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Background: Axillary lymph node (ALN) status is a crucial prognostic indicator for breast cancer 
metastasis, with manual interpretation of whole slide images (WSIs) being the current standard practice. 
However, this method is subjective and time-consuming. Recent advancements in deep learning-based 
methods for medical image analysis have shown promise in improving clinical diagnosis. This study aims 
to leverage these technological advancements to develop a deep learning model based on features extracted 
from primary tumor biopsies for preoperatively identifying ALN metastasis in early-stage breast cancer 
patients with negative nodes.
Methods: We present DLCNBC-SA, a deep learning-based network specifically tailored for core needle 
biopsy and clinical data feature extraction, which integrates a self-attention mechanism (CNBC-SA).  
The proposed model consists of a feature extractor based on convolutional neural network (CNN) and 
an improved self-attention mechanism module, which can preserve the independence of features in WSIs 
for analysis and enhancement to provide rich feature representation. To validate the performance of the 
proposed model, we conducted comparative experiments and ablation studies using publicly available 
datasets, and verification was performed through quantitative analysis.
Results: The comparative experiment illustrates the superior performance of the proposed model in the 
task of binary classification of ALNs, as compared to alternative methods. Our method achieved outstanding 
performance [area under the curve (AUC): 0.882] in this task, significantly surpassing the state-of-the-art 
(SOTA) method on the same dataset (AUC: 0.862). The ablation experiment reveals that incorporating 
RandomRotation data augmentation technology and utilizing Adadelta optimizer can effectively enhance the 
performance of the proposed model.
Conclusions: The experimental results demonstrate that the model proposed in this paper outperforms 
the SOTA model on the same dataset, thereby establishing its reliability as an assistant for pathologists in 
analyzing WSIs of breast cancer. Consequently, it significantly enhances both the efficiency and accuracy of 
doctors during the diagnostic process.
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Introduction

Breast cancer is one of the most common malignant tumors in 
women worldwide, among whom its incidence is increasing 
annually (1,2). Early detection and effective intervention 
can reduce treatment costs and improve the survival rate 
and quality of life of patients. Currently, there are many 
detection techniques for breast cancer, such as X-ray (3), 
ultrasound (4), magnetic resonance imaging (MRI) (5), 
positron emission tomography/computed tomography 
(PET/CT) (6), and pathological examination (7).

Among these methods, pathological examination is 
considered the gold standard for the diagnosis of benign 
and malignant breast cancer (8,9). Pathological examination 
of breast cancer typically involves assessing the lymph 
node metastasis status, which plays a pivotal role in both 
prognosis and tumor dissemination (10). Particularly, the 
evaluation of axillary lymph nodes (ALN) metastasis holds 
significant importance in guiding treatment strategies 
for breast cancer patients (11). Therefore, preoperative 
prediction of lymph node metastasis can offer valuable 
insights for developing adjuvant therapies and surgical 
plans, facilitating informed decision-making prior to 
treatment initiation (12).

With the rapid advancement of digital imaging 
technology, whole slide image/imaging (WSI) has emerged 
as a widely adopted technique in digital pathology, gaining 
increasing popularity (13,14). WSI employs automated 
microscopes or optical magnification systems equipped 
with digital slide acquisition devices to scan and capture 
conventional glass-based histological sections at high 
resolution and large scale (15,16). This technology enables 
pathologists to perform comprehensive and detailed 
examinations of samples, facilitating more accurate 
determination of lymph node metastasis in breast cancer. 
However, manual analysis of WSI heavily relies on the 
pathologist’s expertise and diagnostic experience for precise 
diagnosis. Subjective interpretation by pathologists may 
impact diagnostic outcomes and prolonged observation 
of WSI might divert their attention. A study investigating 

single breast biopsy section interpretation based on WSI 
demonstrated a concordance rate of 75.3% between 
individual pathologists’ interpretations and reference 
diagnoses derived from expert consensus (17). Moreover, 
smaller hospitals lacking experienced pathologists may 
face time constraints that impede timely diagnosis and 
treatment for breast cancer patients. By employing artificial 
intelligence (AI) methods, the burden associated with WSI 
diagnosis can be alleviated while enhancing efficiency and 
accuracy (Acc) in diagnostics, ultimately providing more 
prompt medical services for patients.

AI has begun to assist doctors in making a diagnosis by 
helping them analyze medical images, thereby improving 
the diagnostic efficiency of doctors to a certain extent and 
reducing the treatment cost for patients (18,19). The main 
methods used in combination with AI for medical image 
analysis include detection (20), segmentation (21,22), 
registration (23), and noise reduction (24,25). These 
applications play a significant role in early diagnosis, lesion 
localization, individualized treatment, and comprehensive 
tumor evaluation. Qiao et al. (26) explored the application 
of digital pathology in medical diagnosis and treatment 
in their research on the combination of digital pathology 
and AI technology, emphasized the great potential of AI in 
data analysis, and showed that digital pathology provides 
prospects for the development of precision medicine and has 
the importance of transforming medical information into 
clinical knowledge. Amgad et al. (27) proposed the NuCLS 
model by modifying the mask regions with convolutional 
neura l  network (CNN) features  (Mask  R-CNN) 
architecture and successfully completed the specific task of 
nucleus detection on WSIs, which is highly important for 
computer-aided diagnosis of pathology and exploration of 
new quantitative morphological biomarkers. By establishing 
a high-precision deep learning platform composed of 
multiple CNNs, Li et al. (28) successfully achieved high Acc 
in the classification of human diffuse large B-cell lymphoma 
(DLBCL) via pathological images. In the future, the clinical 
application of these methods for reducing the workload of 
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pathologists and for classifying DLBCL subtypes and other 
hematopoietic malignancies is expected to increase rapidly.

Digital pathology combined with AI is expected to 
transform high-quality and efficient pathological data into 
clinically actionable knowledge. By leveraging deep learning 
techniques, pathologists can employ computational analysis 
of pathological images to facilitate cancer classification 
(29-31). Moreover, deep learning combined with WSI 
technology has shown the potential to automatically extract 
features from images and effectively classify different 
subclasses of breast cancer samples, thereby promoting 
the progress of computer-aided diagnosis and prognosis 
in digital pathology (13,32,33). Deep learning models 
have the capability to extract intricate features from vast 
amounts of data, facilitating precise determination of lesion 
characteristics. Moreover, they are progressively emerging 
as a novel tool for pathologists, gradually replacing 
conventional optical microscopes (16). Deep learning is 
regarded as a promising asset in pathology (34); however, 
further research is imperative to fully harness its potential 
in this field.

The objective of this study is to employ deep learning 
techniques for solving the binary classification problem 
of ALN metastasis status in early breast cancer (EBC) 
patients (35), specifically classifying it as negative or 
positive. Considering the availability of numerous CNN 
models suitable for binary classification problems in deep 
learning research, such as EfficientNet (36), MobileNet (37),  
DenseNet121 (38), ResNet50 (39), and VGG16 (40), 
we have chosen these well-established CNNs as feature 
extractors. By comparing their performance during our 
investigation, our aim is to identify the most effective 
feature extractor. Additionally, we incorporate attention 
mechanisms to enhance the model’s ability to analyze 
features and integrate clinical data for determining ALN 
metastasis status. This approach of integrating deep 
learning models with WSI analysis and clinical data aims to 
improve Acc and efficiency in determining ALN metastasis 
status. Consequently, we propose an image classification 
model that combines mature CNNs as feature extractors 
along with attention mechanisms. The primary goal of this 
model is to assist medical professionals in lesion localization 
and determination of ALN status by analyzing WSI and 
clinical data from EBC patients.

The paper is organized as follows: The “Methods” 
section introduces the data sets, model structure, and 
comparative experiments and ablation experiments designed 
for this study. Subsequently, the “Results” section presents 

graphical representations of the conducted comparative 
experiments and ablation experiments. Finally, in the 
“Discussion” section, we analyze the obtained results, 
evaluate the computational efficiency of our model, 
discuss limitations of our research method proposed, and 
suggest potential research directions. We present this 
article in accordance with the TRIPOD-AI reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-24-257/rc).

Methods

Datasets

The EBC core-needle biopsy WSI dataset, provided by 
BCNB (41), was employed in this study to train and validate 
our proposed Deep Learning Convolutional Neural 
Network-Based Classification Model for the Prediction 
of ALN Metastasis. This dataset contains WSIs in JPG 
format and the corresponding clinical data of 1,058 EBC 
patients between May 2010 and August 2020. Clinical data 
encompasses the patient’s age, tumor size, tumor type, 
estrogen receptor (ER) status, progesterone receptor (PR) 
status, human epidermal growth factor receptor 2 (HER2) 
status and expression, as well as the number of lymph node 
metastases (LNM). We divided the WSIs and clinical data 
of these patients into a training cohort (840 patients) and an 
independent test cohort (218 patients), with N0 serving as 
the negative criterion and N(+) as the positive criterion. In 
this dataset, the mean age of the patients was 57.58 years, 
the mean tumor size was 2.234 cm, and the mean number of 
LNM was 1.2. Additional detailed characteristics, including 
tumor category and ER status, are shown in Figure 1. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Model architecture and module building

The DLCNBC-SA model proposed in this paper is a 
deep learning-based image binary classification model, 
as illustrated in Figure 2. Prior to training the model, 
the feature extractor was pre-trained using the CIFAR10  
dataset (42) to enhance the model’s generalization capability, 
expedite training speed, and optimize data utilization.

First, each WSI was divided into N patches of size 
256×256 pixels, and M bags were built for them. The 
data processing step also included preprocessing each 
patient’s clinical data, which were entered into the same 

https://qims.amegroups.com/article/view/10.21037/qims-24-257/rc
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bag as that of the patient’s segmented WSIs. To improve 
the generalizability of the model and solve the overfitting 
problem, a data augmentation technique was applied to 
the images in the bag, and the shape of the image was 3,  
224, 224.

Subsequently, the CNN model was used to extract 
features from the images inside the bag, and the sizes of the 
feature maps ( ), , ,

1
B C H Wf R=  and ( ),

2
B C H Wf R × ×=  were obtained. 

The feature map size, denoted as 1f , should be transformed 
into the shape of 2f  by using a flattening operation. The 
obtained feature map 2f  is subsequently fed into a densely 
connected layer for further feature extraction, resulting in 
the output ( ),B Dd R= . To enhance the model’s understanding 
of the input information and effectively address the 
complexity and variability in the input data, the self-
attention mechanism (43) was used to improve the model’s 

ability to represent and understand the image information 
and improve its performance and generalizability. The core 
computation of this attention mechanism is expressed as 
follows:

T V

V
K

QK eAttention
ed

= ×
∑ 	

[1]

The specific values of Q , K , and V  are obtained by 
directly assigning the input d , where Kd  represents the 
second dimension of the input d . This attention method 
retains the original features in the tensor for feature 
weighting and enhances the expression ability of the data. 
Finally, the tensor d  processed by the attention mechanism 
was combined with the clinical data of the corresponding 
patient to form a tensor dc , and the final result was 
obtained through the classifier.

Figure 1 Each pie chart represents a distinct aspect of the clinical data pertaining to EBC patients, with varying colors denoting different 
attributes within that category. LNM, lymph node metastases; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal 
growth factor receptor 2; EBC, early breast cancer. 
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Training

For this experiment, we opted to develop the model using 
PyCharm (JetBrains, Prague, Czechia) and set the default 
number of training rounds to 200. To enhance the model’s 
robustness, we employed a random rotation technique for 
dataset augmentation.

In terms of optimizer selection, we believe that the 
stochastic gradient descent (SGD) (44) optimizer possesses 
certain advantages. By solely considering the gradient of 
the current sample during parameter updates, it facilitates 
escaping local minimum points to some extent and enhances 

the likelihood of finding the global optimal solution. 
Moreover, SGD incurs relatively low computational 
overhead, which is particularly advantageous in resource-
constrained scenarios. Considering these benefits alongside 
the optimizer employed in the DLCNBC-WS (45) model, 
we have opted for SGD as our chosen optimizer with a 
default learning rate set at 0.001. To control the impact of 
previous gradients on newly updated parameters, we set 
momentum to 0.3; additionally, weight decay was assigned a 
value of 0.001 to effectively regulate parameter decay rates 
using regularization techniques. The optimization formula 

Figure 2 The DLCNBC-SA model was used to perform a binary classification between N0 and N(+) for ALN states from WSIs. In 
the dataset construction stage, WSI data and clinical data were combined to obtain multiple data packages. The model structure and 
prediction show the feature extractor, attention mechanism, feature fusion operation and classifier of the model, and the final outputs are 
N0 or N(+). DLCNBC-SA, a deep learning-based network specifically tailored for core needle biopsy and clinical data feature extraction, 
which integrates a self-attention mechanism. WSI, whole slide imaging; ER, estrogen receptor; PR, progesterone receptor; HER2, human 
epidermal growth factor receptor 2; CNN, convolutional neural network; VGG, visual geometry group; ALN, axillary lymph nodes.
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is presented below:

( ) ( )1 1t t t tv Jθ ηλ θ µ η θ+ = − + − ∇
	

[2]

Specifically, 1tθ +  represents the model parameters after 
1t +  rounds of iteration, η  denotes the learning rate during 

the training process, λ  signifies the weight decay parameter, 
µ  indicates the momentum parameter, tv  represents 
the momentum from the previous round t , and ( )tJ θ∇  
symbolizes the gradient of loss function J  with respect to 
parameter tθ . Regarding our choice of loss function, we 
employed cross-entropy (46), which can be calculated as 
follows:

( ) ( ) ( )
0

1 ˆ ˆlog 1 log 1
N

N i i P i i
i

L y y y y
N

ω ω
=

= − + −  −∑ 	
[3]

The variable iy  represents the true label of the sample, 
whereas ˆiy  denotes the predicted score assigned to the 
sample by the model. Additionally, Nω  and Pω  correspond 
to distinct weights allocated to different sample losses, with 
N  representing the total number of samples.

In this experiment, our specific computer environment 
is presented in Table 1. Unless otherwise specified, the 
optimizer, data augmentation method, and loss function 
employed in this study were all selected based on the 
aforementioned descriptions.

Comparative experiment 

In addition to selecting the batch-normalized VGG16 
(VGG16_BN) as the feature extractor for our CNN, we 
introduced and adapted an attention mechanism specifically 
tailored for our model in order to enhance performance and 
generalization by emphasizing key image components. The 
inclusion of attention mechanisms aims to improve model 
performance by directing focus towards important regions 
within the image. 

To ensure accurate and comparable results,  we 
maintained consistency with state-of-the-art (SOTA) 
models on the same dataset during experimental setup. 
By comparing our experimental outcomes with those of 
SOTA models, we can comprehensively evaluate the impact 
of our proposed attention mechanism on overall model 
performance. Additionally, we conducted experiments and 
comparisons using four baseline models incorporating 
Transform techniques, namely ViT (47), RegionViT (48), 
BiFormer (49), and GPViT (50), further validating the 
effectiveness of our proposed method.

Ablation studies

We conducted a series of ablation experiments to investigate 
the impact of different feature extractors, data augmentation 
techniques, and optimizers on the performance of the 
DLCNBC-SA model. Our objective was to identify the 
optimal combination that maximizes the performance of 
the DLCNBC-SA model by gradually replacing these 
factors. Initially, we replaced the feature extractor and 
compared model performance using different options such 
as VGG16_BN and ResNet50. Subsequently, various data 
augmentation techniques including random rotation and 
random cropping were employed to evaluate their influence 
on model performance. Finally, we examined different 
optimizers such as SGD and Adam (51) to determine an 
optimal choice for optimizing the DLCNBC-SA model’s 
performance. Through these ablation experiments, we 
aimed to gain a comprehensive understanding of each 
factor’s contribution towards enhancing the DLCNBC-SA 
model’s performance while providing valuable guidance and 
recommendations.

Results

To ensure the rigor of the study, the general metrics 
used to evaluate the performance of classifiers included 
accuracy (Acc), sensitivity (Sens), specificity (Spec), positive 
predictive value (PPV), negative predictive value (NPV), F1 
score, and area under the curve (AUC).

Comparative analysis of models in experimental studies

Table 2 presents comprehensive information on the 
proposed model, along with 4 models incorporating the 
Transform mechanism and the SOTA model using the 
same dataset. The experimental results clearly demonstrate 

Table 1 The computational framework employed in this experimental 
study 

Categorization Reconfiguration

Computer system Ubuntu 18.04.6 LTS

CPU Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz

GPU NVIDIA Geforce RTX 3090 Founders Edition

Frameworks for 
deep learning

Torch-1.12.1+cu116

CPU, central processing unit; GPU, graphics processing unit.
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that our proposed model outperforms other models in 
terms of AUC, Spec, and PPV. However, for Acc, Sens, 
NPV, and F1-Score metrics, the SOTA model exhibits 
superior performance on this dataset. Furthermore, 
Figure 3 showcases the confusion matrices employed in 
this experiment for each model; these matrices are crucial 
tools for evaluating classification model performance. The 

inclusion of confusion matrices further emphasizes how 
well each model predicts different categories and provides a 
solid foundation for detailed analysis of their performance.

Experiment on ablation of feature extractor

We assessed the performance of 10 distinct CNN models 

Figure 3 In this study, we present the confusion matrices of all comparative models excluding the SOTA model on the same dataset. N, 
negative; P, positive; DLCNBC-SA, a deep learning-based network specifically tailored for core needle biopsy and clinical data feature 
extraction, which integrates a self-attention mechanism; SOTA, state-of-the-art.

Table 2 The performance of the model in the comparative experiment is compared with that of the DLCNBC-SA model proposed in this paper 
for binary classification of ALN state 

Method AUC Acc Sens Spec PPV NPV F1-Score

ViT 0.829 0.739 0.786 0.709 0.629 0.841 0.698

RegionViT 0.841 0.757 0.643 0.828 0.701 0.787 0.671

BiFormer 0.621 0.633 0.25 0.873 0.553 0.65 0.344

GPViT 0.839 0.743 0.548 0.866 0.719 0.753 0.622

DLCNBC-WS 0.862 0.803 0.833 0.784 0.707 0.882 0.765

Proposed 0.882 0.780 0.560 0.918 0.810 0.769 0.662

DLCNBC-SA, a deep learning-based network specifically tailored for core needle biopsy and clinical data feature extraction, which 
integrates a self-attention mechanism; ALN, axillary lymph nodes; AUC, area under the curve; Acc, accuracy; Sens, sensitivity; Spec, 
specificity; PPV, positive predictive value; NPV, negative predictive value.
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enlisted in Table 3 as feature extractors and summarized 
their weight training experimental outcomes on the same 
evaluation metrics for the test set, as presented in Table 3. 
The corresponding AUC bar chart is depicted in Figure 4.  

The findings demonstrated that utilizing VGG16_BN 
as a feature extractor yielded superior performance, 
achieving an AUC value of 0.882. However, apart from 
Acc and PPV, this model did not exhibit significant 

Table 3 In the binary classification of ALN states N0 and N(+), we evaluate the performance of the DLCNBC-SA model by employing various 
feature extractors

Backbone AUC Acc Sens Spec PPV NPV F1-Score

EfficientNet-B0 0.783 0.702 0.345 0.925 0.744 0.693 0.472

EfficientNet-B3 0.798 0.684 0.333 0.903 0.683 0.684 0.448

EfficientNet-B5 0.786 0.734 0.571 0.836 0.686 0.757 0.623

MobileNetV3-Large 0.544 0.587 0.191 0.836 0.421 0.622 0.262

DenseNet121 0.793 0.734 0.548 0.851 0.697 0.750 0.613

ResNet50 0.783 0.688 0.452 0.836 0.633 0.709 0.528

VGG-11 BN 0.811 0.771 0.679 0.828 0.713 0.804 0.695

VGG-13 BN 0.867 0.757 0.607 0.851 0.718 0.776 0.658

VGG-16 BN 0.882 0.780 0.560 0.918 0.810 0.769 0.662

VGG-19 BN 0.869 0.748 0.893 0.657 0.620 0.907 0.732

ALN, axillary lymph nodes; DLCNBC-SA, a deep learning-based network specifically tailored for core needle biopsy and clinical data 
feature extraction, which integrates a self-attention mechanism; AUC, area under the curve; Acc, accuracy; Sens, sensitivity; Spec, 
specificity; PPV, positive predictive value; NPV, negative predictive value; VGG, visual geometry group; BN, batch normalization.

Figure 4 The DLCNBC-SA model was tested with different feature extractors, and a bar chart was drawn according to the experimental 
results to compare the performance of each feature extractor. AUC, area under the curve; DLCNBC-SA, a deep learning-based network 
specifically tailored for core needle biopsy and clinical data feature extraction, which integrates a self-attention mechanism; VGG, visual 
geometry group; BN, batch normalization. 
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advantages across other indicators and necessitates further 
refinement.

Data augmentation techniques for thermal melting 
experiments

The primary objective of employing data augmentation 

techniques is to enhance the diversity of training data by 
transforming and expanding it, thereby improving the 
model’s generalization capability and mitigating the risk of 
overfitting. Prior to model training, we applied 7 distinct 
data augmentation strategies as listed in Table 4 to augment 
the dataset and subsequently evaluated their corresponding 
AUCs using the assessment metrics summarized in Table 4.  
As depicted in Figure 5, random rotation exhibited 
superior performance with respect to AUC (0.882), Spec 
(0.918), and precision (0.810). Conversely, random affine 
transformation demonstrated optimal Acc (0.789), Sens 
(0.738), NPV (0.833), and F1 score (0.730). Consequently, 
for training our DLCNBC-SA model, random rotation 
and random affine transformation are deemed more 
suitable compared to the remaining 5 data augmentation 
strategies.

Revising the experiment on optimizer ablation

The performance of the model is influenced by different 
optimizers due to their distinct parameter update 
strategies. In the training process of the DLCNBC-SA 
model, we sequentially employed 4 different optimizers 
(listed in Table 5) to optimize its parameters and plotted 
the corresponding AUC results in Figure 6. It is evident 
from the table that the AdaDelta (53) optimizer with 
adaptive learning rate consistently outperforms the 
other 3 optimizers across almost all indicators, except 
for a slightly lower Spec value than its maximum of 
0.008. Moreover, other indicators exhibit excellent 
performance.

Table 4 Performance results on a test cohort using DLCNBC-SA models with different data augmentation techniques when the ALN status was 
dichotomized [N0 vs. N(+)] 

Augmentation AUC Acc Sens Spec PPV NPV F1-Score

No 0.835 0.748 0.762 0.739 0.647 0.832 0.670

RandomRotation 0.882 0.780 0.560 0.918 0.810 0.769 0.662

RandomAffine 0.877 0.789 0.738 0.820 0.720 0.833 0.730

ColorJitter 0.840 0.762 0.643 0.836 0.711 0.789 0.675

RandomVerticalFlip 0.862 0.775 0.737 0.799 0.697 0.830 0.717

RandomHorizontalFlip 0.844 0.757 0.655 0.821 0.696 0.791 0.675

All 0.819 0.729 0.595 0.813 0.667 0.762 0.629

DLCNBC-SA, a deep learning-based network specifically tailored for core needle biopsy and clinical data feature extraction, which 
integrates a self-attention mechanism; ALN, axillary lymph nodes; AUC, area under the curve; Acc, accuracy; Sens, sensitivity; Spec, 
specificity; PPV, positive predictive value; NPV, negative predictive value.

Figure 5 Experiments using the DLCNBC-SA model with 
different data enhancement operations were performed, and ROC 
curves were plotted based on the experimental results to compare 
the performance of various data enhancement operations in terms 
of the AUC. DLCNBC-SA, a deep learning-based network 
specifically tailored for core needle biopsy and clinical data feature 
extraction, which integrates a self-attention mechanism; AUC, area 
under the curve; ROC, receiver operating characteristic.

No AUC =0.835 
RandomRotation AUC =0.882
RandomAffine AUC =0.877
ColorJitter AUC =0.840 
RandomVerticalFlip AUC =0.862
RandomHorizontalFlip AUC =0.844
All AUC =0.819
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Discussion

The objective of this study was to analyze the prognostic 
significance of ALN metastasis status in the WSIs of EBC 
patients. The proposed DLCNC-SA model comprises 
the VGG16_BN, which exhibits exceptional performance 
in image classification due to its simple structure, and 
incorporates a self-attention mechanism that effectively 
enhances contextual information within the image. This 
model demonstrates outstanding performance in detecting 
ALN metastasis in EBC patient WSI and enables rapid 
inference of ALN status as positive or negative. In this 
study, to explore the influencing factors of the model 
performance, we conducted experiments by using different 
feature extractors, data augmentation operations, and 
optimizers (37,47).

Table 6 presents the floating point operations per 
second (FLOPs) and model complexity of all models in the 
comparative experiments. Upon comparison, it is observed 
that the proposed method exhibits a computational cost 
of 154.27 G, slightly surpassing RegionViT’s 127.89 G 
and BiFormer’s 93.70 G, yet still falling within the realm 
of relatively efficient computational costs. In terms of 
computation efficiency, the computational cost of the 
proposed method closely aligns with that of DLCNBC-

Figure 6 Experiments were performed using the DLCNBC-SA 
model with different optimizers, and ROC curves were plotted 
based on the experimental results to compare the performance of 
various optimizers on the AUC. DLCNBC-SA, a deep learning-
based network specifically tailored for core needle biopsy and 
clinical data feature extraction, which integrates a self-attention 
mechanism; Adam, adaptive moment estimation; AUC, area 
under the curve; AdaDelta, an adaptive learning rate optimizer; 
RMSProp, root mean square pro; SGD, stochastic gradient 
descent; ROC, receiver operating characteristic.

Table 5 Performance results on test cohorts using DLCNBC-SA models with different optimizers when dichotomizing the ALN states [N0  
vs. N(+)]

Optimizer AUC Acc Sens Spec PPV NPV F1-Score

Adam 0.541 0.587 0.286 0.776 0.444 0.634 0.348

AdaDelta 0.892 0.817 0.667 0.910 0.824 0.813 0.737

RMSProp (52) 0.573 0.569 0.298 0.739 0.417 0.627 0.347

SGD 0.882 0.780 0.560 0.918 0.810 0.769 0.662

DLCNBC-SA, a deep learning-based network specifically tailored for core needle biopsy and clinical data feature extraction, which 
integrates a self-attention mechanism; ALN, axillary lymph nodes; AUC, area under the curve; Acc, accuracy; Sens, sensitivity; Spec, 
specificity; PPV, positive predictive value; NPV, negative predictive value; Adam, adaptive moment estimation; AdaDelta, an adaptive 
learning rate optimizer; RMSProp, root mean square pro; SGD, stochastic gradient descent.

Table 6 Reevaluation of the computational efficiency and model complexity of all models in the controlled experiment 

Indicator ViT RegionViT BiFormer GPViT DLCNBC-WS Proposed

FLOPs (G) 168.63 127.89 93.70 312.42 154.07 154.27

Params (M) 86.01 72.10 56.40 200.67 21.17 41.37

FLOPs, floating point operations per second; G, giga; M, mega.

Adam AUC =0.541

AdaDelta AUC =0.892

RMSProp AUC =0.573

SGD AUC =0.882
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WS, which stands at 154.07 G and represents the SOTA 
approach. Additionally, the proposed method boasts a 
parameter count of 41.37 M, fewer than both RegionViT 
(72.10 M) and BiFormer (56.40 M), while remaining within 
a comparably smaller range for parameters count. Although 
slightly higher than DLCNBC-WS’ parameter count of 
21.17 M, it remains within an acceptable range.

Based on Figure 1, we identified a class imbalance issue in 
the BCNB dataset. To comprehensively consider the trade-
off between true negative and false negative examples, we 
utilized weights in the loss function to mitigate the loss of 
positive and negative instances. However, upon examining 
Sens and Spec values from Table 2 to Table 5, it became 
evident that our model exhibited a bias towards classifying 
inputs as negative. Therefore, in this paper, we adopted 
AUC as the primary evaluation metric for assessing model 
performance due to its independence from class imbalance 
and ability to evaluate different models by considering both 
true positive rate and false positive rate. By analyzing data 
presented in Tables 2,5, it is apparent that our proposed 
model outperforms the SOTA model on the same dataset 
with a performance gap of 0.03. This demonstrates superior 
classification capability and improved overall performance 
of our proposed approach. In medical imaging applications 
where high prediction Acc is crucial, an AUC value of 
0.892 may seem satisfactory; however, even minor errors 
can have significant consequences on patient health within 
the field of medical diagnosis. Henceforth, we emphasize 
the importance of achieving higher Acc levels while 
acknowledging that further validation and evaluation are 
necessary to ensure robustness, reliability, and effectiveness 
when deploying these models in real clinical environments. 
Given that decisions made within the medical domain often 
involve patients’ lives and well-being at stake, continuous 
efforts should be made to enhance model performance to 
reduce misdiagnosis rates along with missed diagnoses while 
minimizing clinical risks.

This study has several limitations. First, limited by the 
hardware, our network model cannot directly process WSIs; 
therefore, WSIs need to be divided and assembled into 
packages before they can be used for training and testing, 
which will cause image information to be lost. Second, our 
model was trained and tested on only the BCNB dataset 
and not on other publicly available datasets, which may lead 
to our model overfitting to the specific features and noise 
of the current dataset and ignoring the possible diversity 
and characteristics of other datasets. This can lead to poor 
performance on unseen data and potentially unstable 
performance in real-world applications.

Conclusions

In this paper, we used the DLCNBC-SA model to 
perform binary classification of ALN status [N0 vs. N(+)] 
for predicting preoperative ALN metastasis status in 
EBC patients. We found that using the self-attention 
mechanism can help the model simultaneously focus on 
the information of all elements in the WSI, capture the 
WSI global information, and distinguish the importance 
of different parts. In addition, we found that appropriate 
data augmentation operations on the data and selection 
of an appropriate optimizer can improve the classification 
performance of the model. In particular, when the random 
rotation method is used in preprocessing and AdaDelta is 
used as the optimizer in training, the AUC is better than 
that of the SOTA model by 0.03.
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