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Critical periods of brain development are epochs of heightened plasticity driven
by environmental influence necessary for normal brain function. Recent studies are
beginning to shed light on the possibility that timely interventions during critical
periods hold potential to reorient abnormal developmental trajectories in animal models
of neurological and neuropsychiatric disorders. In this review, we re-examine the
criteria defining critical periods, highlighting the recently discovered mechanisms of
developmental plasticity in health and disease. In addition, we touch upon technological
improvements for modeling critical periods in human-derived neural networks in vitro.
These scientific advances associated with the use of developmental manipulations
in the immature brain of animal models are the basic preclinical systems that will
allow the future translatability of timely interventions into clinical applications for
neurodevelopmental disorders such as intellectual disability, autism spectrum disorders
(ASD) and schizophrenia.
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INTRODUCTION

Normal brain function results from a conserved sequence of developmental processes of cell
division, migration, network formation and maturation, directed by intrinsic genetic programs as
well as by environmental and systemic cues, extrinsic to the nervous system. Within this sequence,
appropriate stimuli induce events of heightened plasticity that are required to develop a given
function. This capacity of the brain to reorganize during unique developmental time windows in
adaptation to the environment has been termed ‘‘critical period.’’

In the form of electrical activity, experience during development drives the structural and
functional organization of neural connectivity (for review Khazipov and Luhmann, 2006). The best
studied examples have been the critical periods for sensory functions such as ocular dominance
(OD) in the visual system. During this period, monocular deprivation induces an OD shift in
the visual system (for review Hensch, 2004; Levelt and Hübener, 2012; Hensch and Quinlan,
2018; Hooks and Chen, 2020). Electrical activity also controls crucial time windows taking place
long before the arrival of sensory-driven stimuli. Since early studies of Galli and Maffei (1988),
it has been shown that patterns of spontaneous activity originating from the developing retina
(for review Ford and Feller, 1995; Feller, 2012) and within local intracortical circuits (for review
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Siegel et al., 2012) participate to the development of visual 
circuits (for review Arroyo and Feller, 2016). Spontaneous 
patterns of activity intrinsic to the cerebral cortex or arriving 
from subcortical sources have also been characterized in other 
sensory systems such as the somatosensory and auditory cortex 
(Allene et al., 2008; Babola et al., 2018; Antón-Bolaños et al., 
2019). These early patterns of activity are thought to operate 
as checkpoints for the correct implementation of the neuronal 
circuits and consist of intrinsic voltage-gated calcium currents 
that are followed by non-synaptic and synapse-driven calcium 
activities (for review Allene and Cossart, 2010). Importantly, 
they are only observed during specific developmental stages 
and in a specific sequence (i.e., in the cortex, large plateau 
assemblies at birth are followed by early network oscillations 
and giant depolarization potentials) and across regions of the 
central nervous system such as the spinal cord, the cortex and 
some subcortical structures (Kirkby et al., 2013; for review Ben-
Ari, 2008; Blankenship and Feller, 2010). Previous studies have 
shown that early spontaneous activity patterns are altered in the 
neocortex of animal models of neurodevelopmental disorders 
such as the Fmr1 knock out model of Fragile X syndrome (FXS; 
Cheyne et al., 2019) and the Nr2f1-deficient model of Bosch-
Boonstra-Schaaf optic atrophy syndrome (Del Pino et al., 2020) 
suggesting a link between the early generation of spontaneous 
activity and abnormal brain development. Although the specific 
impact of each pattern of early network activity on adult sensory 
function remains to be thoroughly investigated, this review 
summarizes recent findings that bring us closer to answer one 
major question in developmental neurobiology: how does a 
timely interaction between molecular programs and electrical 
activity sculpt neural network formation? Acute manipulations 
in the developing embryo and in in vitro model systems together 
with transcriptomic data, start to disclose the mechanisms 
underlying normal and pathological timing of critical periods not 
only in the sensory and motor systems, but also in associative 
areas such as the prefrontal cortex (PFC).

Experiences that influence critical periods of plasticity
can occur in form of systemic and/or environmental factors
of chemical nature such as hormones. Hormones guide
behavioral adaptation, adjust the onset of vulnerable time
windows and are associated with the transitions in maturational
state, including pregnancy, sexual differentiation and puberty
(Yamaguchi et al., 2012; for review de Kloet et al., 2005;
Piekarski et al., 2017). An important step has been the
identification of the tropism of different hormones during
developmental transitions. For instance, adequate levels of
oxytocin regulate the transient switch of GABA action at
birth from excitatory to inhibitory (Tyzio et al., 2006), a
transient process necessary for correct brain development.
Alterations of this critical period of GABA polarity at
birth—transiently excitatory GABA instead of inhibitory—have
been associated to the pathophysiology of autism spectrum
disorders (ASD) such as Fragile X and Rett syndrome (Tyzio
et al., 2014; Fernandez et al., 2019; Lozovaya et al., 2019).
Thyroid hormones (THs) are also necessary to maintain
normal brain maturation and function (for review see Batista
and Hensch, 2019). However, more studies are needed to

thoroughly address the specific influence of hormones on
critical periods.

Research on experience-dependent developmental plasticity
is leading to a better characterization of ‘‘critical periods’’
and ‘‘sensitive periods.’’ Both terms refer to transient time
windows during which specific neural circuits undergo a
change in response to environmental factors, affecting brain
function. However, a careful consideration for what defines and
distinguishes these two types of periods of brain development
still requires scientific consensus. Therefore, we would like to
briefly elaborate on conceptual frameworks and assumptions
underlying the assignment of a transient plasticity event as
a ‘‘critical’’ or ‘‘sensitive period.’’ Indeed, it was proposed
that ‘‘critical periods’’ differ from ‘‘sensitive periods’’ based on
dynamics (Knudsen, 2004) i.e., events of gradual plasticity would
be classified as ‘‘sensitive periods,’’ while ‘‘critical periods’’ would
represent acute shifts during exclusive developmental timepoints
in the adaptation of neural systems (White et al., 2013). However,
a clear explanation of each type of event based on their common
and unique features is still lacking. We revised several definitions
proposed in the past (for review Rice and Barone, 2000; Hensch,
2004, 2005; Knudsen, 2004) and reexamined them within the
context of the current knowledge.

We propose that a principle that differentiates a ‘‘critical’’
from a ‘‘sensitive’’ period is the ultimate impact on brain
structure and function (for review Knudsen, 2004). During
critical periods, experience instructs neural networks to develop
into a configuration that cannot be replaced by alternative
connectivity patterns (Figure 1, upper panel on the right),
leading to irreversible consequences. In other words, a principal
feature of a critical period is that it leads to a permanent
change necessary for the presence or absence a specific brain
function. An example is the input-dependent period for OD,
which is necessary for stereopsis and could result in amblyopia
(Daw, 1998; for review Hensch and Quinlan, 2018). During
sensitive periods, experience leads to many possible network
configurations or connectivity patterns that can compensate for
each other and are subjected to remodeling during a protracted
period of brain development and adulthood (for reviewKnudsen,
2004; Figure 1). Thus, sensitive periods are characterized by
experience-dependent plasticity that is not entirely irreversible
and that modulates compensatory connectivity patterns. It tunes
the degree of performance of a specific function—within a
dynamic and functional range—(e.g., orientation and direction
preference (Bachatene et al., 2015), reopen and shift network
function to another state as long as enviromental cues
are present.

In this review, we focus on distinct types of critical periods
of brain development. Critical periods that determine axonal
growth and neural circuit organization are named here as
‘‘classical critical periods,’’ because their mechanisms and
implications for brain function have been investigated for
many years. We also feature recent evidence supporting
the idea that critical periods occur long before connectivity
rearrangements, acting during embryogenesis and early
postnatal stages in mice through fate plasticity during
neurogenesis and programmed cell death in post-mitotic
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FIGURE 1 | Principles of critical periods compared to sensitive periods of
plasticity. (A) Critical periods in brain development represent narrow time
windows of heightened plasticity driven by environmental input. Closure of
critical periods is achieved through molecular brakes that constrain plasticity
and allow for permanent structural consolidation of one of a few possible
connectivity patterns. (B) Sensitive periods in brain development represent
broad time windows of gradual change in plasticity driven by environmental
input. Sensitive periods are not closed by molecular constrains and can be
further reopen by changing environmental cues. The consolidation of one of a
broad range of possible patterns of connectivity is reversible and remains
functionally dynamic.

neurons, respectively. Here, we explain why the latter
are emerging as critical periods. Since fate plasticity and
programmed apoptosis may endow the cerebral cortex with
transient epochs of flexibility to adjust the absolute numbers
and type of neurons of cortical networks in response to
environmental cues, we propose to term as ‘‘critical periods for
network composition.’’

Critical period research has implications beyond a basic
understanding of brain formation. It is relevant to continue
shedding light on the etiology of neurodevelopmental disorders
(Marín, 2016). Here, we brought together recent efforts
strengthening the link between transient alterations in brain
function and the emergence of symptoms of neurodevelopmental
disorders, i.e., intellectual disability, ASD and/or schizophrenia.
In addition, we feature preclinical studies that support the
notion that critical periods could be successfully employed
as windows of opportunity for early therapeutic interventions
and shift the pathological time-course of a disease model
into a normal or asymptomatic neurodevelopmental trajectory.
Finally, we provide with a perspective about recent technological
advances that model vulnerable time windows reminiscent
of human brain maturation in health and disease, and
which represent a promising experimental setting to test
most suitable therapeutics in major genetic predispositions to
neurodevelopmental disorders.

CLASSICAL CRITICAL PERIODS AND
CRITICAL PERIODS FOR NETWORK
COMPOSITION

Classical critical periods of plasticity have been thoroughly
characterized in the visual, somatosensory and auditory systems
(Barkat et al., 2011; Yang et al., 2012; for review Rice and Barone,
2000; Hensch, 2004, 2005). Studies in animal models have
been key to advance in the discovery of molecular mechanisms
and plasticity rules that influence the development of sensory
systems, as well as their cross-modal regulation (i.e., effect of the
function of one brain modality on the function of another).

The maturation of the visual system results from a highly-
regulated sequence of events that occurs long before eye-opening
and continues to be sculpted at the onset of eye-opening,
upon the arrival of visual inputs (for review Daw, 1998;
Hooks and Chen, 2007). The shift in OD of binocular neurons
induced by monocular deprivation, also known as OD plasticity,
has been the classical—probably the most studied—model of
critical period plasticity, confined to a vulnerable time window
[e.g., from P19 to P32 in mice (Gordon and Stryker, 1996)
and P20-P35 in the rat (Fagiolini et al., 1994)]. During this
critical time frame, the balance in Excitation/Inhibition (E/I)
is adjusted to a final configuration in the adult brain (for
review Levelt and Hübener, 2012; Hensch and Quinlan, 2018;
Hooks and Chen, 2020). The closure of this period is regulated
by molecular brakes halting neural plasticity in the primary
visual cortex (Gribizis et al., 2019). Many of these molecular
factors initiating and closing critical period plasticity—such as
neuromodulatory signals (e.g., acetylcholine), synaptic proteins
[e.g., immunoglobulin protein Synaptic Cell Adhesion Molecule
1 (SynCAM1)] and components of the extracellular matrix
(e.g., perineuronal nets or PNNs)—are influenced by visual
experience and act on main neuronal regulators of critical period
in the cerebral cortex i.e., GABAergic interneurons expressing
parvalbumin and somatostatin (Fagiolini et al., 2004; Lyckman
et al., 2008; Ribic et al., 2019; Yaeger et al., 2019; Yang, 2020; for
review Wen et al., 2018).

Some of these molecules are known to play a similar role
in critical period plasticity of other sensory areas (McRae
et al., 2007; Nakamura et al., 2009; Nowicka et al., 2009).
Within the somatosensory system, the whisker system represents
a well characterized model of defined sequence of critical
periods during postnatal development (Rice and Van der Loos,
1977; for review Erzurumlu and Gaspar, 2012). Parvalbumin
interneurons are contributing to activity-dependent changes in
the maturation of the somatosensory cortex, during a period
spanning from P0 to P14. During this time window, sensory
responsiveness and response selectivity to whisker deflections
develop in a layer-specific manner within the barrel cortex
(van der Bourg et al., 2017). Moreover, sensory deprivation
remarkably affects the spatial organization of inhibitory circuits
(Lo et al., 2017). In addition to somatosensory input-
dependent plasticity—involving NMDA and GABA receptor
function and being largely altered by whisker deprivation in
the barrel cortex and other relay stations during postnatal
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stages (Pan et al., 2017)—a recent study reports that spontaneous
network activity from thalamic inputs at embryonic stages is also
fundamental for somatotopic map development (Antón-Bolaños
et al., 2019).

In the primary auditory cortex, a vulnerable period for
spectral tuning extends from about P11 to P13 in rat (de Villers-
Sidani et al., 2007), followed by another sensitive window, during
which the auditory system remains maximally plastic—e.g.,
P31-P38 in mice (Bhumika et al., 2020), 3.5 years in humans
(Sharma et al., 2002). These plastic periods are dependent on
the stimulus complexity sculpting the tonotopic organization of
the auditory cortex. The environmental influence (or lack of it)
in the auditory system has a different impact on the acquisition
of hearing depending on the developmental stage. Specifically,
hearing loss induced at postnatal day 10 in mice, has greater
impact than after sexual maturation (Buran et al., 2014). In the
cortex, tonotopic maps are modelled during early life to adapt to
the surrounding environment (de Villers-Sidani et al., 2008). The
primary auditory cortex is a key hub where neuromodulatory
and topographically-organized thalamic inputs meet to tune the
cortical layers below. The control of the duration and closure of
the vulnerable periods is dependent on the local state of cortical
maturation. In particular, inhibitory interneurons in layer 1 (L1)
send narrowly descending projections to differentially modulate
thalamic drive onto pyramidal and parvalbumin-expressing
(PV) cells in L4, creating brief windows of intracolumnar
activation. Silencing specific subtypes of L1 interneurons,
abolishes map plasticity during the tonotopic critical period
(Takesian et al., 2018).

The role of non-neuronal brain cells in critical period
plasticity has been less addressed. Oligodendrocyte-neurons
interaction through Nogo-66 receptor drive the maturation of
intracortical myelination necessary for the closure of OD and
auditory plasticity (McGee et al., 2005; Kalish et al., 2020) and
might be also a hallmark of critical period conclusion outside
sensory modalities. Regions such as the PFC undergo a change
in oligodendrocyte maturation and myelination following
deprivation of social behavior in mice after weaning (Makinodan
et al., 2012, 2016). Of special relevance are single cell RNA
sequencing approaches that are accelerating our understanding
of the molecular programs implemented by all brain cell types
during critical periods. A pioneer effort employed single-cell
RNAseq analysis during critical period for tonotopic topography
in the primary auditory cortex and provides with a detailed
transcriptomic profile of each neuronal and non-neuronal cell
type during this critical period for auditory plasticity (Kalish
et al., 2020). Following on previous studies describing the role
of astrocyte maturation and microglia function in OD plasticity
(Müller, 1990; Singh et al., 2016; Sipe et al., 2016), the study
of Kalish et al. (2020) substantiates evidences that activation of
astrocytes and microglia contribute to critical period plasticity in
the neocortex.

The sequence of critical periods of a specific sensory
function unfold in coordination with other sensory modalities.
The influence of the maturation of one sensory system on
another is known as cross-modal or cross-sensory plasticity
(for review Morrone, 2010). Initial studies showed that the

homeostatic scaling of synaptic plasticity underlies this form
of plasticity in sensory areas such as the auditory cortex as
well as somatosensory cortices following visual deprivation
(Goel et al., 2006; He et al., 2012). Importantly, cross-modal
plasticity may also arise outside of the early developmental phase.
Plasticity induced by visual deprivation in adult mice results in a
potentiation of thalamo-cortical synapses reaching the auditory
cortex and leads to an improved processing of the auditory
information (Petrus et al., 2014). This indicates that cross-modal
plasticity drives the onset of a critical period of synaptic scaling in
a brain-region specific manner (i.e., in thalamocortical axons of
the auditory cortex, but not of the visual cortex). Further efforts
in the study of cross-modal plasticity are fundamental to better
understand how critical periods of different brain regions sculpt
sensory and high-order brain functions, early in the immature
brain (Nardou et al., 2019).

Before experience-driven critical periods sculpt neural wiring
in the postnatal brain, exposure to cytotoxic agents has been
used to identify timepoints during which cell proliferation,
migration, differentiation and apoptosis are susceptible to change
(for review Rice and Barone, 2000; Figure 2). Recent studies
have unveiled new molecular mechanisms acting in immature
cell types during neurogenesis and programmed cell death.
New evidences suggest that neurogenic fate and programmed
cell death might be influenced by their surrounding milieu
as well as by electrical activity (Blanquie et al., 2017; Vitali
et al., 2018; Wong et al., 2018; Oberst et al., 2019). In the
following section, we highlight recently discovered features that
characterize developmental plasticity events in neurogenesis and
apoptosis and that extend beyond previous criteria that define a
classical critical period (for review Hensch, 2004).

During corticogenesis in the embryonic brain, apical
progenitors give rise to pyramidal neurons in an ‘‘inside-
out’’ fashion—first deep, later superficial (Cadwell et al., 2019).
Intrinsically-regulated genetic programs in apical progenitors
guide their temporal progression in neurogenic fate from
early states—in which they generate early-born deep layer
pyramidal neurons—to a late state—in which they give rise to
late-born upper layer pyramidal cells (Figure 3; Telley et al.,
2016). Multiple findings from loss-of-function approaches of
specific transcription factors suggest that apical progenitors are
competent to re-enter a previous neurogenic state, in other
words, to rewind their temporal neurogenic state, i.e., to convert
into a different progenitor type, a process known as ‘‘fate
plasticity’’ (Figure 3). For example, the transcription factor
Foxg1 has been shown to regulate at the embryonic stage
(E)13.5, the ability of apical progenitors to revert to an earlier
neurogenic competence and to generate early-born Cajal-Retzius
cells, instead of deep-layer pyramidal neurons (Hanashima et al.,
2004; Shen et al., 2006). Interestingly, recent studies support
the idea that fate plasticity might be regulated not only by
intrinsic genetic programs (for review Greig et al., 2013), but by
the bioelectric membrane properties as well as in response to
cell-extrinsic factors, in a non-cell autonomous manner (Vitali
et al., 2018; Figure 3). Fate plasticity is also specific for different
progenitor types and specific of a time point in corticogenesis. In
contrast to intermediate progenitors—displaying an immutable
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FIGURE 2 | Critical events during embryonic and postnatal periods of brain development that impact adult brain function. Scheme shows a timeline of the key
stages in the development of neuronal networks in the mouse brain (embryonic critical period: E12 to E18; Perinatal critical period: P0-P10; late postnatal critical
period: P10-P40). It summarizes the events that occur during brain maturation and leads to long-term alterations. OD, ocular dominance; ENOs, early network
oscillations; GDP, giant depolarizing potentials; GABA, switch from excitatory to inhibitory.

temporal progression of neurogenic fate—apical progenitors
at embryonic stage (E)15.5 can re-enter a past molecular
state—from E15.5 neurogenic state to E12.5—giving rise to
additional deep-layer neurons within their progeny (Oberst
et al., 2019). Thus, fate plasticity of apical progenitors could
meet several principles that define a critical period (for review
Hensch, 2004). The first principle is the influence by the
environment. It has been shown that fate plasticity is dependent
on the resting membrane potential of radial glia (Vitali et al.,
2018), their metabolic states (Khacho et al., 2016; Knobloch
et al., 2017; for review Knobloch and Jessberger, 2017) and
the feedback signaling from neighboring postmitotic neurons
(Seuntjens et al., 2009; Toma et al., 2014). This suggests that fate
plasticity could be influenced by surrounding factors regulating
apical progenitor’s microenvironment, such as the availability
and distribution of ions and metabolites that constitute the
electrochemical gradient and determine the energetic states of
these cells. A second principle met by fate plasticity of apical
progenitors is its occurrence during a unique time window in
embryonic development: apical progenitors are a transient cell
type that displays fate plasticity at embryonic stage (E) 15.5. A
third principle of a critical period is the irreversible effects on
brain function. Although fate plasticity is a process that will
generate higher numbers of deep-layer cortical neurons (i.e layers
5–6), instead of upper-layer ones (i.e., layers 1–4) irreversibly, the
precise consequences of fate plasticity for adult brain function
remain to be elucidated. In addition, since the generation
of astrocytes and oligodendrocytes follows neurogenesis and

continues during the first postnatal month in the mouse brain
(Bayraktar et al., 2014; for review Bergles and Richardson, 2015),
an unanswered question is whether fate plasticity of radial
progenitors could also impact the production of non-neuronal
cells in the cerebral cortex. It is easy to speculate that if the
generation of high numbers of deep-layer pyramidal neurons
occurs at the expense of upper-layers neurons and glia, fate
plasticity could have a significant impact on cortical computation
and on the regulation of subsequent critical periods.

Programmed cell death in the postnatal brain is also a
critical period for network composition. The immature brain
generates a surplus of cells necessary to guide specific processes
during development. Intrinsic molecular programs initiated by
the pro-apoptotic factors of Bcl2-associated X protein (Bax)
and Bcl2 antagonist/killer (Bak) render specific cell populations
susceptible to undergo cell death during brain development
(Southwell et al., 2012). Brain cells undergo massive elimination
during twowaves of apoptosis that take place from the embryonic
stage E14 and between P6 and P10 in mice (Figure 2; for
review Wong and Marin, 2019). In contrast to previously
reported cell-autonomous regulation of cell death (Southwell
et al., 2012), new evidence suggests that specific patterns of
postnatal network activity establish the onset, duration and
extent of neuronal apoptosis (Blanquie et al., 2017; Denaxa
et al., 2018; Priya et al., 2018; Wong et al., 2018; Duan et al.,
2020). Recent work identified two molecular pathways guiding
the selection process that determines neuron survival and sets
the final composition of a neural network in the cerebral
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FIGURE 3 | Fate plasticity during corticogenesis. (A) Schematic of corticogenesis (left panel) showing three populations of progenitor cells: neuroepithelial cells (in
black), apical progenitors (light blue) and intermediate progenitors (dark blue). Apical progenitors (radial glia) within the ventricular zone (VZ) initially expand their
population and generate neurons and intermediate progenitors. As corticogenesis proceeds, intermediate progenitors (within the SVZ) as well as apical progenitors
generate neurons. (B) Temporal progression of neurogenic stage (right panel) shows apical progenitors around embryonic stage (E) 12.5 that give rise to early born
deep-layer pyramidal neurons. In the standard temporal progression of corticogenesis apical progenitors at E15.5 give rise to late-born upper-layer pyramidal
neurons. Apical progenitors at E15.5 can change their neurogenic state, a process named “fate plasticity” and give rise to late-born deep-layer pyramidal neurons
under specific conditions such as cell hyperpolarization or reactivation of Wnt-signaling. VZ, ventricular zone; SVZ, subventricular zone; IZ, intermediate zone; CP,
cortical plate; MZ, marginal zone; Vrest, resting membrane potential.

cortex: the calcium-dependent phosphatase Calcineurin, that
translates the arrival of electrical activity into molecular cascades
of cell survival (Priya et al., 2018), and the phosphatase tensin
homolog protein (PTEN), that sets the clock for the death of
the GABAergic interneurons in the absence of incoming activity
from pyramidal neurons (Wong et al., 2018). Neuronal numbers
significantly decrease during the first two postnatal weeks,
reaching a plateau in adulthood in the neocortex (Blanquie
et al., 2017; Denaxa et al., 2018; Priya et al., 2018; Wong et al.,
2018). As apoptotic neurons cannot be replaced, programmed
cell death in the postnatal brain is an irreversible process.
The main feature that differentiates programmed cell death
from classical critical periods is the functional consequence of
postnatal apoptosis for cortical network response. In classical
critical periods, the functional competence of inputs determines
the selection of a specific pattern of connectivity. Yet, during
programmed cell death, the functional competence of inputs
determines the final number of neurons and the relative
contribution of GABAergic and glutamatergic neuronal types
to the neural network. Therefore, it is conceivable to believe

that changes in neuronal number (through ‘‘critical periods for
network composition’’) could have a different impact on the
dimensionality of neural responses than changes in connectivity
patterns (through ‘‘classical critical periods’’). Currently, it is
unclear how programmed cell death of postnatal neurons
precisely influences information processing in the cerebral
cortex. However, initial studies performed in mice demonstrate
thatmanipulating the number of excitatory pyramidal neurons in
the cerebral cortex results in permanent consequences for brain
function and behavior. Glutamatergic neuron overproduction
as well as increased glutamatergic neuron apoptosis result in
altered motor learning, hyperactivity or phenotypes reminiscent
of autism-like traits (e.g., altered social behavior and repetitive
behavior; (Fang et al., 2014; Nakamura et al., 2016). Moreover,
programmed cell death significantly changes the size of the
visual cortex leading to smaller, but functional, retinotopic map
(Nakamura et al., 2016). These findings suggest that programmed
cell death during postnatal stages is a critical period for
high-order complex behavior such as social behavior, and motor
learning. Further studies should unveil whether programmed cell
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death in postmitotic glutamatergic neurons is a critical period for
sensory (e.g., visual) function.

MANIPULATING CRITICAL PERIODS TO
SHIFT DEVELOPMENTAL TRAJECTORIES

In the context of disease, knowledge of critical period plasticity
shows promise to restore specific aspects of brain function in
animal models of neurological disorders. Control of critical
period plasticity can be implemented in two different ways:
by reopening critical periods in the adult brain—which is the
most common strategy—and by prematurely closing the periods
of abnormal plasticity through timely intervention in the early
developing brain, requiring more sophisticated experimental
designs. In the following section, we highlight recent pre-clinical
studies that illustrate the therapeutic potential of these two
timely strategies targeting developmental plasticity specific to
critical periods.

The reactivation of restricted periods of plasticity in
adulthood represents both an episode of vulnerability and
opportunity for therapeutic intervention (for review Hensch and
Bilimoria, 2012; Marín, 2016). Themain advantage of thoroughly
understanding critical periods is to be able to manipulate their
onset, duration, and closure to ultimately control heightened
levels of brain plasticity. The identification of molecular
mechanisms regulating critical periods in the developing brain
has been a key stepping-stone towards unveiling approaches that
control the reopening of heightened plasticity after closure of the
developmental plasticity period. Numerous approaches through
which critical windows—and thus brain malleability—might be
re-opened in adults have been attempted in animal models.
Molecular factors, such as the endogenous inhibitor for nicotinic
acetylcholine receptor—Lynx1—and other components of the
extracellular matrix, i.e., perineuronal nets (PNNs), set the
closure of OD plasticity and limit plasticity in the adult visual
cortex (Pizzorusso et al., 2002; Morishita et al., 2010; for review
Hensch, 2005; Fawcett et al., 2019; Yang, 2020). These factors are
key for the maintenance of network activity (Favuzzi et al., 2017;
Faini et al., 2018) and brain plasticity (Bradshaw et al., 2018).
Moreover, these molecules not only regulate critical periods
in sensory function, they also participate in the regulation of
critical periods related to complex cognitive demands such as the
storage of emotional memories (for review Nabel and Morishita,
2013). In particular, PNNs mediate the closure of critical
period of permanent fear memory extinction (Xue et al., 2014;
Slaker et al., 2015). Removal of PNNs resets the mature neural
network to an immature, juvenile state, by decreasing network
inhibition and increased gamma activity (Lensjø et al., 2017).
Control of critical period plasticity through PNN regulation in
other brain regions influences brain function beyond sensory-
motor and complex behaviors. In animal models of obesity
and diabetes, critical period for leptin-dependent development
of the hypothalamic acuate nucleus—involved in metabolic
homeostasis—is accompanied by a reorganization of PNNs
around leptin-receptor positive GABAergic neurons (Mirzadeh
et al., 2019). Thus, PNNs remain central molecular hallmarks in
the study of critical periods associated to the pathophysiology

and the treatment of a range of neuropsychiatric disorders and
relatedmetabolic comorbidities (Bradshaw et al., 2018; for review
Wen et al., 2018).

Other approaches took advantage of molecules with a
synaptic function that participate to critical periods of synaptic
plasticity during a specific time window for social reward
learning. In particular, oxytocin-mediated long-term depression
in the nucleus accumbens is reopened by a single dose of
3,4-Methyl enedioxy methamphetamine in young adult mice
(MDMA, commonly known as ecstasy; (Nardou et al., 2019).
Consequently, activation of the oxytocin receptors by MDMA
showed potential to restore impaired social behavior and social-
related disorders in animal models of neurodevelopmental
disease. Other studies reported that drug-induced reopening
of critical period plasticity specifically improves the function
of sensory systems. For example, valproic acid—an histone
deacetylase inhibitor affecting synaptic neurotransmission and
primarily used to treat epilepsy—has been shown to restore
visual acuity in animals that underwent monocular deprivation
(Silingardi et al., 2010). Valproic acid has also been shown to
participate to the reopening of the critical-period learning of
absolute pitch in humans (Gervain et al., 2013).

Additional experimental strategies involve the direct
manipulation of inhibitory GABAergic circuits. Inhibitory
interneurons are central arbiters of critical period plasticity
and direct the competition between electrical activity and
patterns of connectivity setting plasticity onset and duration
(Toyoizumi et al., 2013; Tang et al., 2014; Isstas et al., 2017).
Specific subpopulations of inhibitory interneurons define the
tempo of experience-dependent critical period in the cerebral
cortex (for review Hensch, 2005). Fast-spiking PV-cells have
the potential to remain plastic even beyond the peak of natural
critical periods (Morishita et al., 2015). The transient increase
of parvalbumin interneuron activity with pharmacological
approaches (diazepam) or with approaches that employ
synaptogenic molecules to increase synaptic excitatory input
onto PV cells—through exogenous application of Neuregulin1,
a ligand of the interneuron-specific transmembrane receptor
ErbB4—prevent OD plasticity after visual monocular deprivation
(Kuhlman et al., 2013; Sun et al., 2016). Pharmacological or
chemogenetic approaches that increase PV interneuron activity
have also been shown to restore control-like neural activity
(CA1 network dynamics) and behavior (cognitive function)
in different mouse lines modeling mutations associated to
schizophrenia (Marissal et al., 2018; Mukherjee et al., 2019).

Failure to stabilize neural circuits and reducing plasticity as
the brain develops underlies the physiopathology of a range of
neurodevelopmental disorders. One example is delayed critical
period for GABA polarity in the FXS mouse model (also known
as Fmr1 deficient mice; He et al., 2014) and in mouse models
of Rett syndrome (Mecp2 deficient mice) displaying abnormal
GABA polarity in the hippocampus (excitatory GABA instead
of inhibitory), until very late in brain development (i.e., P15 in
mice (Lozovaya et al., 2019). In addition, Fmr1 deficient mouse
models of FXS are also characterized by a delayed progression of
critical periods in the somatosensory system (Bureau et al., 2008;
Harlow et al., 2010; Till et al., 2012). Interestingly, precocious
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onset and closure of critical period in the visual cortex has been
reported in Mecp2 deficient mice (Durand et al., 2012; Krishnan
et al., 2015). In order to prematurely advance, constrain or
delay critical periods of plasticity, acute experimental strategies
have been employed to reorient abnormal immature brain
states towards a normal developmental trajectory. One of these
strategies took advantage of timely manipulations of GABA
action during early postnatal development or around birth,
through the inhibition of the Na+/K+ Cl− cotransporter 1 (with
NKCC1 inhibitors, i.e., bumetanide). These efforts normalized
somatosensory whisker-evoked responses and GABA polarity in
the mouse hippocampus of the FXS mouse model (He et al.,
2019). Altogether these recent findings illustrate how a better
knowledge on critical period regulation could be employed (e.g.,
by re-opening or tuning the degree of plasticity) to develop timely
applied strategies that lessen disease-relevant symptoms.

MODELING CRITICAL PERIODS OF
PLASTICITY WITH NEW TECHNOLOGIES

Mouse genetics are a fundamental asset to study the influence
of gene-environment relationship on critical periods (Xu et al.,
2019). They still remain a key tool to probe the genetic, cellular
and neural circuits basis of pathophysiological states of human
neurodevelopmental disorders (for review Marín, 2016; Del
Pino et al., 2018). The advent of CRISPR-Cas9 mediated gene
editing technology has significantly increased the spectrum of
animal models available for the study of neurodevelopmental
disease, using either rodents but, also recently, non-human
primates. A recent study revealed that CRISPR-designed
macaque monkeys, mutant for the Shank3 gene, exhibited sleep
disturbances, motor deficits and increased repetitive behavior,
as well as social and learning impairments (Zhou et al., 2019).
Similarly, lentivirus-mediated transgenic monkeys expressing
human MeCP2 in the brain exhibit autistic-like behavior and
show germline transmission of the transgene (Liu et al., 2016).
Whilst the use of non-human primates as animal models
provides some scientific benefits to further unveil critical
period plasticity mechanisms underpinning human disorder-like
pathophysiology, we focus here on cutting-edge technological
advances that will importantly contribute to model critical
periods of the human brain.

Reconstructing the developmental trajectories of human
cortical circuits in vitro has the potential to revolutionize
our understanding of vulnerable periods in human brain
development (Chukwurah et al., 2019; Marshall and Mason,
2019; for review Quadrato et al., 2016). In order to fill
the gap between human disease and model organisms, the
development of stem cell technologies—both embryonic and
induced pluripotent stem cells (iPSCs)—have given access
to functional readouts typical of early stages of human
brain development (Dolmetsch and Geschwind, 2011). iPSCs
have provided insights into the cellular alterations underlying
neuropsychiatric disorders such as autism and schizophrenia
(Marchetto et al., 2017; Adhya et al., 2020; reviewed in Ben-
Reuven and Reiner, 2016; Vitrac and Cloëz-Tayarani, 2018).
Although concerns have been raised regarding the clinical

applications of iPSCs as a valuable source for cell transplantation
therapy and the significant reprogramming variability of human-
derived iPSCs, the simplicity of two-dimensional cultures
is suitable for mechanistic studies, large-scale screening, or
high-throughput drug testing. However, modeling critical period
in vitro requires a better system that recapitulates the processes
of proliferation, patterning, cell fate progression, migration
and connectivity rearrangement of neural networks composed
of distinct cell types and organized into different layers and
different systems. It also demands an approach that will
ultimately include environmental cues influencing different
levels of plasticity during protracted periods of time.

The generation of three-dimensional (3-D) brain organoids,
derived from human induced pluripotent stem cells (iPSCs),
resolved the long-standing limitations of a 2D approach
and provide unprecedented opportunity to understand
neurobiological mechanisms of human brain development
in health and disease. Currently, 3D brain organoids
have a demonstrated validity to model basic features of
the human embryonic neural tissue and critical steps of
early brain development such as neurogenesis, neuronal
migration and neuroanatomical features—upper and deep layer
neurons—specific of brain tissue (reviewed in Paşca, 2018;
Seto and Eiraku, 2019; Benito-Kwiecinski and Lancaster, 2020;
Tambalo and Lodato, 2020; Velasco et al., 2020). Important
advances in the engineering of brain organoids have also
resolved long-standing limitations in size reproducibility and
in the production of neuronal diversity which closely resembles
the one found in in vivo embryogenesis (Velasco et al., 2019).
Nevertheless, 3D brain organoids present some limitations,
namely the inability to reproduce the exact cell type diversity
and radial glia maturation (Bhaduri et al., 2020). It also remains
unclear whether fate plasticity in cortical radial glia can be
probed in brain organoids. Despite these constraints, brain
organoids are suitable to replicate some developmental processes
of the human brain such as the transcriptional regulation of
neural progenitor cell fate, altered in pathology such as ASD
(Mariani et al., 2015). Moreover, brain organoids composed of
iPSC derived from pallial (cortical) and sub-pallial (subcortical)
domains, also named 3-D cerebral assembloids, have been
utilized to model tangential migration of interneurons (Bagley
et al., 2017; Birey et al., 2017; Xiang et al., 2017) and reciprocal
cortico-thalamic connectivity (Xiang et al., 2019; Figure 4).
Interestingly, cerebral assembloids derived from cells of patients
with Timothy syndrome—a severe neurodevelopmental disease
characterized by ASD and epilepsy—were used to demonstrate
that GABAergic interneurons exhibit prominent migratory
defects (Birey et al., 2017).

In order to bypass limitations of brain organoids in neuronal
survival and axonal growth, further efforts implemented new
culturing methods, such as the air-liquid interface cerebral
organoids (ALI-COs). ALI-COs have been useful in the
generation of brain organoids with specific features more
reminiscent of in vivo neural networks, such as the formation
of functional axonal bundles spanning long-range—longer than
in other brain organoids—projections (Giandomenico et al.,
2019). It remains to be determined to which extent 3D brain
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FIGURE 4 | 3D brain organoids for modeling human brain development and
neurodevelopmental disorders in vitro. Cerebral organoids are 3D brain
models derived from human induced-pluripotent stem cells (iPSCs). 3-D brain
organoids generated by Velasco et al. (2019; top panel) are consistent in size
and reproducibly present a spectrum of cell types. 3-D cerebral assembloids
(middle panel) are formed of a pallium-like organoid (dorsal) and a
subpallium-like organoid (ventral) and can recapitulate GABAergic interneuron
migration. Air-liquid interface cerebral organoids (ALI-Cos; bottom panel)
show an improved neural survival and can therefore be suitable to assay
critical periods of programmed cell death. Neurons within ALI-COs form axon
bundles over long-distances mimicking long-range projections.

organoids, ALI-Cos or 3-D cerebral assembloids can recapitulate
the key periods of fate plasticity, embryonic and postnatal
programmed cell death, intrinsic network activity, as well as
input-dependent network plasticity. Neuron-glia interactions
and presence or absence of mesoderm-derived progenitors
giving rise to microglia represent sources of variability in these
preparations (Ormel et al., 2018). Therefore, touching upon the
role of glia when modeling vulnerable windows of plasticity in
brain organoids is very complex and should be the subject of
discussion of experts in the field.

Current challenges of the in vitro brain organoid systems
to model critical periods require further systematic efforts
to reliable model the emergence of network activity patterns
and new approaches that mimic environmental influences
together with techniques tailored to measure their long-
term consequences in organoid culture conditions. So far,
brain organoid preparations display spontaneous neural activity
(Eiraku et al., 2008; Quadrato et al., 2017; Giandomenico
et al., 2019). Mouse-derived brain organoids display robust
network activity synchronization resembling an immature form
of functional organization (Eiraku et al., 2008), but neither
it has been shown whether human-derived brain organoids
consistently display synchronized network activity within the
same type of preparations (Quadrato et al., 2017) nor it is
known whether they recapitulate the sequence of coordinate
network activity observed in vivo (Giandomenico et al., 2019).
It was suggested that brain organoid activity could be tailored
to a specific activity pattern using optogenetics (Velasco
et al., 2020). Imposing a specific activity pattern to brain
organoids could be indeed useful to better understand the logic
behind the interplay between electrical activity and molecular

programs specific to human brain development. Nevertheless,
an in-depth characterization of network activity patterns
intrinsically displayed by brain organoids across time needs
to be performed. For example, recent studies showed robust
synchronized network activity in human-derived brain organoid
cells, when cells were dissociated and plated anew (Sakaguchi
et al., 2019) and giant-depolarization potential-like events are
displayed by a newly developed type of neuronal organoid
preparation known as Bioengineered Neuronal Organoid
(BENO; Zafeiriou et al., 2020). Yet, comparative molecular
profiling and connectivity rules of highly synchronized brain
organoids vs. non-synchronized ones will further elucidate
neurobiological aspects supporting early patterns of intrinsic
network activity in the human brain. The field will profit from
a standardization of the cellular components and environmental
cues (culturing conditions) necessary for brain organoids to
display the synchronized network activity patterns found in vivo.

In addition, some aspects of the environmental cues
influencing early critical periods could be easily probed in human
embryonic stem cell-derived brain organoids. Human-derived
neurons within BENOs display the developmental switch in
GABA polarity found in the developing mouse brain (Zafeiriou
et al., 2020). Regulation of critical period for GABA polarity
by experience in form of hormonal stimuli could be easily
modeled and should be tested through the addition of different
concentrations of oxytocin to BENOs during the time period in
which GABA is excitatory.

Modeling critical periods of sensory systems typically
occurring during early childhood (or early adult mice) in a
dish faces many technical challenges and will probably require
of brain assembloid technology. Brain organoid preparations
containing photoreceptor-like cells and forebrain-like structures,
display neural activity in response to light stimuli (Quadrato
et al., 2017). The advent of sophisticated experimental designs
that combine multiple region-specific organoids together with
optogenetic stimulation is necessary to make progress on
this front. Exciting times in which basic aspects of cortico-
thalamic plasticity can be deconstructed into assembloids
containing multiples organoids—e.g., future retina-thalamic-
cortical assembloids or bi-thalamic-cortical assembloids—aided
by a focal optogenetic stimulation (or controlled environmental
conditions) is one of many speculative examples that could
help to better assess gene/environment interactions during
precise developmental periods. This will unveil if 3D brain
organoid/assembloids can recapitulate cellular and molecular
hallmarks of classical critical periods, which will ultimately
determine the degree of validity of this in vitro system as model
of human brain development.

DISCUSSION

Critical periods hold potential to reinstate brain function. We
provide a perspective on how the different aspects of critical
period research paves the way for potential disease-modifying
therapeutic strategies in neurodevelopmental disorders. Timely
interventions during specific developmental windows restore
network activity or behavior in animal models, thus reinforcing
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the notion that critical episodes of developmental plasticity can
be used as unique windows of therapeutic opportunity to reorient
pathophysiological states towards a ‘‘normal’’ developmental
path (Marín, 2016). Critical period research raises important
considerations for the well-timed administration of therapeutic
strategies during precise developmental windows. The goal of
timely applied interventions is to reduce undesired trade-off
effects of therapeutic strategies utilized during a protracted
period within brain development or after brain maturation.
Only a sound understanding of the order, time-line and cross-
regulations of critical periods in normal and pathological
trajectories will help us find the most precise, effective
and age-specific therapeutic intervention to follow. With the
hope that interventions during specific time windows could
significantly help to reduce symptoms in adulthood, further
efforts to unveil molecules that reopen or close critical period
plasticity will definitely expand the potential clinical relevance of
timely interventions during development.

A key challenge to further understand the time-course of
vulnerable periods during brain formation is the study of
sex-specific differences. A wealth of data demonstrates that the
critical period of sexual differentiation in the brain starts in
the embryonic brain (from E16 to P4 in mice and second
trimester in human; McCarthy et al., 2018). However, there is
still very limited information regarding how it influences the
time course of subsequent critical periods in males compared
to females. Therefore, differentiating sex-specific developmental
trajectories represents a major milestone that must be addressed.
It is not expected that the timeline of critical periods would be
shifted in very basic sensory modalities. However, one could
expect that the temporal unfolding of vulnerable periods that
determine a different degree of performance of high-order
functions to be singular for each sex. Descriptions of sexual
differences in brain function show that the temporal extent
of sensitive periods for social learning is delayed in males,
compared to females (Nardou et al., 2019). The underlying
neurobiological basis remains largely underexplored, e.g., the
influence of the thyroid gland, expressing both estrogen and
androgen receptors on vulnerable periods (Batista and Hensch,
2019). Understanding how hormones impact vulnerable periods
in a sex-specific manner is the first step towards the development
of personalized medicine. More basic research on gender-
specific neurodevelopment is also expected to precisely unveil

predisposition and susceptibility of each sex to brain disease,
within a framework that encompasses the life-experience of
the individual.

Finally, careful classification of vulnerable periods as
‘‘critical’’ or ‘‘sensitive’’ has implications beyond basic research.
Policymakers, psychosocial therapies and educational aid
programs for early childhood adversity should be guided by the
scientific advances in critical period research (see recent review
Nelson and Gabard-Durnam, 2020). Specially now, in light of the
current challenges posed by the COVID19 pandemic, measures
of confinement and social distancing on millions of healthy
children and children with neurodevelopmental disorders are
lacking a consensus feedback from the scientific community
(Arango, 2020). This is mirrored by a worrisome scenario in
which governments apply very different measures that raised
skepticism and questions such as: How long could we implement
confinement measures while maintaining neuropsychiatric
well-being in each age-group of children? Are the potential
long-term consequences of confinement in children with
neurodevelopmental disorders—such as ASD—exceeding the
risk of COVID19 infection? (Aledo-Serrano et al., 2020). A
better understanding of critical periods as opposed to sensitive
periods is fundamental to instruct these policies, considering the
implications for mental health of the next generations.
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