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This review presents an overview on the recent progress in the synthesis, crosslinking,

interpenetrating networks, and applications of poly(aspartic acid) (PASP)-based

hydrogels. PASP is a synthetic acidic polypeptide that has drawn a great deal of attention

in diverse applications due particularly to its biocompatibility and biodegradability. Facile

modification of its precursor, poly(succinimide) (PSI), by primary amines has opened

a wide window for the design of state-of-the-art hydrogels. Apart from pH-sensitivity,

PASP hydrogels can be modified with suitable species in order to respond to the other

desired stimuli such as temperature and reducing/oxidizing media as well. Strategies for

fabrication of nanostructured PASP-based hydrogels in the form of particle and fiber are

also discussed. Different cross-linking agents for PSI/PASP such as diamines, dopamine,

cysteamine, and aminosilanes are also introduced. Finally, applications of PASP-based

hydrogels in diverse areas particularly in biomedical are reviewed.

Keywords: hydrogels, poly(aspartic acid), poly(succinimide), crosslinking, nanoparticles, interpenetrating polymer

networks (IPNs)

INTRODUCTION

Hydrogels are 3-D networks composed of water-soluble polymer chains linked together by
chemical or physical bonds. They are employed as carriers for delivery of bioactive agents, as
wound healing films, bio-sensingmaterials, implants, and scaffolds in tissue engineering, etc. (Ullah
et al., 2015; Wang L. et al., 2016; Al Harthi et al., 2019). In the presence of water, instead of
dissolution, hydrogels are swollen from a few to several times of their own dry weight depending
on the crosslinking degree. Similar to water-soluble polymers, based on their chemical structures,
hydrogels can be divided into anionic (Ullah et al., 2015), cationic (Qi et al., 2018), non-ionic
(Golabdar et al., 2019), and zwitterionic (Vatankhah-Varnosfaderani et al., 2018).

Anionic polymers, which are essentially poly(acid)s, show globule to coil transition upon pH
increment and/or reduction of ionic strength (Abu-Thabit and Hamdy, 2016; Meka et al., 2017).
This behavior is reflected in hydrogels as swelling when the polymer is cross-linked (Varaprasad
et al., 2017). Aside from polysaccharide-based anionic polymers, most of anionic hydrogels are
not biodegradable, thereby posing environmental problems and creating pollution challenges in
the long-term (Guilherme et al., 2015; Pakdel and Peighambardoust, 2018). Therefore, seeking a
suitable substitute that is biodegradable and non-toxic is of outmost importance.

Poly(aspartic acid) (PASP), a synthetic poly(amino acid) with a protein-like amide bond in its
backbone, and a carboxylic acid as a pendant group in each repeating unit, has drawn a great
deal of attention and so the demand for its production has significantly grown. The former bond
provides PASP with degradability (Nakato et al., 1998; Tabata et al., 2000, 2001), while the latter
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groups gives the polymer acidic properties and negative charge
(Yang et al., 2011; Sattari et al., 2018). Various enzymes such
as trypsin (Zhang C. et al., 2017), chymotrypsin (Wei et al.,
2015), dispase and collagenase I (Juriga et al., 2016), as well as
different media such as activated sludge (Alford et al., 1994)
and river water (Tabata et al., 2000) have been examined
for biodegradation of PASP-based hydrogels and polymers.
Depending on the condition (e.g., enzyme concentration and
temperature), complete degradation varies from a few days to
one month.

PASP hydrogels typically exhibit the same response to pH
and ionic strength as other anionic ones, such that higher
swelling ratio can be achieved by increasing pH or lowering
ionic strength (Zhao et al., 2005; Sharma et al., 2014). This
property, which is called polyelectrolyte effect, stems from
ionization of carboxylic groups. Ionization (or de-protonation)
creates negative charges along the chain/network, causing
extended chain conformation and globule to coil transition.
On the other hand, high ion concentration shields the network
charge and lowers swelling (Yang et al., 2006). Additionally,
by changing crosslinking density, mechanical properties and
swelling could be tuned (Vatankhah-Varnoosfaderani et al.,
2016). More importantly, PASP hydrogels can be readily
modified with a wide variety of species to meet the need
of any given application. This feature arises from highly
reactive imide rings in the intermediate poly(succinimide)
(PSI), which allow grafting of different molecules bearing
primary amine group under mild conditions without using
any catalyst. Therefore, considering facile modification,
biocompatibility, and biodegradability, PASP-based hydrogels
offers potential advantages over conventional anionic hydrogels
[e.g., poly(acrylic acid)] and can be considered as a promising
choice for hydrogel preparation in diverse applications.

In the light of the aforementioned features, in this paper we
provide a review on the synthesis, gelation process, cross-linking
agents, and recent applications of hydrogels based on PASP.

SYNTHESIS OF POLYASPARTIC ACID

PASP homopolymer is generally synthesized through poly-
condensation of aspartic acid (ASP) monomer or polymerization
of maleamic acid which is produced from maleic anhydride and
a nitrogen source like ammonia or urea as shown in Figure 1.
Whatever the method is, the reaction yields the intermediate
poly(anhydroaspartic acid), i.e., poly(succinimide) (PSI). The
subsequent alkaline hydrolysis of PSI leads to imide ring opening
through either carbonyl groups, resulting in a mixture of α and
β. Also, as mentioned, PSI can easily undergo a nucleophilic

Abbreviations: APTS, γ-aminopropyltriethoxysilane; AN, ammonia; ASP,
Aspartic acid; CYS, cystamine; DAB, 1,4-diaminobutane; DEGDA, diethylene
glycol diacrylate; DTT, dithiothreitol; DDS, drug delivery system; EGDGE,
ethylene glycol diglycidyl ether; EGDMA, ethylene glycol dimethylacrylate; FTIC-
Dx, fluorescent dextran; HMDA, hexamethylenediamine; MA, maleic anhydride;
MBA, N,N′-methylene bisacrylamide; MB, methylene blue; NR, neutral red;
PAAm, poly(acrylamide); PASP, poly(aspartic acid); PEGDGE, poly(ethylene
glycol) diglycidyl ether; poly(NIPAAm), poly(N-isopropylacrylamide); PSI,
poly(succinimde); TMEDA, tetramethylenediamine (TMEDA).

reaction with primary and secondary amines without catalyst
even at room temperature to yield poly(aspartamide) derivatives,
allowing one to tailor-make PASP to be exploited as a versatile
and multi-functional hydrogels (Feng et al., 2014; Nayunigari
et al., 2014; Zhang S. et al., 2017).

Poly-Condensation of Aspartic Acid
Thermal poly-condensation of ASP at elevated temperatures
(typically higher than 160◦C) can either be conducted in bulk
(Nakato et al., 2000; Zrinyi et al., 2013) or in solution (Low
et al., 1996; Tomida et al., 1997a) in the presence or absence
of a catalyst. The reaction by-product, i.e., water, should be
eliminated during the course of polymerization. The most
effective solvent and catalyst have been found to be themixture of
mesitylene/sulfolane (7/3, w/w) and phosphoric acid, respectively
(Tomida et al., 1997a). The reactions catalyzed by phosphoric
acid yield linear chain whereas uncatalyzed reactions lead to
branching (Wolk et al., 1994). High temperature, high catalyst,
and aspartic acid monomer concentration can significantly
increase molecular weight (Mw) (Jalalvandi and Shavandi, 2018;
Yavvari et al., 2019). Recent studies have also shown when
phosphoric acid is utilized as both catalyst and polymerization
media (aspartic acid monomer: phosphoric acid, 1:1), PASP
with high Mw and reaction yield is achieved (Zakharchenko
et al., 2011; Moon et al., 2013; Szilágyi et al., 2017). It is
noteworthy to mention that the use of solvent though improves
heat transfer, it may reduce the reaction rate, as the availability
of functional groups (NH2 and COOH) is reduced (Stevens,
1990). Additionally, solvent should be removed after the reaction
by washing polymer. Therefore, bulk reaction under batch
and continuous (through extruder) conditions is preferable in
industry (Kokufuta et al., 1978; Nakato et al., 2000; Zrinyi et al.,
2013).

Polymerization of Maleamic
Acid/Ammonium Salt of Maleic Acid
The second method involves polymerization of maleamic acid
without catalyst for 6–8 h at high temperature (>160◦C), during
which period water is removed by distillation (shown in Figure 1)
(Koskan and Meah, 1993; Wood, 1994; Boehmke and Schmitz,
1995; Ni et al., 2006; Shi et al., 2016). Maleamic acid is
prepared by reacting maleic anhydride (MA) (or maleic acid)
with anhydrous ammonia or urea as a nitrogen source or heating
the monoammonium salt of maleic acid. This method was first
introduced as a patent by Boehmke, where PASP was synthesized
with a relatively low degree of polymerization 15–20%, using
ammonia (AN) and MA which was heated in water (at 75◦C) to
change to maleic acid (Boehmke, 1989). The reaction is typically
carried out without solvent in a reactor, oven (Freeman et al.,
1995), or under microwave irradiation (Huang et al., 2007).
Although this method employs industrially inexpensive and
available raw materials such as maleic anhydride and ammonia,
it gives low yields and low molecular weight (Boehmke, 1989;
Koskan and Meah, 1993; Wood, 1994; Boehmke and Schmitz,
1995; Freeman et al., 1995; Ni et al., 2006; Huang et al., 2007; Shi
et al., 2016).
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FIGURE 1 | Synthesis procedure of PSI, PASP, and poly(aspartamide). PSI can either be obtained through poly-condensation (usually at elevated temperature

>160◦C using an acid as the catalyst) of ASP or malic acid (synthesized by maleic anhydride and a nitrogen source such as urea or ammonia). PSI can be hydrolysed

under alkali media to yield PASP or reacted with primary amines (without catalyst at room temperature) to yield poly(aspartamide) derivatives. The ring opening of

succinimde groups occurs both at α and β sites in amidation and hydrolysis reaction.

CROSSLINKING

Commonly, hydrogels based on PASP are prepared either
via crosslinking of PSI followed by alkali hydrolysis, or by
crosslinking of PASP itself. Various types of crosslinking agents
can be used. Because of the simplicity, the agent is generally
introduced by PSI modification or the gelation process itself is
carried out on PSI followed by alkali hydrolysis.

Hydrogels Based on Diamines
Simple succinimide ring opening by primary amines allows the
use of various diamines for the synthesis of a PASP hydrogel
(Jalalvandi and Shavandi, 2018). This reaction occurs at room
temperature without requiring any catalyst (Fang et al., 2006a,b).
Gyenes et al. (2008) employed different natural amines and
amino acid derivatives such as putrescin, spermine, spermidine,
lysine, and cystamine for crosslinking. They indicated that
the cystamine-based hydrogels dissolve above pH 8.5 as the
disulfide linkage breaks under alkaline media. Gyarmati et al.
(2015) reported the synthesis of super-macroporous PASP
hydrogels using 1,4-diaminobutane as a cross-linker under
cryogenic condition of DMSO. Phase separation was induced
by freezing DMSO as the solvent of PSI. As a result, highly
porous interconnective hydrogels (pore size 9–259µm) was
fabricated, which is useful for in vitro cell seeding with pH-
induced detachment of the grown cells. In a similar study,
aside from chemical crosslinking with hexamethylenediamine
(HMDA), freeze/thaw technique was also applied to induce
phase separation and physical crosslinking (Zhao and Tan, 2006).
Swelling behavior was highly affected by changing freeze/thaw
cycle number, time, and temperature. Chen et al. (2016) also

prepared PASP superabsorbent cross-linked by HMDA in the
presence of organic bentonite (OB) with high swelling capacity
(491 g/g in water). It was shown that OB can serve as a crosslinker
due to its surface amine groups since high OB content (above 3%)
led to lower swelling.

Hydrogels Based on Disulfide Bond
Crosslinking through disulfide or thiol containing agents endows
an interesting feature to the PASP-based hydrogels. The reaction
of thiol to disulfide can be carried out under application of a
reducing agent. This reaction can be reversed in the presence
of an oxidizing agent. Therefore, PSI is generally modified with
thiol groups (cysteamine or cystamine) for the preparation of
reducing/oxidizing-responsive PASP hydrogels (Molnar et al.,
2014). In order to maintain structural integrity in different
media, a permanent linker such as a diamine can be employed
(Figure 3A; Zrinyi et al., 2013; Krisch et al., 2018). Recently,
such dual cross-linked hydrogels have drawn a great deal of
attention due to swelling under reductive state. For instance,
Zrinyi et al. (2013) synthesized PASPwith diaminobutane (DAB),
and cystamine (CYS) as permanent and cleavable crosslinkers,
respectively. They showed that disulfide bonds arising from the
latter is broken by the addition of a reducing agent, leading to
an increase in swelling and a decrease in modulus. Likewise,
redox- and pH-responsive PASP hydrogels were prepared by dual
crosslinking using cysteamine, and 1,4-diaminobutane which
creates reversible and irreversible bonds, respectively (Gyarmati
et al., 2014). It was indicated that swelling degree of hydrogel
and elastic modulus can be tuned by reducing/oxidizing agents
without hydrogel disintegration/dissolution. Swelling increased
as pH increased both under oxidized and reduced states.
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FIGURE 2 | PASP hydrogels based on disulfide bonds. (A) Swelling of PASP hydrogels cross-linked with cysteamine in reduced and oxidized states as a function of

pH shows conventional behavior of anionic hydrogels, swelling under reduced condition is higher. (B) Elastic modulus of the corresponding hydrogels shows

reversible increase and decrease upon oxidation/reduction. Reproduced from Gyarmati et al. (2014) with permission from The Royal Society of Chemistry.

However, under the latter condition, swelling was higher. The
hydrogels maintained their mechanical stability under repeated
redox cycles for at least three cycles and the reversibility was
shown to be independent of initial redox state of PASP (reduced
or oxidized) (Figures 2A,B). Krisch et al. (2018) employed
poly(ethylene glycol) diglycidyl ether (PEGDGE) for crosslinking
thiolated PASP in order to secure structural integrity of the
hydrogels in reducing media. A part of thiol groups were reacted
with the former to establish a non-cleavable gel junction while the
remaining ones were oxidized into breakable disulfide bonds. It
should be noted that the epoxide groups with thiol groups form
unbreakable S-C bonds.

Hydrogels Based on Dopamine
Catechol moieties in dopamine exhibit a multifunctional
characteristic for the design of mussel-inspired coatings (Ryu
et al., 2015, 2018; Saiz-Poseu et al., 2019). Complex formation of
catechol with boron and/or iron ions (Fe3+) can be employed for
hydrogel preparation (Vatankhah-Varnoosfaderani et al., 2014;
Krogsgaard et al., 2016). Injectable dopamine modified PASP
hydrogels with superior adhesive character were synthesized
by complexation with Fe3+ ions (gelation time around 1min;
Figure 3B; Gong et al., 2017). It was suggested that the resulting
crosslinking are composed of both Fe3+ coordination as well
as covalent quinone-quinone bonds. Boric acid was also shown
to crosslink dopamine-modified PASP and yield hydrogels due
to boron–catechol coordination (Wang B. et al., 2016). The
prepared hydrogels had autonomous self-healing feature due to
such a coordination.

Other Hydrogels
Apart from diamine and disulfide crosslinking, other strategies
have also been developed for fabrication of PASP hydrogels.
The reaction of hydrazine and aldehyde, radical polymerization
of pendant double bond, sol-gel reaction of aminosilane, and
application of gamma-irradiation are some examples that will be
discussed in this section for preparation of PASP hydrogels.

Lu et al. (2014) prepared injectable PASP-based hydrogel
through introduction of hydrazine and aldehyde to PSI backbone
by hydrazine hydrate and 3-amino-1,2-propanediol, respectively.
Therefore, hydrazine and aldehyde modified PASPs were used as
two gel precursors as shown in Figure 3C. The same strategy was
used for crosslinking of oxidized alginate and polyaspartamide
conjugated with RGD peptide (Jang and Cha, 2018).

Conventional radical polymerization of allyl amine monomer
grafted onto PSI can also lead to crosslinking (Figure 3D;
Umeda et al., 2011; Némethy et al., 2013). Minimum value
of allyl amine content was found to be 5% for gel formation
(Umeda et al., 2011).

Gamma-irradiation can be typically utilized for crosslinking
of polymers as it delivers high amount of energy and is capable of
forming free radical on polymer backbone. Using such radiation
(dosage of 32–100 kGy), Tomida et al. (1997b) prepared PASP
hydrogel (Figure 3E). It was shown that the reaction should
be conducted under N2 atmosphere as oxygen scavenges free
radicals. It was also found that low polymer concentration, as well
as low Mw does not lead to gelation and also acidic conditions
destabilize the generated radicals.

γ-aminopropyltriethoxysilane (APTS) (an aminosilane) is
generally used for attachment of organic/inorganic materials, and
surface modification (Adelnia et al., 2015; Bidsorkhi et al., 2017).
Its amine and hydroxyl groups make it an excellent candidate as a
linker. Meng et al. (2016) introduced APTS on PSI backbone and
used it as a crosslinker for PASP gel formation (Figure 3F).

Ethylene glycol diglycidyl ether (EGDGE) can also react with
PASP to yield hydrogels (at 180◦C for 30min, dry state, pH
before drying 5–6.5) (Chang and Swift, 1999). As the degree of
ionization of PASP as well as the protonation of epoxide ring is
highly dependent on pH, crosslinking occurs at optimum pH of
5–6.5. Acidic media hydrolyse epoxide group whereas alkaline
media reduce the protonated acid group concentration required
for nucleophilic attack on the epoxide ring. Meng et al. (2015)
however, utilized EGDGE for PSI crosslinking and compared
it with hydrazine as a diamine. The produced bonds of the
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FIGURE 3 | PASP hydrogels prepared by different cross-linkers. (A) PASP hydrogel with a permanent and a cleavable cysteamine cross-linker exhibited response to

oxidation/reduction without the gel dissolution. (B) Modification of PSI with dopamine led to PASP with catechol pendant groups which can establish complex with

Fe3+ ions, and form hydrogel as a results; adapted from Gong et al. (2017) with permission from Wiley. (C) Synthesis of injectable PASP hydrogels by introduction of

aldehyde and amine groups on PASP. Reproduced from Lu et al. (2014) with permission from Wiley. (D) Allyl amine as a monomer that is polymerized via radical

polymerization is grafted onto PASP; the subsequent polymerization of allyl amine gives rise to PASP-based hydrogel. (E) Application of gamma-irradiation for

crosslinking of PASP. (F) Grafting of APTS as an aminosilane on PSI backbone followed by its hydrolysis.

Frontiers in Chemistry | www.frontiersin.org 5 November 2019 | Volume 7 | Article 755

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Adelnia et al. Hydrogels Based on Poly(aspartic acid)

former and the latter are ester and amide, respectively. The PASP
hydrogels with the latter had faster swelling kinetic, while lower
stability in terms of maintaining the absorbed water.

PASP HYDROGEL NANOSTRUCTURES

PASP Hydrogel Particles (i.e., Nanogels
and Microgels)
Hydrogel nanoparticles (i.e., nanogels) can find much more
applications compared to their own bulk counterpart especially
as a carrier for delivery of bioactive agents (Cuggino et al., 2019;
Molaei et al., 2019). Preparation of such structures is generally
carried out via inverse type emulsion techniques where aqueous
phase containing hydrophilic polymer is dispersed in an organic
solvent (typically hydrocarbons such as hexane) containing
emulsifier (e.g., span-80; Krisch et al., 2017). Formation of small
droplets/particles requires high shear stress which can be applied
through high speed homogenizer or sonication. Schematic
representation of typical emulsification is drawn in Figure 4A.
Network formation should be conducted after particle formation
as premature crosslinking leads to bulk gelation and does not
allow emulsification. For example, Krisch et al. (2016) prepared
nanogels of thiolated PASP by inverse miniemulsion (water
in n-hexane). After particle formation, the thiolated groups of
PASP were oxidized by sodium bromate NaBrO3, giving rise to
gel formation. To maintain structural integrity of nanogels in
reducing media, the same group utilized poly(ethylene glycol)
diglycidyl ether for crosslinking of a part of S-H groups. The
nanogels diameter increased in reducing media due to disulfide
bond breakage and thus swelling while maintaining nanogel
integrity (Figure 4B; Krisch et al., 2018).

Inverse emulsion method, though effective in preparation of
small size and uniform particles, is accompanied with several
problems such as using toxic organic solvent, relatively high
amount of emulsifier, and the need for medium substitution
to water. Therefore, alternative methods need to be adopted.
Since PSI is hydrophobic, its particles can be formed in aqueous
media (Hill et al., 2015). PASP-g-PEG hydrogel nanoparticles
were fabricated via self-association of hydrophobic PSI units
in water (i.e., micelle formation), followed by their hydrolysis
(Park et al., 2017). The particles were crosslinked with HMDA or
cystamine. PASP particles can also be formed via self-assembly
with cationic polymers such as chitosan, as it is an anionic
polyelectrolyte. Such an electrostatic self-assembly (also referred
to as ionic gelatification) can yield composite nanoparticles in
water through polyelectrolyte complexation (i.e., electrostatic
charge attraction of the two polymer; Zheng et al., 2007; Zhang
et al., 2008; Wei Wang et al., 2009). PASP/chitosan particles were
prepared by drop-wise addition of chitosan to PASP solution.
When chitosan/PASP ratio increased from 0.75 to 2.5, the size
increased from 84 to 1,364 nm (Hong et al., 2014).

PASP Hydrogel Nanofibers
Regarding the fiber formation, since gels cannot flow, network
formation should be conducted after fiber formation similar
to the emulsification mentioned above. A typical PASP-
based fiber preparation is exhibited in Figure 4C. In this

method, PSI is dissolved in its solvent (commonly DMF
or DMSO) and electrospun into nanofibers. The resulting
PSI nanofibers are cross-linked in this step, employing a
suitable agent (e.g., ethylenediamine) and converted to PASP
by alkali hydrolysis (Zhang et al., 2015; Zhang C. et al.,
2017). Interestingly, Zhang C. et al. (2017) found that inter-
fiber crosslinking can also occur, resulting in hydrogels with
interconnected microporous structure. This causes higher
deformation, swelling kinetic, and swelling ratio compared to
hydrogel films. Another study revealed that crosslinking can
also be carried out during electrospinning for cysteamine-grafted
PASP (diameter 80–500 nm; Molnar et al., 2014). However,
relatively lower polymer concentration (15 wt.%) compared to
conventional electrospinning process should be used to avoid
premature gelation.

INTERPENETRATING POLYMER
NETWORK (IPN) BASED ON PASP

Interpenetrating polymer networks (IPN) are a class of materials
composed of two chemically distinct, but highly compatible
polymers that are uniformly mixed in each other in microscopic
scales without any phase separation. IPNs are divided into semi-
IPNs and full IPNs, in which one or both components are cross-
linked, respectively (Roland, 2015). IPNs are generally fabricated
to take advantage of the features of both components.

For instance, poly(N-isopropylacrylamide) [poly(NIPAAm)]
which is a well-known polymer with LCST at around
physiological temperature, can be introduced for providing
the IPN with temperature sensitivity. Liu et al. (2012) prepared
NIPAAm/PASP IPN hydrogels that show response both
to pH and temperature. They first cross-linked PSI with a
diamine, followed by its hydrolysis to PASP hydrogel. The
hydrogel was then swelled with NIPAAm monomer/N,N′-
methylene bisacrylamide (MBA) crosslinker followed by
their polymerization. Némethy et al. (2013) synthesized
NIPAAm/PASP co-network hydrogels by grafting allyl
amine monomer onto PSI backbone followed by its radical
polymerization with NIPAAm, and PSI hydrolysis. Nistor
et al. (2013) evaluated swelling degree of PASP/PNIPAAm
semi-IPN as a function of pH, temperature and NIPAAm
content (Figures 5A,B). Other polymers including poly(vinyl
alcohol), poly(acrylic acid), and poly(acrylamide) have also
been employed for PASP-based IPN preparation as summarized
in Table 1. Zhao et al. (2006) introduced PAA to PASP-based
semi-IPN hydrogels by polymerization of acrylic acid and
MBA as a cross-linker in the PASP solution. It was found that
the swelling ratio increases with increasing PASP content as
well as temperature (range of 40–60◦C). The incorporation
of high Mw PASP also inhibited gel formation due to steric
hindrance. Jv et al. (2019) indicated that semi-IPNs based on
PASP/PAA possess excellent ability for removal of methylene
blue and neutral red with maximum adsorption of 357.14 and
370.37 mg/g, respectively (Figure 5C). Magnetic nanoparticles
of Fe3O4, were incorporated into the hydrogels for facile
separation of the dye-containing solid. Lee et al. (2018) exhibited
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FIGURE 4 | Preparation of nanostructured PASP hydrogels. (A) Schematic representation of the preparation of PASP-based nanogels in inverse emulsion technique.

(B) Schematic representing volume change of pH- and redox/reductive-responsive nanogels, white dashed lines represent cleavable disulfide bonds while solid black

lines stand for permanent linker; oxidation leads to shrinkage of nanogels as crosslinking density increases, while acidic pH values protonate COOH groups of PASP,

lowering the swelling. (C) Schematic representation of the method for PASP fiber hydrogel formation. Reproduced from Zhang et al. (2015) with permission from

Elsevier.

that PASP improves mechanical properties of brittle PAAm
significantly. They suggested that the addition of multivalent
cations such as Fe3+, Al3+, Pb2+, Cu2+ results in ionic
coordination, and thus creation of second network. Iron
cation (Fe3+) had the highest impact on improving mechanical
properties (Figure 5D).

PASP HYDROGEL APPLICATIONS

Apart from conventional and common applications of hydrogels
such as hygiene, and agricultural products, PASP hydrogels can
be utilized in a wide variety of biomedical engineering areas
such as development of scaffolds for tissue engineering, and
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FIGURE 5 | Properties of IPN hydrogels based on PASP. (A,B) 3D swelling degree dependence on the network components and test parameters: (A) Temperature

and (B) pH. Reproduced from Nistor et al. (2013) with permission from Wiley. (C) Adsorption capacity of methylene blue (MB) and neutral red (NR) by PASP/PAA

semi-IPN hydrogels. Reproduced from Jv et al. (2019) with permission from American Chemical Society. (D) Stress-strain curve of double networks of PASP/PAAm

hydrogels in the presence and absence of metallic cations. Reproduced from Lee et al. (2018) with permission from Wiley.

carriers for sustained or targeted drug delivery systems (DDS).
This is mainly due to its biocompatibility, biodegradability, as
well as stimuli-responsive characteristic. Regarding the latter, in
particular pH- and redox/oxidation-sensitivity of PASP has been
exploited for DDS (Horvát et al., 2015; Sim et al., 2018). In this
section, some recent studies in these regards are presented.

PASP/PNIPAAm co-network hydrogels loaded with sodium
diclofenac (DFS) showed pH sensitivity such that the release
of DFS increased when the gel is delivered from stomach (pH
1.2) into the bowels (pH 7.6) (Némethy et al., 2013). Such a
conventional pH sensitivity feature can protect both the stomach
from the side effects of DFS and the drug itself from acidity
of stomach. However, in another study, unusual pH-response
was observed in PASP hydrogels cross-linked with hydrazine
and aldehyde (Lu et al., 2014). The release rate of DOX was
accelerated by decreasing pH from 7 to a weak acidic condition
(ca. pH 5). This behavior was attributed to instability of the
hydrazone bond in acidic media, resulting in loosening of gel
network. DFS was also employed as an ocular drugs and loaded
in in-situ gelling thiolated PASP for its sustainable delivery
(Horvát et al., 2015). The polymer due to its negative charge
showed strong mucoadhesion, as well as high resistance against
lachrymation of the eye. This is attributed to mucin glycoproteins
role for crosslinking (i.e., disulfide linkage). The drug release
showed a burst-like profile in the first hour followed by sustained

release up to 24 h. In another work, fluorescent dextran (FTIC-
Dx) was loaded into thiolated PASP nanogels prepared by inverse
emulsion (Krisch et al., 2016). Disulfide bonds were cleaved by a
reducing agent for gel disintegration, and release of the loaded
drug. As seen in Figure 6A, the release profile dramatically
increased by the addition of DTT as a reducing agent. The same
redox-response and DOX release was seen in thiolated PASP-g-
PEG nanogels (Park et al., 2017). Under reductive intracellular
conditions, the prepared nanogels were shown to have the ability
to release DOX and efficiently translocated to the nucleus of
cancer cells (Figure 6B). Epigallocatechin Gallate (EGCG) which
is the main bioactive element of green tea and is unstable in vitro
was encapsulated in PASP/chitosan particles (Hong et al., 2014).
The release of EGCG was investigated by simulation of food
ingestion pH condition. It was demonstrated that EGCG is much
more effective against rabbit atherosclerosis when encapsulated
into PASP/chitosan.

Jang and Cha (2018) incorporated RGD peptide to PSI for
improving 3T3 fibroblast cell adhesion. PSI was further modified
with hydrazide, and subsequently reacted with oxidized alginate,
bearing aldehyde groups. The Schiff reaction (i.e., aldehyde-
hydrazide, yielding hydrazone bond) leads to in-situ gelation
of poly(aspartamide)/alginate. As shown in Figure 6C, RGD-
modified hydrogels possessed much better cell viability, adhesion
and proliferation compared to un-modified hydrogels. Juriga
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TABLE 1 | PASP-based IPN and semi-IPN with different polymers (denoted as polymer 2).

Polymer 2 X-linker1 X-linker2 Type Characteristic References

1 N-isopropylacrylamide 1,4-diaminobutane (DAB) N,N′-methylene

bisacrylamide (MBA)

IPN Excellent pH-responsiveness Némethy

et al., 2013

Hexamethylenediamine

(HMDA)

MBA IPN Dual pH- and temperature- sensitive

hydrogel. Large porous structure; fast

shrinking and re-swelling

Liu et al.,

2012

Diethylene Glycol

diacrylate (DEGDA)

Semi-IPN Dual pH- and temperature-sensitive

hydrogel

Nistor et al.,

2013

2 Acrylic acid MBA Semi-IPN The freezing temperature resulted in a

more porous hydrogel and faster

swelling/deswelling rates

Lim et al.,

2016

MBA Semi-IPN Improving responsive behavior of the

hydrogel to alternating changes in

inorganic salt, pH, and temperature

Zhao et al.,

2006

MBA Semi-IPN The hydrogels had dye pollutant removal

ability. Magnetic NPs were added for

separation of the solid after dye removal

Jv et al., 2019

MBA Semi-IPN Polygorskite clay caused higher swelling

rate than that of pure hydrogels of

PAA/PASP

Ma et al.,

2015

MBA and Ethylene

glycol dimethylacrylate

(EGDMA)

Semi-IPN MBA and EGDMA resulted in higher

swelling behavior in acidic and basic

medium, respectively

Sharma et al.,

2016

3 Acrylamide MBA Semi-IPN Metal cations (Fe3+, Al3+, Pb2+, Cu2+) led

to creation of second network, and

increased mechanical strength and

decreased swelling ratio of the gel

Lee et al.,

2018

4 poly(vinyl alcohol) γ-

aminopropyltriethoxysilane

(APTS)

Semi-IPN and IPN Interpenetrating PASP/PVA hydrogel

resulted in higher, faster swelling ratio, and

higher drug releasing

Lu et al.,

2015

et al. (2016) also modified thiolated PASP hydrogels with
RGD and utilized them as scaffolds for MG-63 osteoblast-like
cells. It was shown that RGD introduction leads to compacted
cluster formation of the cells. The prepared scaffolds provided
the osteoblast-like cells with excellent condition for adhesion,
viability, and proliferation.

Zakharchenko et al. (2011) fabricated polymer tubes and
encapsulated yeast cells within them. The tubes composed
of bilayer cross-linked films of PSI/polycaprolactone. Upon
the hydrolysis of PSI in physiological buffer environment,
and conversion into PASP gels, the films self-rolled due to
the produced internal stress as a result of swelling of the
lower layer, i.e., PASP (Figure 6D). Such a self-rolling was
exploited for cell encapsulation. Hydrolysis of PSI was shown
to be step like process and initiates after nearly 8 h in
PBS buffer.

PASP due to its negative charge can endow electrostatic
stability to colloidal systems. For example, iron oxide (Fe3O4)
nanoparticles coated with a thin layer of PASP hydrogels had
improved colloidal stability (Vega-Chacón et al., 2017). The
composite magnetic particles did not show any adverse effect
on cell viability of L929 fibroblast. Also, particles exhibited
response to pH, presenting them as promising candidate for
magnetic drug delivery. Iron oxide nanoparticles as negative
contrast agents for magnetic resonance imaging (MRI) have

been employed widely for detection of diseases (Ta et al., 2011,
2017a,b, 2018; Gaston et al., 2018; Wu et al., 2018; Yusof et al.,
2019; Zhang et al., 2019). Multifunctional PASP nanoparticles
containing iron oxide nanocrystals and doxorubicin was also
developed for simultaneous diagnosis and treatment of cancer
by Yang et al. (2011). Iron oxide nanocrystals were loaded in
PASP nanoparticles through an emulsionmethod using octadecyl
grafted PASP, then doxorubicin (DOX), was incorporated in the
magnetic PASP nanoparticles. It was shown that the DOX loaded
nanoparticles exhibited high T2 relaxivity and strong cytotoxicity
for cancer cells.

Due to its strong ability for chelation, PAPS nanofiber
hydrogels were utilized as chemosensor for Cu2+ ions detection
(Zhang et al., 2015). The hydrogels showed high sensitivity
and selectivity to Cu2+ ions compared with other ions such
as Ag+, and Ca2+ where no color change was observed
(Figures 6E,F). The detection limit of as low as 0.01 mg/L
was reported.

Because of its bio-degradation and water uptake, PASP
hydrogels could be regarded as a promising candidate for
ecological restoration and plant survival especially in arid area.
Wei et al. (2016) employed PASP hydrogel to transplant
Xanthoceras sorbifolia seedlings. The survival rate and
the leaf water content were improved in soils containing
PASP hydrogels.
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FIGURE 6 | Biomedical and industrial applications of PASP-based hydrogels. (A) FITC-Dx release from PASP nanogels as a function of time and DTT concentration

(squares: 100 × 10−3 M, spheres: 10 × 10−3 M, and triangles: 0 × 10−3 M DTT). Reproduced from Krisch et al. (2016) with permission from Wiley. (B) Synthesis of

the disulfide cross-linked PASP nanogel and its complete disintegration by reducing agent. Reproduced from Park et al. (2017) from Elsevier. (C) The live (green) and

dead (red) cells cultured on alginate, alginate/poly(2-hydroxyethyl-co-hydrazidoadipoyl aspartamide) (PHHZA), and alginate/RGD-PHHZA hydrogels after 1 and 3 days

(scale bar: 100µm). Reproduced from Jang and Cha (2018) with permission from American Chemical Society. (D) The schematic illustration of cell encapsulation by

bilayer PSI/PCL tubes. Reproduced from Zakharchenko et al. (2011) with permission from American Chemical Society. (E) Color change and (F) absorption spectra of

PASP in different Cu2+ ions solution. Reproduced from Zhang et al. (2015) from with permission Elsevier.
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CONCLUSION AND PROSPECTS

Although synthesis of PASP-based hydrogels is relatively more
complex than other anionic-based hydrogels such as PAA-
based ones, its biocompatibility and biodegradability make it
attractive particularly in biomedical applications. Though pH-
responsive, PASP is further modified with other moieties to
provide sensitivity to the desired stimuli as well including
temperature and reducing/oxidizing media. Incorporation of
other water-soluble polymers into the PASP network may also
provide the final hydrogel with superior properties. Scrutinizing
the literature, it is found that PASP hydrogels has not yet
been employed for inhibition of scale formation in which PASP
solution has exhibited promising results (Hasson et al., 2011).
Moreover, PASP hydrogel fibers may potentially be a good

candidate as scaffold for cell culture as well as tissue engineering.
Additionally, due to its anionic nature, PASP-based hydrogels
can be used for preparation of electrically-responsive materials
(Murdan, 2003).
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