ×  (3)
Here, μm and σm are the mean and the standard 

deviation of I in each group with sampling length m. a, 
b, k are the constants of the distribution of I in different 
length m. Then, a standardized score (Z) for each initial 
score was calculated with the following formula:

ˆ(  ) / (ˆ ˆ )bZ I k m a m= − × ×  (4)

Here, â, b̂ , k̂ , are the estimated values for a, 
b and k. The standardized score (Z) was comparable 
between proteins with different numbers of active 
compounds. Finally, the standard score was translated into 
a significance score (PZ) with the formula,

Z ( ) / ( )i rrP N Z Z N Z= ≥  (5)

Here, N(Zr) is the total number of Z scores of 
the random sampling, which is equal to 107. Zi is 
the standardized score of the th column in the target 
similarity matrix of protein (Mt). N(Zr ≥ Zi) is the number 
of Zr which exceeds or equal Zi. PZ is the statistical 
significance of the ith column, which is equal to the 
probability of getting a Z score no smaller than Zi from 
random sampling. Therefore, the association between a 
cell line active compound and a certain protein can be 
estimated with PZ.
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Translate the standardized score (Z) vector into the 
association score (PO)

In the above steps, we compared the active 
compounds against specific proteins and each cell lines 
active compounds, producing the Z score rating the 
relationship of this protein to every anticancer compound. 
To analyze the association between the protein and the cell 
line, the Z score vectors were merged into a comparable 
association score based on random row sampling.

First, a threshold (c) of Z corresponding to an 
acceptable confidence level (probability PZ = 0.01) was 
determined. By summing up the Z values not less than c, 
the original association score (O) of a certain protein was 
obtained.

( )   O Z Z c= Σ ≥  (6)

Then, random rows were extracted from the 
random similarity matrix (Mr). Similarly to the last step, 
the matrix sampling was performed with 2000 different 
numbers and repeated for 5000 times for each number. 
This sampling formed 10 million sub-matrices in total. For 
each matrix, the initial score and Z score of each column 
were calculated as previously described. And, the original 
score (Or) of random selected compounds was calculated. 
There were 10 million Or values in total.

Because every original score (O) was calculated in 
the same length that was equal to the number of active 
compounds against the cell line, it was unnecessary to 
standardize this value. The significance of the original 
score, here defined as the association score (AS score, PO), 
was calculated as the probability of getting an random Or 
that is not less than O score in random sampling.

O r r( ) / ( )P N O O N O= ≥  (7)
N(Or ≥ O) denotes the number of Or which exceeds 

or equals O, and N(Or) indicates the total number of Or 
(10 million). This final association score (AS or PO) 
reflects whether the protein has a function in proliferation, 
apoptosis, or differentiation of cancer cells. 

Molecular property and similarity calculation 
and automatic data processing were performed with 
Pipeline Pilot (version 8.5). The TL-SEA algorithm was 
implemented with a MATLAB script (7.14, 2012a).

Protein-compound association networks

During the process of AS score (PO) calculation, 
a P-value (PZ) matrix between the NCI compounds and 
the BindingDB proteins was formed. For matrix elements 
with very low PZ value, there was a great chance that the 
corresponding NCI compound and the protein can bind 
to each other. To illustrate the relationships between NCI 
chemicals and BindingDB proteins clearly, we retained 
the matrix elements with PZ lower than 0.0001 and 
converted the matrix into a chemical-protein interaction 

network. The network was graphically presented, rendered 
with Cytoscape [79] (version 2.8.2) by Force-Directed 
BioLayout. The edge was weighted by the reciprocal of 
the negative of the common logarithm of PZ.
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