organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

7-Methoxy-3,4-dihydronaphthalen-1(2H)-one

Jerry P. Jasinski,^a* James A. Golen,^a S. Sekar,^b H. S. Yathirajan^b and Nagaraja Naik^b

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: jjasinski@keene.edu

Received 25 May 2011; accepted 26 May 2011

Key indicators: single-crystal X-ray study; T = 170 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.125; data-to-parameter ratio = 19.5.

In the title compound, $C_{11}H_{12}O_2$, the six-membered ketone ring fused to the 7-methoxy benzene ring adopts a slightly distorted envelope configuration with the central methylene C atom being the flap. The crystal packing is stabilized by weak intermolecular C-H···O and C-H·· π interactions, which lead to supramolecular layers in the bc plane.

Related literature

For the synthesis of steroid estrogens, see: Belov et al. (2007). For the manufacture of important antidepressant drugs, see: Shum et al. (2000). For multi-functional scaffolds of tetralone, see: Mahapatra et al. (2008). For related structures, see: Barcon et al. (2001); Haddad l. (1996). For puckering parameters, see: Cr 75).

Experimental

Crystal data

 $C_{11}H_{12}O_2$ $M_r = 176.21$ Monoclinic, $P2_1/c$ a = 7.4303 (4) Å

). For related bir
(1986); Orlov et al
emer & Pople (197

b = 7.4614 (4) Å

c = 16.4393 (8) Å

V = 911.27 (8) Å³

 $\beta = 90.976 (4)^{\circ}$

Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Data collection

```
Oxford Diffraction Xcalibur Eos
  Gemini diffractometer
Absorption correction: multi-scan
  (CrysAlis RED; Oxford
  Diffraction, 2010)
  T_{\min} = 0.970, \ T_{\max} = 0.991
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 120 parameters $wR(F^2) = 0.125$ H-atom parameters constrained S = 1.04 $\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$ 2345 reflections

T = 170 K

 $R_{\rm int} = 0.023$

 $0.35 \times 0.25 \times 0.10 \text{ mm}$

8750 measured reflections

2345 independent reflections

1959 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C3,C8-C10 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11 - H11C \cdots O1^{i}$ $C5 - H5A \cdots Cg1^{ii}$	0.98 0.99	2.38 2.77	3.3095 (18) 3.6730 (14)	157 152

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

SS thanks the UOM for the research facilities. JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2750).

References

- Barcon, A., Brunskill, A. P. J., Lalancette, R. A., Thompson, H. W. & Miller, A. J. (2001). Acta Cryst. C57, 325-328.
- Belov, V. N., Dudkin, V. Yu., Urusova, E. A., Starova, G. L., Selivanov, S. L., Nikolaev, S. V., Eshchenko, N. D., Morozkina, S. N. & Shavva, A. G. (2007). Russ. J. Bioorg. Chem. 33, 293-303.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Haddad, S. F. (1986). Acta Cryst. C42, 581-584.
- Mahapatra, T., Das, T. & Nanda, S. (2008). Tetrahedron Asymmetry, 19, 2497-2507.
- Orlov, V. D., Kaluski, Z., Figas, E., Potekhin, K. A. & Shishkin, O. V. (1996). J. Struct. Chem. 37, 517-519.
- Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shum, S. P., Odorsio, P. A. & Pastor, S. D. (2000). US Patent 6 054 614.

supplementary materials

Acta Cryst. (2011). E67, o1646 [doi:10.1107/S1600536811020174]

7-Methoxy-3,4-dihydronaphthalen-1(2H)-one

J. P. Jasinski, J. A. Golen, S. Sekar, H. S. Yathirajan and N. Naik

Comment

The structural and therapeutic diversity of small heterocyclic molecules continue to attract the attention of organic and medicinal chemists. Tetralones are emerging prominently as pharmacologically important bioactive molecules. Tetralone is an important and common intermediate in organic synthesis and is a ketone derivative of tetralin. The title compound (Systematic name: 3 ,4-Dihydro-7-methoxy-2(1H)-naphthalenone), (I), $C_{11}H_{12}O_2$, is used in the preparation of agomelatine, which is an antidepressant. The importance of tetralone and its substituted derivatives as building blocks in the synthesis of steroid estrogens via isothiuronium salts is reported (Belov *et al.*, 2007). Tetralones are also important intermediates for the manufacturing of various serotonin inhibitor compounds having antidepressant activity, particularly sertraline, an important antidepressant drug (Shum *et al.*, 2000). Multi functional scaffolds of tetralone to generate further diversity with different functionalities is reported (Mahapatra *et al.*, 2008). The crystal structures of some related compounds, viz., 2,2-dibromo-3,4-dihydro-1(2H)-naphthalenone (Haddad *et al.*, 1986), 2-(4-nitrobenzylidene)-1-tetralone (Orlov *et al.*, 1996), (\pm)-1-tetralone-3-carboxylic acid and (\pm)-1-tetralone-2-acetic acid (Barcon *et al.*, 2001),have been reported. In view of the importance of tetralones, this paper reports the crystal structure of the title compound, (I).

In the title compound, $C_{11}H_{12}O_2$, the six-membered ketone ring fused to the benzene ring adopts a slightly distorted envelope configuration (Cremer & Pople, 1975) with puckering parameters Q, θ and ϕ of 0.4869 (14) Å, 56.33 (15) ° and 185.10 (18) °, respectively (Fig. 1). For an ideal envelope θ and ϕ have values of 54.7° and 180°. Crystal packing is stabilized by weak C—H…O and C—H… π (Table 1) intermolecular interactions.

Experimental

Anisole (4.3 ml, 0.040 mol) is acylated with succinic anhydride (4.2 g, 0.042 mol) in the presence of anhydrous aluminium chloride and nitrobenzene as solvent to give the intermediate keto acid. The keto group is reduced by hydrogenation with Pd/C as catalyst at 2-3 kgs pressure and 343-348 K for 2 -3 hours. Further work up, isolation and cyclization with poly phosphoric acid (PPA) gives 7-methoxy-1-tetralone (Fig. 1). X-ray quality crystals of (I) were obtained by slow evaporation from isopropyl alcohol (*M*.pt.: 333-336 K).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95 Å (CH), 0.99 Å (CH₂) or 0.98 Å (CH₃). Isotropic displacement parameters for these atoms were set to 1.19-1.20 (CH, CH₂) or 1.49 (CH₃) times U_{eq} of the parent atom.

Figures

Fig. 1. Reaction scheme for the title compound.

Fig. 2. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

7-Methoxy-3,4-dihydronaphthalen-1(2H)-one

Crystal data	
$C_{11}H_{12}O_2$	F(000) = 376
$M_r = 176.21$	$D_{\rm x} = 1.284 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4312 reflections
a = 7.4303 (4) Å	$\theta = 3.7 - 32.3^{\circ}$
<i>b</i> = 7.4614 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 16.4393 (8) Å	T = 170 K
$\beta = 90.976 \ (4)^{\circ}$	Block, colorless
$V = 911.27 (8) \text{ Å}^3$	$0.35\times0.25\times0.10\ mm$
Z = 4	

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer	2345 independent reflections
Radiation source: Enhance (Mo) X-ray Source	1959 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
Detector resolution: 16.1500 pixels mm ⁻¹	$\theta_{\text{max}} = 28.7^{\circ}, \ \theta_{\text{min}} = 3.7^{\circ}$
ω scans	$h = -9 \rightarrow 10$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2010)	$k = -9 \rightarrow 10$
$T_{\min} = 0.970, \ T_{\max} = 0.991$	$l = -21 \rightarrow 22$
8750 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.125$	$w = 1/[\sigma^2(F_o^2) + (0.0642P)^2 + 0.1602P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
2345 reflections	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
120 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.053 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y 01 0.0466(3)0.62487 (12) 0.84217 (13) 0.45326 (5) 02 0.87018 (12) 0.68273 (16) 0.72482 (6) 0.0553 (3) C1 0.0380(3) 0.70272 (16) 0.66013 (17) 0.69096(7) C2 0.72639 (15) 0.67929 (14) 0.61301 (6) 0.0335 (3) H2A 0.040* 0.7769 0.7829 0.5867 C3 0.51381 (14) 0.71094 (14) 0.57282 (6) 0.0307(2)C4 0.49582 (15) 0.78093 (15) 0.48827(7)0.0336(3)C5 0.31401 (17) 0.44739(7) 0.77041 (18) 0.0418 (3) H5A 0.050* 0.3094 0.6623 0.4125 H5B 0.2977 0.8763 0.4117 0.050* C6 0.15984 (16) 0.76306 (18) 0.50688 (8) 0.0447 (3) H6A 0.1523 0.5366 0.054* 0.8781 H6B 0.054* 0.0449 0.7447 0.4767 C7 0.18949 (16) 0.61092 (18) 0.56688 (8) 0.0440 (3) 0.053* H7A 0.0917 0.6112 0.6070 H7B 0.1850 0.4952 0.5375 0.053* C8 0.36834 (15) 0.62853 (15) 0.61076 (7) 0.0355 (3) C9 0.39581 (17) 0.56299 (18) 0.68908 (8) 0.0449 (3) H9A 0.2986 0.5063 0.7157 0.054* C10 0.55946 (18) 0.57744 (19) 0.72955 (7) 0.0457 (3) H10A 0.5742 0.5315 0.7831 0.055* C11 0.9071 (2) 0.6037 (3) 0.80161 (9) 0.0775 (6) H11A 1.0326 0.6270 0.8176 0.116* H11B 0.7982 0.116* 0.8871 0.4741 H11C 0.8271 0.6553 0.8422 0.116*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0447 (5)	0.0552 (6)	0.0401 (5)	-0.0057 (4)	0.0086 (4)	0.0067 (4)
02	0.0402 (5)	0.0863 (8)	0.0392 (5)	0.0017 (5)	-0.0064 (4)	0.0004 (5)
C1	0.0357 (6)	0.0438 (6)	0.0344 (6)	0.0044 (5)	0.0005 (4)	-0.0048 (4)

supplementary materials

C2	0.0312 (5)	0.0358 (6)	0.0338 (5)	-0.0018 (4)	0.0044 (4)	-0.0026 (4)
C3	0.0312 (5)	0.0288 (5)	0.0322 (5)	-0.0006 (4)	0.0033 (4)	-0.0018 (4)
C4	0.0368 (5)	0.0300 (5)	0.0341 (5)	0.0001 (4)	0.0032 (4)	-0.0031 (4)
C5	0.0452 (7)	0.0409 (6)	0.0390 (6)	-0.0030 (5)	-0.0065 (5)	-0.0005 (5)
C6	0.0332 (6)	0.0463 (7)	0.0542 (7)	-0.0003 (5)	-0.0063 (5)	-0.0041 (5)
C7	0.0320 (6)	0.0476 (7)	0.0524 (7)	-0.0083 (5)	0.0029 (5)	-0.0002 (5)
C8	0.0326 (6)	0.0342 (6)	0.0399 (6)	-0.0025 (4)	0.0052 (4)	-0.0010 (4)
C9	0.0423 (7)	0.0485 (7)	0.0442 (6)	-0.0052 (5)	0.0116 (5)	0.0080 (5)
C10	0.0506 (7)	0.0534 (8)	0.0332 (6)	0.0034 (6)	0.0060 (5)	0.0074 (5)
C11	0.0548 (9)	0.1375 (18)	0.0399 (7)	0.0233 (10)	-0.0073 (6)	0.0056 (9)

Geometric parameters (Å, °)

O1—C4	1.2159 (14)	C6—C7	1.5175 (19)
O2—C1	1.3649 (14)	C6—H6A	0.9900
O2—C11	1.4159 (19)	С6—Н6В	0.9900
C1—C2	1.3818 (16)	C7—C8	1.5070 (16)
C1—C10	1.3925 (18)	C7—H7A	0.9900
C2—C3	1.3907 (15)	С7—Н7В	0.9900
C2—H2A	0.9500	C8—C9	1.3891 (17)
C3—C8	1.3994 (15)	C9—C10	1.3804 (19)
C3—C4	1.4887 (15)	С9—Н9А	0.9500
C4—C5	1.5006 (16)	C10—H10A	0.9500
C5—C6	1.5198 (18)	C11—H11A	0.9800
C5—H5A	0.9900	C11—H11B	0.9800
С5—Н5В	0.9900	C11—H11C	0.9800
C1—O2—C11	118.26 (12)	С5—С6—Н6В	109.7
O2—C1—C2	115.69 (10)	H6A—C6—H6B	108.2
O2—C1—C10	124.58 (11)	C8—C7—C6	111.28 (10)
C2-C1-C10	119.73 (11)	С8—С7—Н7А	109.4
C1—C2—C3	120.49 (10)	С6—С7—Н7А	109.4
C1—C2—H2A	119.8	С8—С7—Н7В	109.4
С3—С2—Н2А	119.8	С6—С7—Н7В	109.4
C2—C3—C8	120.53 (10)	H7A—C7—H7B	108.0
C2—C3—C4	118.63 (9)	C9—C8—C3	117.73 (11)
C8—C3—C4	120.83 (10)	C9—C8—C7	121.83 (10)
O1—C4—C3	120.99 (10)	C3—C8—C7	120.43 (10)
O1—C4—C5	121.25 (10)	C10—C9—C8	122.25 (11)
C3—C4—C5	117.75 (10)	С10—С9—Н9А	118.9
C4—C5—C6	113.35 (10)	С8—С9—Н9А	118.9
C4—C5—H5A	108.9	C9—C10—C1	119.27 (11)
С6—С5—Н5А	108.9	C9—C10—H10A	120.4
С4—С5—Н5В	108.9	C1-C10-H10A	120.4
С6—С5—Н5В	108.9	O2—C11—H11A	109.5
H5A—C5—H5B	107.7	O2—C11—H11B	109.5
C7—C6—C5	110.04 (10)	H11A—C11—H11B	109.5
С7—С6—Н6А	109.7	O2-C11-H11C	109.5
С5—С6—Н6А	109.7	H11A—C11—H11C	109.5
С7—С6—Н6В	109.7	H11B-C11-H11C	109.5

C11—O2—C1—C2	-174.47 (13)	C5—C6—C7—C8	56.14 (14)
C11—O2—C1—C10	5.8 (2)	C2—C3—C8—C9	-0.25 (17)
O2—C1—C2—C3	-179.84 (10)	C4—C3—C8—C9	178.68 (10)
C10—C1—C2—C3	-0.07 (18)	C2—C3—C8—C7	-179.62 (10)
C1—C2—C3—C8	0.18 (17)	C4—C3—C8—C7	-0.69 (16)
C1—C2—C3—C4	-178.76 (10)	C6—C7—C8—C9	150.91 (12)
C2—C3—C4—O1	3.71 (16)	C6—C7—C8—C3	-29.74 (16)
C8—C3—C4—O1	-175.24 (11)	C3—C8—C9—C10	0.20 (19)
C2—C3—C4—C5	-177.30 (10)	C7—C8—C9—C10	179.56 (12)
C8—C3—C4—C5	3.75 (15)	C8—C9—C10—C1	-0.1 (2)
O1—C4—C5—C6	-156.85 (12)	O2—C1—C10—C9	179.77 (12)
C3—C4—C5—C6	24.16 (15)	C2-C1-C10-C9	0.02 (19)
C4—C5—C6—C7	-53.97 (14)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C3,C8–C10	ring.			
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C11—H11C···O1 ⁱ	0.98	2.38	3.3095 (18)	157
C5—H5A····Cg1 ⁱⁱ	0.99	2.77	3.6730 (14)	152
Symmetry codes: (i) x , $-y+3/2$, $z+1/2$; (ii) $-x+$	1, -y+1, -z+1.			

Fig. 2