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Malaria is an infectious disease caused by the protozoan parasite Plasmodium sp,

the most lethal being Plasmodium falciparum. Clinical malaria is associated with the

asexual replication cycle of Plasmodium parasites inside the red blood cells (RBCs)

and a dysregulated immune response. Although the mechanisms of immune responses

to blood—or liver-stage parasites have been extensively studied, this has not led to

satisfactory leads for vaccine design. Among innate immune cells responding to infection

are the non-conventional gamma-delta T-cells. The Vγ9Vδ2 T-cell subset, found only

in primates, is activated in response to non-peptidic phosphoantigens produced by

stressed mammalian cells or by microorganisms such as Mycobacteria, E.coli, and

Plasmodium. The potential protective role of Vγ9Vδ2 T-cells against infections and cancer

progression is of current research interest. Vγ9Vδ2 T-cells have been shown to play a role

in the early control of P. falciparum parasitemia and to influencemalaria adaptive immunity

via cytokine release and antigen presentation. They are activated and expanded during a

primary P. falciparum infection in response to malaria phosphoantigens and their activity

is modulated upon subsequent infections. Here, we review the wide range of functions

by which Vγ9Vδ2 T-cells could both contribute to and protect from malaria pathology,

with a particular focus on their ability to induce both innate and adaptive responses. We

discuss how the multifunctional roles of these T-cells could open new perspectives on

gamma-delta T-cell-based interventions to prevent or cure malaria.

Keywords: gamma-delta T cells, malaria, falciparum, immunity to malaria, antigen presenting cell (APC),

cytotoxicity

INTRODUCTION

Over the last decades, the importance of a specific subset of γδ T-cells in malaria
infection is becoming increasingly apparent, namely Vγ9Vδ2 T-cells. Restricted to human
and non-human primates, Vγ9Vδ2 T-cells constitute a non-conventional T-cell subset
activated in a non-MHC dependent manner, by phosphorylated intermediates of isoprenoid
biosynthesis pathways of mammalian cells and microorganisms, known as phospho-antigens
(Ph-Ag) (1). The known most potent of these, HMBPP [(E)-4-Hydroxy-3-methyl-but-2-
enyl pyrophosphate] is produced by the DOX-P pathway used by several microorganisms
(2) including the parasite responsible for malaria, Plasmodium spp [reviewed (3)]. Once
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activated, Vγ9Vδ2 T-cells expand, produce cytokines, exert
cytotoxic functions, and stimulate cells such as monocytes,
resulting in improved monocyte antigen presentation
capabilities (4).

Despite major global effort, malaria remains a major public
health concern. Nearly half of the world’s population live in
malaria endemic regions, the majority in sub-saharan Africa,
and it is responsible for ∼216 million cases and 445,000 deaths
each year (5). Efforts to create an effective vaccine are hampered
by lack of understanding of the parasites interactions with our
immune system.

There are five species of Plasmodium that infect humans:
P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowelsi.
P. falciparum is the most prevalent and deadly. P. falciparum,
similar to other Plasmodium, is transmitted through the bite of
a female Anopheles mosquito. The extracellular, liver-invasive
form, the sporozoite, is injected into the skin, where it enters the
blood flow and travels to the liver. Here the parasite eventually
invades hepatocytes, wherein it differentiates and divides to form
the extracellular form called merozoites. Merozoites are released
into the blood stream and invade red blood cells (RBCs) where
they progress through a 48 h life cycle before RBC rupture
and merozoite release. Clinical disease manifests during this
blood stage and is characterized by cyclical episodes of fever
paroxysms. Severe malaria can be fatal and presents an array of
severe symptoms including severe anemia, respiratory distress
caused by severe metabolic acidosis, cerebral-malaria, multi-
organ failure, and in pregnant women, placental malaria (6).

For over 100 years, it has been observed that partial immunity
tomalaria in endemic areas is only acquired after multiple disease
episodes (7–9). In endemic settings, immunity is developed first
to severe malaria (usually before 5 years old) then to clinical
malaria (by 10–15 years old) (8, 10–12). Acquired immunity
appears to be strain- and variant-specific and in endemic
areas people are frequently re-infected by novel variants with
novel antigen combinations. This complicates the assessment
of protective immunity, however it is commonly accepted
that sterile immunity is rarely reached and low parasitemia
with no clinical symptoms is instead maintained (13, 14).
Malaria infection causes dysregulation of immune responses,
including inhibition of DC maturation and antigen presenting
capacity (15–17) and expansion of atypical memory B cells, the
functionality of which is not yet understood (18–20). The role
of the innate immune responses, and the cellular and humoral
branches of the adaptive immune response has been excellently
reviewed elsewhere (11, 21–25).

Concerning γδ T-cells, much of the early in vivo work on
Vγ9Vδ2 T-cell responses to P. falciparum infection was done
in primary infected adult patients, usually Caucasians living in
non-endemic regions, where Vγ9Vδ2 T-cells are the dominant
subset of γδ T-cells. However, it has been shown that in malaria
endemic regions, where the populations are exposed to numerous
malaria infections and possibly chronically infected, Vδ1 T-
cells are the major subset (26, 27). It is not yet known if this
is a genetic peculiarity, or different microbiota and pathogen
exposure early in life that drives expansion and contraction of
these subsets. An in-depth discussion on the reasons for these

geographical differences, and the role played by non Vγ9Vδ2
T-cells in malaria infection is beyond the scope of this review,
which focuses on Vγ9Vδ2 T-cells. Vγ9Vδ2 T-cells have features
associated with both innate and adaptive T-cells, and increasing
evidence suggests they act as a bridge between the innate and
adaptive immune systems [reviewed (28–30)]. Vγ9Vδ2 T-cells
have a wide range of effector functions [reviewed (30, 31)], and it
is becoming increasingly clear that during P. falciparum infection
they contribute to both protection and pathology. In this review,
we discuss their role as cytotoxic killer cells and their ability
to initiate both innate and adaptive immune responses against
P. falciparum malaria infection via cytokine release and direct
antigen presentation to CD4 and CD8 T-cells.

Vγ9Vδ2 T-CELLS ARE ACTIVATED DURING
MALARIA INFECTION

γδ T-cells have long been observed to expand in vivo in the
peripheral blood of primary infected P. falciparum malaria
patients, with the major subset being Vγ9Vδ2 T-cells (32, 33).
Interestingly, expansion in the peripheral blood is greatest during
recovery, after acute infection has passed (34), indicating either a
delay in response, or homing to tissues during acute infection.
Vγ9Vδ2 T-cells were found to be increased in human spleens
during infection (35, 36), a phenomenon that was confirmed in
monkey models (36). The rapid expansion of Vγ9Vδ2 T-cells
during infection and their homing to sites of known importance
in parasite clearance indicated that Vγ9Vδ2 T-cells could play a
role in the response to infection.

Our previous work has demonstrated that the bioactive
molecule released by infected red blood cells (iRBC) is a Ph-Ag of
the DOX-P pathway, which is released concomitantly with iRBC
rupture. We also showed that presentation of parasite Ph-Ag to
Vγ9Vδ2 T-cells involves BNT3A1 on non-erythrocyte bystander
cells, as RBCs and iRBCs are devoid of BNT3A1 (37). In addition
to HMBPP various other signals, including IL-2, IL-15 (38, 39),
CD4 T-cell interaction activation (40) and CD28 co-stimulation
(41), are needed for effective Vγ9Vδ2 T-cell activation, and
stimulation of Vγ9Vδ2 T-cells in different cytokine milieus
emphasizes different functional behaviors (42).

CYTOTOXIC Vγ9Vδ2 T-CELLS DIRECTLY
TARGET BLOOD STAGE P. falciparum

In vitro studies have built a picture of how Vγ9Vδ2 T-cells
directly inhibit the erythrocyte stage life-cycle. The first studies
showed that Vγ9Vδ2 T-cells targeted the iRBCs in a contact
dependent manner, and suggested that merozoites were the
target, as inhibition of parasite life-cycle was not seen until
after parasite reinvasion (43–45). Active granulysin release by
the Vγ9Vδ2 T-cells was implied in mediating parasite growth
inhibition, as granulysin production correlated with life-cycle
inhibition (44). Experiments with granulysin and perforin
deficient Vγ9Vδ2 T-cell lines confirmed that Vγ9Vδ2 T-cell
inhibition of parasites was indeed granulysin-mediated but
not perforin-dependent (46). Finally, in an experiment where
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Vγ9Vδ2 T-cells were co-cultured with late stage iRBC and
removed before rupture there was no impact on the parasite
reinvasion. This showed definitively that merozoites are the
target, as schizonts are not affected by granulysin release (46).

CYTOKINE RELEASING Vγ9Vδ2 T-CELLS
ACT AS A TRIGGER FOR BOTH INNATE
AND ADAPTIVE IMMUNE RESPONSES

Vγ9Vδ2 T-cells are highly interactive, and much of their
impact on the course of an immune response stems from
their modulation of other innate and adaptive immune cells by
cytokine release and direct cell-cell interaction (30). Existing
evidence indicates that Vγ9Vδ2 T-cells are implicated in
impacting the scale and nature of both innate and adaptive
immune responses to P. falciparum infection. A large feature of
the immune response to P. falciparum infection is the production
of inflammatory cytokines. In vitro studies of schizont-activated
PBMCs from naïve donors, Vγ9Vδ2 T-cells have been found
to produce TNFα and be the major source of IFNγ, more
than NK cells or macrophages (47–50). They have also been
shown to express TNFα, TGF-β, and IL-8, and occasionally IL-
10, IL-2, and IL-5 (48). In ex vivo analysis of cord blood from
mothers in an endemic setting who had experienced malaria
during pregnancy, the Vγ9Vδ2 T-cells produced significantly
more IFNγ and TNFα than those from healthy mothers, as
did the peripheral Vγ9Vδ2 T-cells from the mother (51). This
inflammatory cytokine production by Vγ9Vδ2 T-cells has been
associated with both protection and pathogenesis.

Vaccination studies have been performed where healthy,
malaria naïve, volunteers are exposed to three doses of
P. falciparum (via the bite of 12–15 infected mosquitos) with
the accompaniment of chloroquine treatment. This permits the
parasite to mature to blood stage, when it is then swiftly killed
before disease symptoms can develop. After challenge by the bites
of five infected mosquitos, the inoculated volunteers remained
parasite-free, indicating that they had developed a sterilizing
immunity (52, 53). Vaccinated (protected) volunteers showed
increased IFNγ, TNFα, and IL-2 production compared to non-
vaccinated (non-protected) when PBMCs, taken pre-challenge
and 1 day post-challenge, were stimulated by iRBC in vitro (52,
53). IFNγ levels were also increased in PBMCs from vaccinated
volunteers taken days 9, 35, 140, and 400 post-challenge when
stimulated by both iRBC and sporozoites (53). γδ T-cells were
found to be the major IFNγ contributors, with αβ T-cells the
next largest. The majority of responding cells were effector
memory, indicating recall responses, and IFNγ-producing γδ

T-cells were demonstrated to be a major contributor to parasite-
specific recall responses (53). Thus, in these vaccines, IFNγ

production by lymphocytes including γδ T-cells, correlated with
acquired immunity to P. falciparum infection. It should be
noted that Vγ9Vδ2 T-cells were not specifically measured in this
study. However, as Vγ9Vδ2T-cells are the predominant subset
in the periphery of malaria naïve individuals from non-malaria
endemic regions, it is reasonable to assume they were the major
responding γδ T-cell subset in this study.

In longitudinal studies of semi-immune children from Papua
New Guinea, the in vitro response of PMBCs to iRBC was
measured, and subsequent malaria incidence recorded. Increased
IFNγ production by PBMCs correlated with reduced risk
of future moderate and high-density P. falciparum infection.
Further, though there was much donor heterogeneity, γδ T-
cells were the predominant IFNγ producing cell population
(54). However, a different longitudinal study of children from
Papua New Guinea suggests that γδ T-cell cytokine production
is involved in severe malaria. Ex vivo stimulation of PBMCs from
children with either severe or uncomplicated malaria or healthy
controls showed that γδ T-cells and monocytes were responsible
for inflammatory cytokines associated with ‘high odds’ of severe
malaria (55). Several studies together have shown that Vγ9Vδ2
T-cell cytokine production is abrogated with repeat malaria
exposure, and this contributes to decreasing clinical symptoms
in subsequent infections.

Decreased peripheral activity of Vγ9Vδ2 T-cells has been
found during the acute stage of infection in primary P. falciparum
infected adults. Vγ9Vδ2 T-cells taken from the peripheral blood
during paroxysms were found to expand less and produce less
TNFα in response to IPP stimulation than Vγ9Vδ2 T-cells
taken during recovery, post-treatment (though still expanded
compared to uninfected controls). It was also found that there
are less Vγ9Vδ2 T-cells [particularly Vγ2Jγ1.2γδ T-cells (US
nomenclature), the TCR subset that is particularly reactive to Ph-
Ags] in circulation during P. falciparum paroxysm than during
recovery (34).

In a longitudinal study of Ugandan children, the percentage
of Vγ9Vδ2 T-cells in peripheral blood was found to be inversely
correlated with prior incidence of malaria infections. Ex vivo,
Vγ9Vδ2 T-cell proliferation, TNFα, and IFNγ production
and immune-modulatory gene expression was also negatively
associated with prior malaria episodes—indicating decreased
peripheral blood Vγ9Vδ2 T-cell activity with increasing exposure
to the parasite. Lower in vitro Vγ9Vδ2 T-cell responsiveness
to iRBC correlated with lower subsequent incidences of
symptomatic infection, but to increased probability of higher
parasitemia (56). This Vγ9Vδ2 T-cell dysfunction was shown
to occur because of frequent malaria episodes in childhood, an
effect that was abrogated by chemoprevention in early childhood
(57). The mechanism of Vγ9Vδ2 T-cell regulation is as yet
unknown. Vγ9Vδ2 T-cells are very susceptible to activation-
induced cell death by Fas-Fas-L interaction as demonstrated for
M. tuberculosis (58), though active regulation cannot be ruled
out.

Together, these studies indicate that while Vγ9Vδ2 T-
cell inflammatory cytokine responses can control parasitemia,
excessive stimulation of these cells may also result in pathology
suggesting that clinical immunity to malaria may be associated
with reduced Vγ9Vδ2 responses.

Several accumulated data in mice, where the equivalent of
human Vγ9Vδ2 T-cell subset is not yet certain, also show the
importance of the cytokine secretion activity of murine γδ T-cells
(59, 60). A recent study (61) showed that clonal expansion of a
subset of γδ T-cells producing macrophage colony stimulating
factor (M-CSF), prevents parasitemic recurrence. While it is

Frontiers in Immunology | www.frontiersin.org 3 November 2018 | Volume 9 | Article 2760

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Howard et al. Vγ9Vδ2T Cells in Malaria

FIGURE 1 | Proposed model of Vγ9Vδ2 T-cell functions in the microvasculature during P. falciparum infection. Plasmodium-infected red blood cells sequester to the

endothelium in the microvasculature, where they release phosphoantigens concomitantly with the red blood cell rupture. Phosphoantigens stimulate Vγ9Vδ2 T-cells

via BTN3A1 available on neighboring cells, including Vγ9Vδ2 T-cells, the endothelial cells and innate immune cells. Activated Vγ9Vδ2 T-cells (1) modulate innate cells

by cytokine secretion, (2) inhibit free parasite reinvasion of red blood cells, by releasing the cytotoxic granulysin, and (3) acquire APC phenotype and the capability to

migrate to lymph nodes where they initiate an adaptive immune response.

perhaps a stretch to expect a direct murine equivalent of Vγ9Vδ2
T-cells, certainly one is not yet identified, it is likely that one or
more murine γδ T-cell subsets have evolved which perform the
same protective and/or pathologic functions in malaria infection
as human Vγ9Vδ2 T-cells. “TγδM” cells are a good candidate for
one such functional equivalent of Vγ9Vδ2 T-cells.

ANTIGEN PRESENTING Vγ9Vδ2 T-CELLS
STIMULATE ADAPTIVE IMMUNE
RESPONSES

Another way in which Vγ9Vδ2 T-cells influence the course of
an immune response is by antigen presentation to αβ T-cells.
Over the last 12 years it has been demonstrated that Vγ9Vδ2
T-cells can take up, process and present exogenous Ag, both via
the classical pathway to CD4 T-cells and the cross-presentation
pathway to CD8 T-cells. They even have shown the ability to
act as professional antigen presenting cells (APCs) and stimulate
naive CD4 and CD8 T-cells (62–70). γδ T-APC resembling cells
are present in malaria infected individuals, and in vitro iRBC
stimulated Vγ9Vδ2 T-cells not only take on an APC phenotype

but also can cross-present Ag to a memory cell line and activate
naïve CD4 and CD8 T-cells in a mixed-lymphocyte reaction (71).
Where this might be occurring in vivo, or what the implication
of repeated malaria infection could be is worth investigated.
However, interesting work from liver stage malaria vaccines
could shed some light on this (see below).

Overall, the data allow us to propose a global model of how
peripheral Vγ9Vδ2 T-cells could control parasitemia and initiate
both innate and adaptive responses (Figure 1).Whether the same
cells are responsible for these functions or whether different
subsets of Vγ9Vδ2 T-cell are concerned is still to be worked out.

Vγ9Vδ2 T-CELLS: CORRELATES OF
PROTECTION FOR WHOLE ORGANISM
MALARIA VACCINE?

Vγ9Vδ2 T-cells have been implicated in protection against liver
stage immunity after vaccination with whole sporozoites.

In a mouse model of irradiated sporozoite vaccinations, it
was clear that the γδ T-cells were required for induction of
protective CD8 T-cell responses, but not antibodies, and were not
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acting as effectors in controlling liver stage parasite replication
(72). An as yet undefined subset of mouse γδ T-cells are able to
function by inducing downstream αβ T-cell responses. Further
studies are required to establish which mouse γδ T-cell subsets
mirror the various activities of Vγ9Vδ2 γδ T-cells and explore
the effect of irradiated sporozoite vaccination dose on these cells.
In humans, in the first field trial of the Sanaria R© PfSPZ vaccine in
Mali, it was demonstrated that the Vγ9Vδ2 T-cells were highest
in vaccines that remained uninfected throughout an intense
malaria transmission season, compared to infected vaccines or
the placebo group (72). These findings were comparable to those
observed in malaria naïve individuals vaccinated with either the
PfSPZ vaccine or a chemoprophylaxis vaccination, who also had
a remarkable increase in Vγ9Vδ2 T-cells (73). Overall, these
findings are intriguing in that they suggest that liver-stages
growth of P. falciparum can stimulate Vγ9Vδ2 T-cell activation.
This activation could have several explanations: first, locally
in an infected liver, hepatocytes displaying BNT3A1 or other
presentation molecules could activate Vγ9Vδ2 T-cells in situ.
Second, Vγ9Vδ2 T-cells could be activated in the draining lymph
nodes of the site of infection where a substantial fraction of the
sporozoites migrate, as shown by Amino et al. in mouse model
(74). Third, HMBPP produced by liver stages of Plasmodium
could be sensed in the periphery by exquisitely sensitive Vγ9Vδ2
T-cells, as seen during blood stage P. falciparum infections
(37). Finally, the activation of Vγ9Vδ2 T-cells could be due to
recognition of other antigens or metabolites.

It should be noted that in subsequent trials which used a
higher dose of the PfSPZ vaccine, Vγ9Vδ2 T-cell expansion
did not distinguish protected vs. unprotected vaccines (75, 76).
Interestingly, liver stage induced Vγ9Vδ2 T-cell expansion has
not been observed in volunteers undergoing controlled human

malaria infections (77). The reasons behind this are not yet
understood, but given the plasticity of Vγ9Vδ2 T-cells, it may be
that varying antigen loads modulate the phenotype and function
of these cells.

CONCLUDING REMARKS

In conclusion, the Vγ9Vδ2 T-cell is an enigmatic cell, with a wide
range of functions that can both contribute to and protect from
malaria pathology. It is important to better consider this subset
of γδ T-cells, especially their role in malaria vaccine protection.
Given their sensitivity to Ph-Ag’s such as HMBPP and apparent
functional plasticity under different cytokines and stimuli dose,
a cocktail of Ph-Ag and cytokines could be envisioned as an
adjuvant to boost efficacy of both liver and blood stage malaria
vaccines.
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