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Abstract

Female pubertal development is tightly controlled by complex mechanisms, including neu-

roendocrine and epigenetic regulatory pathways. Specific gene expression patterns can be

influenced by DNA methylation changes in the hypothalamus, which can in turn regulate

timing of puberty onset. In order to understand the relationship between DNA methylation

changes and gene expression patterns in the hypothalamus of pubertal goats, whole-

genome bisulfite sequencing and RNA-sequencing analyses were carried out. There was a

decline in DNA methylation levels in the hypothalamus during puberty and 268 differentially

methylated regions (DMR) in the genome, with differential patterns in different gene

regions. There were 1049 genes identified with distinct expression patterns. High levels of

DNA methylation were detected in promoters, introns and 30-untranslated regions (UTRs).

Levels of methylation decreased gradually from promoters to 50-UTRs and increased from

50-UTRs to introns. Methylation density analysis demonstrated that methylation level varia-

tion was consistent with the density in the promoter, exon, intron, 50-UTRs and 30-UTRs.

Analyses of CpG island (CGI) sites showed that the enriched gene contents were gene

bodies, intergenic regions and introns, and these CGI sites were hypermethylated. Our

study demonstrated that DNA methylation changes may influence gene expression profiles

in the hypothalamus of goats during the onset of puberty, which may provide new insights

into the mechanisms involved in pubertal onset.

Introduction

The hypothalamus-pituitary-gonadal (HPG) axis plays a critical role in the onset of puberty.
Gonadotropin-releasing hormone (GnRH) is secreted by neurosecretoryneurons located in
the hypothalamus in primates and in the preoptic region in rodents. GnRH secretion is inhib-
ited in embryos and infants and later reactivated, with pulsatile secretion before the onset of
puberty [1, 2].
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A complex network of genes is responsible for the control of puberty[1, 3–5], and epigenetic
regulation has emerged as playing an important role in the regulation of puberty onset in
recent years. Several studies have indicated that the reactivation of GnRH secretionwith puber-
tal initiation may be associated with downregulation of the Makorin ring finger 3 gene
(MKRN3)[2, 3, 6–8]. Kisspeptin, a GnRH agonist encoded by the KISS1 gene, also plays an
essential role in regulating the timing of puberty[9–11]. In female rodents, kisspeptin neurons
in the anteroventral periventricular nucleus are critical for GnRH positive feedback regulation
[12–14]. In addition, monogenic mutations in several genes, includingKISS1,MKRN, TAC3
(tachykinin 3), and GPR54 (G-protein-coupled receptor 54) have also been associated with
pubertal initiation failure[9, 10, 15–17]. Furthermore, several central nodes have been identi-
fied in previous reports, including the zinc finger–containing gene EAP1 (enhanced at puberty
1), the POU-domain geneOct2 and the homeodomain gene TFT1[1, 5].
While there have been a number of reports describing epigenetic changes associated with

differential gene patterns and the regulation of pubertal onset, the present study provides the
first whole-genomeDNA methylation analysis during puberty. In order to understand the
methylation patterns in the hypothalamus during puberty, we performedwhole-genome bisul-
fite sequencing (WGBS) and RNA-sequencing (RNA-Seq) to determineDNA methylation and
gene expression changes during puberty in goats. Our results demonstrate very low global
DNA methylation in prepubertal and pubertal stages which both showed positive and negative
correlations with gene expression patterns in the goat hypothalamus.

Materials and Methods

Ethics Statement

All goats in this study were housed in open sheepfolds and fed ad libitum. The sacrifice of goats
used sodium barbital after anesthesia. All procedures involving animals were approved by the
Animal Care and Use Committee of Anhui Agricultural University.

Sample collection and preparation

Three pubertalAnhuai goats aged 4.5–5months, weighing 17.43 ± 1.63 kg, were used in this study.
Animals were monitored daily by observingvaginal physiological changes and rams test condi-
tions[18]. Rams test conditions were performed twice at 08:00 and 16:00 hours. The cunnus of
pubertal goats was inflamed,with histological observationof somemature follicles in the ovaries.
Three prepubertal goats (aged 2.5 months, weighing 9.60 ± 2.36 kg) were sacrificedafter anesthesia
with 0.1 ml xylazine hydrochloride injection (Muhua China, Lot number 150804). Hypothalami
were collected and stored at −80°C until use. DNA was extracted using an AxyPrep™ Multisource
GenomicDNA Miniprep Kit (Corning,APMNMSGDNA-50) and purity checked using a Nano-
Photometer1 spectrophotometer (Implen, West Lake Village, CA, USA) and agarose gel electro-
phoresis. The genomic DNA was fragmented by sonication and bisulfitemodificationused the EZ
DNAMethylation-Gold™ Kit (Zymo Research, D5005 & D5006). RNA was extracted using an E.Z.
N.A.1Total RNA Kit II (Omega Bio-tek, R6934-01) and purity was checked using the NanoPhot-
ometer1 spectrophotometer. RNA concentration was measuredwith a Qubit1 RNA Assay Kit
in a Qubit1 2.0 Fluorometer (Life Technologies, San Francisco, CA, USA).

Whole-genome bisulfite sequencing library preparation, quantification

and sequencing

Genomic DNA (5.2 μg), spiked with 26 ng λDNA, was fragmented by sonication to 200–300
bp with a S220 focused-ultrasonicator (Covaris,Woburn, MA, USA), which was followed by
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adenylation and end-repair. Cytosine-methylated barcodes were ligated to sonicated DNA and
these DNA fragments were treated with an EZ DNA Methylation-Gold™ Kit (Zymo Research,
D5005 & D5006) to achieve single-strandedDNA fragments, which were then amplified by
PCR using KAPA HiFi HotStart Uracil+ ReadyMix (Kapa Biosystems,Wilmington, MA, USA)
according to the manufacturer’s instructions. Library concentration was quantified by quanti-
tative PCR (Life Technologies, San Francisco, CA, USA), and insert size was inspected using an
Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA). DNA methyla-
tion analysis was performed using a HiSeq 2500 platform (Illumina, San Diego, CA, USA)
according to the manufacturer’s instructions.

DNA methylation data analysis

The bisulfite conversion rate as determined by the analysis of λ DNA was�99.55% and the
rate of reads mapping to the reference genome was�77%. To identify methylation sites, we
performed a sliding-window approach that is conceptually similar to approaches used for bulk
bisulfite sequencing (http://www.bioconductor.org/packages/2.13/bioc/html/bsseq.html), with
a step size of 600 bp and window size w = 3,000 bp[19]; the sum of unmethylated and methyl-
ated reads counts were calculated in each window. The swDMR software (http://122.228.158.
106/swDMR/) that uses a sliding-window approach was used to identify differentially methyl-
ated regions. The Fisher test was implemented for detecting the DMRs.

RNA-Seq library preparation, quantification and sequencing

Total RNA (3 μg per sample) was used for sample preparation. Ribosomal RNA was removed
with a Ribo-zero™ rRNA Removal Kit (Epicentre, Madison,WI, USA), and the rRNA free resi-
due was cleaned up by ethanol precipitation. Secondly, using the rRNA-depleted RNA,
sequencing libraries were generated by using a NEBNext1 Ultra™ Directional RNA Library
Prep Kit for Illumina1 (New England Biolabs, Ipswich, MA, USA) according to the manufac-
turer’s recommendations. In order to choose 150−200 bp cDNA fragments preferentially, the
AMPure XP system (BeckmanCoulter, Beverly, CA, USA) was used to purify the library frag-
ments. cDNA adaptor-ligation was performed using 3 μl USER enzyme (New England Biolabs)
at 37°C for 15 min followed by 95°C for 5 min before PCR. PCR was then performedwith uni-
versal PCR primers, Phusion high-fidelityDNA polymerase, and Index Primer. Finally, the
purity of products was checked with an AMPure XP system (BeckmanCoulter, Brea, CA,
USA) and library quality evaluated using the Agilent Bioanalyzer 2100 system (Agilent Tech-
nologies). A HiSeq 2000 platform (Illumina) was used to sequence and generate 100-bp paired-
end reads.

RNA-Seq data analysis

Cuffdiff (v2.1.1) was used to calculate fragments per kilobase of exon per million reads
(FPKMs) of genes in each sample[20]. In each gene group, gene FPKMs were computed by
summing the FPKMs of transcripts. For biological replicates, transcripts or genes with a P-
adjust<0.05 were assigned as differentially expressed.

GO and KEGG enrichment analysis

Gene ontology (GO) enrichment analyses of genes related to DMRs was implemented by the
GOseq R package[21]. A P-value<0.05 was considered statistically significant. In Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways, KOBAS software[22] was used to test the
statistical enrichment of DMR-related differential gene expression.
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Data availability statement

The authors state that all data necessary for confirming the conclusions presented in the article
are represented fully within the article. Sequence data has been submitted to the Sequence
Read Archive (SRA) and the accession number is SRP077789.

Results

Methylation profiles during puberty

Global DNA methylation analysis of the hypothalamus was performedwith 30× genome cov-
erage and>99% conversion efficiencyby WGBS. Between prepubertal and pubertal stages of
development,>18,000,000 methylcytosines (mCs) were detected, and the average percentage
of mCmethylation estimated in the whole genome was 1.91% in prepuberty and 1.87% in
puberty (S1 Table). In line with previous reports[23], the percentage of methylated CpG dinu-
cleotides (mCG) exceeded 98% and there was only 2% non-CpGmethylation (mCHG) from
prepuberty to puberty (S1 Fig). There was 0.5–0.9 kb/bin prepubertal and pubertalmethyla-
tion, with hypermethylated cytosines (S2 Fig). Analyses of methylation profiles of each chro-
mosome demonstrated more mCG (0.6–0.8 kb/bin), compared with<0.01 kb/bin mCHG and
mCHH (H = adenine, thymine, or cytosine; S2 Fig).

DNA methylation in CpG islands

As indicated by previous studies, DNA methylation predominantly occurs in CGI sites, which
is consistent in the current study. We investigated the distribution of CGI in different gene ele-
ments, and found the most enriched elements were gene bodies, exons, introns and intergenic
regions (Fig 1A), with hypermethylated CGI sites in both prepubertal and pubertal stages of

Fig 1. Analysis of CpG islands. In CGI analysis, every CGI was divided into 20 bin for evaluating the methylation level. (A) Distribution of CGI sites in

different gene elements. (B) Different methylation levels of cytosine (percentage) between prepubertal and pubertal stages. Prepub = prepuberty;

Pub = puberty; CGI = CpG island.

doi:10.1371/journal.pone.0165327.g001
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development (S1 and S2 Files). From the prepubertal stage to puberty, the methylation level in
CGI sites decreased in CG sites, coincidingwith the globalmethylation pattern in the hypothal-
amus (Fig 1B, S3 File). Interestingly, the hypermethylated C sites were located at the edge of
CGI sites. Compared with mCG,mCHG and mCHH showed fluctuating profiles, and both of
them increased at 20 bin of CGI.

Methylation patterns in different gene contents

DNA methylation has various functions, and methylation can occur in different locations.We
evaluated the methylation level affecting different functions of genes. In promoters (the region
from 2 kb upstream of the transcription start site), introns and 30-UTRs, the level of methyla-
tion was higher than that in 50-UTRs and exons during puberty (Fig 2A and 2B). Levels of
methylation decreased gradually from promoter to 50-UTR in the genome, promoting gene
expression. In the 50-UTRs, exons and introns, the methylation level of C sites showed rela-
tively stable patterns. There was stable DNA methylation in CG sites in the 30-UTRs, but an
increase from 30-UTRs to introns in the genome with an increased trend in mCHG and
mCHH.Methylation density analysis identified analogous trends to the methylation level
changes from prepuberty to puberty in the gene contents (Fig 2C and 2D), indicating a close
relationship between level of methylation and methylation density. Interestingly, methylation
of exons was low compared with introns in the gene content (Fig 2C and 2D), which was con-
sistent with a previous report[24]. The function of DNA methylation is usually to repress gene
expression. In the gene region, the activity of transcription of exons is higher than that of
introns during gene transcription. This could be the reason why the methylation level of
introns is higher than that of exons.

Different methylation regions between prepuberty and puberty

Specificmethylation patterns were analyzed across the whole genome during the prepubertal
and pubertal stages, and 268 differentiallymethylated regions (DMRs) were identified.DMR
length was approximately 0–1000 bp (Fig 3A, S4 File), and the methylation level in the hypo-
thalamus was lower in puberty than that in prepuberty. Nine of these DMRs were methylated
in puberty but unmethylated in prepuberty, while nine other DMRs were identified in which
methylation disappeared from prepuberty to puberty. Upon analysis of these specificDMRs,
two genes (NLRC5, PLCXD3) were found to be hypermethylated and five genes (PPM1D,
CD226, SMOC1,GRID1 and LOC10219031) became hypomethylated during the onset of
puberty (S5 File). Interestingly, the regions displaying different methylation levels were the
introns rather than the promoters (Fig 3B). To characterize genes that were detected in the
DMRs, GO and KEGG pathway analyses were performed. GO analyses revealed that the differ-
entially methylated genes were most enriched in localization, protein binding, binding, hetero-
cyclic compound binding and organic cyclic compound binding (Fig 3C). KEGG pathway
analyses identified genes involved in the oxytocin signaling pathway, estrogen signaling path-
way, GnRH signaling pathway and gamma-aminobutyric acid (GABA)ergic synapse pathway,
which is closely related to the timing of puberty, including RYR1, ABAT, MAP3K4 and
FKBP52.

Relationship between DNA methylation and gene expression

To investigate the relationship betweenDNA methylation changes and gene expression,
RNA-Seq analysis was performed to study the changes in gene expression during puberty. A
total of 1048 differentially expressed genes were detected, with 21.95% downregulation (all oth-
ers were upregulated, S6 File). Through GO and KEGG pathway analyses, these genes were
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found to be enriched in pathways such as the protein binding pathway, extracellularmatrix
pathway and receptor binding pathway (Fig 4A and 4B). Three of these genes were only
expressed in puberty and have been implicated in pubertal onset (GNG13,GH1 and
LOC102171600) althoughmethylation patterns of these genes did not change from prepuberty
to puberty. Five genes (DHRS3,NLRC5,CIB4,DOCK6 and SCO-spondin) that showed various
methylation patterns during puberty, had altered expression levels (Fig 4C). Interestingly,
DHRS3,NLRC5,CIB4 and SCO-spondin showed a positive correlation betweenDNA methyla-
tion and gene expression, and DOCK6 showed a negative correlation (Fig 4D and 4E).

Fig 2. Methylation level and density in different gene elements during prepubertal and pubertal stages. Prepub = prepuberty; Pub = puberty.

doi:10.1371/journal.pone.0165327.g002
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Discussion

In the present study, the genome-wideDNA methylation of the goat hypothalamus during the
prepubertal and pubertal stages of development was analyzed for the first time. Through
WGBS, 268 DMR and 117 differentially methylated genes were found in the hypothalamus
genome, and we identified different DNA methylation patterns from prepuberty to puberty.
Two genes,GnRH and KISS1, which play important roles in the onset of puberty[9–11],
showed no changes in methylation patterns in the present study. A differential methylation
profile of the KISS1 promoter has previously been demonstrated[25], and previous studies

Fig 3. Different methylation regions in prepubertal and pubertal stages. (A) The relationship between DMR length and count. (B) Distribution of

methylated genes in DMRs. (C) The pathways enriched in differentially methylated genes in DMRs, as determined by GO analysis. Prepub = prepuberty;

Pub = puberty; DMR = differentially methylated region; GO = gene ontology.

doi:10.1371/journal.pone.0165327.g003
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Fig 4. Gene expression analysis in prepubertal and pubertal stages. (A) The enriched pathways on the basis of different gene expression,

as determined by GO analysis. (B) The enriched pathway on the basis of different gene expression, as determined by KEGG analysis. Rich

factor refers to the ratio between the number of genes enriched in a pathway and annotated in DMR. Rich factor and enrichment are positively

correlated. Q-value is the P-value that was corrected after multiple hypothesis testing. Q-value and enrichment are negatively correlated. (C)

Five genes were detected, and their expression and methylation patterns were both altered during puberty onset. (D) Methylation level changes

in DHRS3, NLRC5, CIB4, DOCK6 and SCO-spondin during prepubertal and pubertal stages. (E) The ratio of mRNA between prepubertal and

pubertal stages. A positive ratio represents upregulation and a negative ratio represents downregulation. Prepub = prepuberty; Pub = puberty;

BP = biological process; CC = cellular component; MR = molecular function; GO = gene ontology; KEGG = Kyoto Encyclopedia of Genes and

Genomes; DMR = differentially methylated regions.

doi:10.1371/journal.pone.0165327.g004
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have indicated that the methylation of CpG sites in the promoter of the gene body of the GnRH
gene showed decreased patterns across puberty[26, 27]. The reason for the differences in meth-
ylation variation of KISS1 and GnRH compared with the results in the present study may be
that our study analyzed the global DNA methylation patterns of genes, rather than promoter
or gene body DNA methylation patterns. In addition, our study found that the methylated
region of genes was mostly intronic instead of in the promoter, which has been the focus of sev-
eral previous reports, perhaps because of the effect of enrichment of CpG on transcription[25,
28, 29]. However, the function of methylated introns is not well understood.
Several genes were methylated (NLRC5, PLCXD3) and some genes were demethylated

(PPM1D, CD226, SMOC1,GRID1, LOC102190311), from prepuberty to puberty. These genes
may play important roles in the pathways that may be associated with the onset of puberty,
although further studies are necessary to elucidate the functional roles of these genes during
puberty. In vertebrates, CGI sites are usually unmethylated or display low levels of methylation
[30]. Methylated CpG sites in promoter regions could repress the combination of transcription
factors and promoters to inhibit the expression of genes. CpG sites can regulate the effect of
transcription via changing methylation states[31–33]. In the current study, analyses of CGI
sites demonstrated that the gene regions whosemethylation level changed from prepuberty to
puberty were gene bodies, intergenic regions, introns and exons, rather than promoter regions,
which is not consistent with previous reports[34]. These CGI sites that were not located in the
promoter may exert an important effect on regulating gene expression[35]. For example, a
study by Sleutels et al. found that Air, a noncoding RNA initiated at a CGI site within intron 2
of the Igf2r gene, is crucial for silencing of the paternal allele[36]. Similarly, another study
reported that intron 10 of the Kcnq1 gene was the origin of a noncoding transcript, which is
necessary for imprinting of several genes in this domain[37, 38]. The majority of CGI sites
were hypermethylated in the present study, indicating the low methylation level of CGI sites in
prepuberty and puberty. Previous studies have shown that DNA methylation positively[39, 40]
or negatively correlated[41] with gene expression. RNA-Seq revealed that different genes dis-
play differential expression patterns from prepuberty to puberty in our study, likely influenced
by DNA methylation changes. Most of these genes showed different methylated regions in the
gene body instead of the promoter, and genes with hypermethylation often showed higher
expression. This coincidedwith previous studies which showed that methylation in gene bodies
may have a positive effect on gene expression[40]. However, further studies are required to
confirmwhether differential gene expression is indeed caused by DNA methylation changes.
To our knowledge, our study presents the first genome-wide analysis of DNA methylation

profiles of the goat hypothalamus during puberty, and the relationship between epigenetic
changes and resultant gene expression has also been determined. These data will be informative
in providing a basis for better understanding of the epigenetic regulation of pubertal onset.
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