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Aim. We aim to develop a signature that could accurately predict prognosis and evaluate the response to immune checkpoint
blockade (ICB) in bladder urothelial carcinoma (BLCA). Methods. Based on comprehensive analysis of public database, we
identified prognosis-related hub genes and investigated their predictive values for the ICB response in BLCA. Results. Among
69 common DEGs, three genes (AURKA, BIRC5, and CKS1B) were associated with poor prognosis, and which were related to
histological subtypes, TP53 mutation status, and the C2 (IFN-gamma dominant) subtype. Three genes and their related risk
model can effectively predict the response of immunotherapy. Their related drugs were identified through analysis of drug
bank database. Conclusions. Three genes could predict prognosis and evaluate the response to ICB in BLCA.

1. Background

Bladder cancer is the ninth most common malignant tumor
worldwide, and bladder urothelial carcinoma (BLCA) is its
most frequent pathological type [1]. Despite the development
of diagnostic and treatment techniques, the 5-year survival
rate of patients with BLCA varies from 5% to 70%, and their
prognosis remains unfavorable [2]. Detection of biomarkers
can indicate a particular disease state and can be used in
screening for differential prognosis, evaluation of treatment
response, and monitoring of disease progression [3]. As dem-
onstrated in different studies, the availability of several cancer
databases and a comprehensive bioinformatics analysis has
allowed for the accurate identification of key biomarkers for
early diagnosis of malignancies or prediction of prognosis
and cancer recurrence [4–7]. Therefore, it is reliable to develop
useful biomarkers for predicting BLCA prognosis based on
systematic bioinformatics analysis.

BLCA is the 10th most common malignant tumor world-
wide, which is divided into nonmuscle-invasive BLCA
(NMIBC) andmuscle-invasive (MIBC). MIBC has an unfavor-
able prognosis with a 5-year overall survival (OS) of approxi-
mately 50% [8, 9]. In recent years, cancer immunotherapies
by immune checkpoint blockade (ICB) have attracted consid-
erable attention for its influence on the treatment of locally
advanced and metastatic BLCA [10]. Recent studies reported
that immune checkpoint blockade (ICB) has promising
improved survival rates in individuals with advanced BLCA
with a high tumor mutation burden (TMB) and neoantigens.
Patients with tumors that overexpression of programmed cell
death 1 receptor (PD-1) or its ligand (PD-L1) appear to benefit
most from this therapy [9, 11]. However, only a proportion of
patients respond to treatment with ICB, the results of
immunotherapy are still not satisfactory [12, 13]. Therefore,
immunotherapy needs to continue to improve in terms of
improvement in their effectiveness in the treatment of BLCA.
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Previous studies have reported that highly infiltrating
lymphocytes are related to the prognosis of BLCA [14].
The evidence indicates that CD8+ T cells are involved in
tumor adaptive immunity, and their infiltration is associated
with prognosis [15, 16]. Programmed death ligand 1 (PD-
L1), also known as B7-H1 or CD274, is involved in inhibit-
ing T cell-mediated antitumor immunity through interac-
tion with PD-1 [17, 18]. Previous studies have reported
that high expression of PD-L1 is associated with worse can-
cer outcomes in various malignancies [19]. CD8+ T cell
infiltration and tumor mutation burden (TMB) have been
reported to be correlated with response to atezolizumab
(anti-PD-L1) in metastatic urothelial cancer (mUC)
[20–22]. However, none of these factors is sufficient to
achieve accurate outcome prediction, and identification of
ICB response biomarkers is a critical challenge in the field
[23]. In general, there is an urgent need to identify key bio-
markers that can be used to effectively evaluate the response
to immunotherapy in BLCA patients.

In this study, we first identified DEGs from the GEPIA
(Gene Expression Profiling Interactive Analysis) and Onco-
mine databases and then identified the overlapping DEGs
between them using a Venn diagram. We further performed
gene enrichment and protein–protein interaction (PPI)
analyses to select hub genes. Moreover, prognosis-related
hub genes were identified using comprehensive bioinformat-
ics analysis and confirmed in three online databases. We
then explored the expression of the key prognosis-related
genes with different clinical factors using the UALCAN
and TISIDB database. Finally, we evaluated whether the risk
model based on three key genes could be used to predict
immunotherapy response in BLCA.

2. Methods

2.1. Identification of DEGs. GEPIA (http://gepia.cancer-pku
.cn/) is an online network tool based on data from The Can-
cer Genome Atlas (TCGA) and GTEx, which can be used to
study interactions between DEGs, as well as for survival
analysis, profile plotting, and detection of similar genes.
Oncomine is an online resource containing microarray data
(https://www.Oncomine.org) [24]. In this study, we first
used the GEPIA and Oncomine databases to identify DEGs
by comparison of tumor samples with normal samples.
RNA-Seq data from the TCGA-based (The Cancer Genome
Atlas) GEPIA database was performed to identify differen-
tially expressed genes (DEGs) between 404 tumor and 19
normal tissues. ANOVA method was used to obtain the dif-
ferently expressed genes (DEGs), mRNAs with q < 0:01 and
jlog 2 fold change ðFCÞj ≥ 2 were selected as DEGs. In the
Oncomine database, 288 samples from TCGA gene expres-
sion dataset were used to screen DEGs between tumor and
normal groups. The selection criteria for DEGs are P < 0:01
, jlog 2FCj ≥ 2, and gene rank ≤ 10%. Then, we identified
the overlapping DEGs between them using a Venn diagram
(http://bioinformatics.psb.ugent.be/webtools/Venn/) [25].

2.2. Functional Analysis and Pathway Enrichment Analysis.
Metascape (http://metascape.org/) is an online resource for

gene annotation and analysis [26]. In the present study,
Metascape was used to perform gene ontology (GO) and
pathway analyses of 69 common hub genes. Pathway and
process enrichment analyses were conducted based on sev-
eral sources, including GO biological processes, The Kyoto
Encyclopedia of Genes and Genomes pathways, reactome
gene sets, and CORUM. Terms with a P value less than
0.01, a minimum count of 3, and an enrichment factor
greater than 1.5 were considered to represent significant pro-
cesses or pathways.

2.3. Construction of PPI Network and Identification of Hub
Genes. We evaluated PPI information of common genes
using the STRING online database (https://string-db.org/
cgi/input.pl) and then visualized the resulting interaction
network using Cytoscape software (http://www.cytoscape
.org/) [27, 28]. A confidence score greater than 0.4 was
defined as significant. The Molecular Complex Detection
(MCODE) plugin in Cytoscape was used to further screen
key genes in the PPI network with degree cutoff = 5,
K‐score = 2, and node score cutoff = 0:2.

2.4. Development of Prognosis-Related Model. We down-
loaded gene expression profile and clinical data from TCGA
(https://portal.gdc.cancer.gov/). To reduce statistical bias,
BLCA patients were excluded if clinical information or over-
all survival (OS) was missing from their records. The prog-
nostic value of 11 identified hub DEGs that were analyzed
using the R survival package [29]. The DEGs with significant
prognostic value were selected for further analysis. Based on
these prognosis-related DEGs, least absolute shrinkage and
selection operator (LASSO) Cox regression analysis was
applied to establish prognostic model. Patients were then
divided into high- and low-risk groups according to median
risk score. Receiver operating characteristic (ROC) curve
was used to assess the predictive accuracy of each gene and
risk score. Univariate and multivariate Cox regression
analysis was performed for independent analysis with other
clinical characteristics. Nomogram was then used to assess
1-year, 3-year, and 5-year overall survival.

2.5. Validation of Prognostic Value of Three Key DEGs.
PROGgenesV2 (http://genomics.jefferson.edu/proggene/
filter.php) is a web resource that allows researchers to study
the correlations between genes and overall survival (OS) in
multiple cancers based on TCGA and GEO data [30]. Prog-
noScan (http://www.prognoscan.org/) was used to evaluate
the associations between gene expression and patient progno-
sis, according to measures including OS and disease-free sur-
vival (DFS), across a large collection of publicly available
cancer microarray datasets [31]. The OSblca database
(http://bioinfo.henu.edu.cn/BLCA/BLCAList.jsp) provides a
useful tool to assess novel prognostic biomarkers in bladder
cancer, based on data from 1,075 bladder cancer patients,
including OS, disease-specific survival (DSS), disease-free
interval, and progression-free interval [32]. In this study, we
further confirmed the prognostic value of key genes based
on the abovementioned three databases. The hub genes iden-
tified in this way were defined as key prognosis-related genes.
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Figure 1: Identification of 11 hub genes. (a) Identification of common genes between GEPIA and Oncomine by Venn diagram. (b) Enriched
terms of common genes identified by Metascape. Network of enriched terms colored by cluster ID. (c) PPI network of DEGs constructed
with STRING software: nodes represent proteins; continuous lines represent direct interactions (physical), while indirect ones
(functional) are represented by interrupted lines; and line thickness indicates the strength of data support. (d) Identification of hub genes
using MCODE. Upregulated genes are represented by red nodes, while downregulated genes are denoted by green nodes. Node size is
positively correlated with P value. The line color is determined by the combined score provided by STRING.
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Figure 2: Continued.

4 International Journal of Genomics



0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Survival curve (p=0.17432)

Time (Day)

Su
rv

iv
al

 ra
te

CENPA high expression
CENPA low expression

(c)

0 2 4 6 8

Survival curve (p = 0.0217)

Time (Day)

Su
rv

iv
al

 ra
te

CKS1B high expression

CKS1B low expression

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure 2: Continued.
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Figure 2: Continued.
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Figure 2: Continued.
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2.6. Association between Prognosis-Related Key Genes and
Clinical Characteristics. The UALCAN database (http://
ualcan.path.uab.edu/) is a comprehensive web resource for
analyzing cancer OMICS data (TCGA and MET500) [33,
34]. TISIDB (http://cis.hku.hk/TISIDB) is a publicly avail-
able resource that allows the user to explore the function
of a gene and its role in tumor-immune features. TISIDB
consists of 10 modules: function, literature, screening, immu-
notherapy, lymphocyte, immunomodulator, chemokine,
subtype, clinical, and drug [35]. A previous study reported
that the expression and prognostic values of DEGs were asso-
ciated with clinical characteristics, including TNM stage,
smoking history, lymph invasion, histological type, and
immune subtype [5, 36]. Therefore, we explored the relation-
ship between three key prognosis-related genes and clinical
characteristics using UALCAN and TISIDB database.

2.7. Immune Cell Infiltration Analysis. TIMER is a user-
friendly web portal for the systematic analysis of immune
infiltrates across different types of cancer (https://cistrome.
shinyapps.io/timer/) [37]. In this study, we used TIMER
and TISIDB to analyze the associations between the three
key genes and immune cell infiltration. P < 0:05 was consid-
ered as statistically significant.

2.8. Evaluation of the Value of Prognostic-Related Genes in
Response to Immune Checkpoint Blockade. Previous studies

have suggested that TMB and PD-L1 expressions are corre-
lated with response to atezolizumab in mUC [20]. In this
study, the correlation between prognostic-related gene
expression and TMB score was calculated using Spearman’s
correlation [24, 38, 39]. The immunomodulator module of
TISIDB was used to examine the associations between
PDL1 and selected genes. Moreover, we used the screening
module of TISIDB to explore whether the expression of
prognosis-related genes showed significant differences
between responders and nonresponders to immunotherapy.
Tumor Immune Dysfunction and Exclusion (TIDE, http://
tide.dfci.harvard.edu) algorithm was then performed to esti-
mate custom biomarker predictive power of response out-
come and overall survival [23, 40].

2.9. Exploration of the Model in the Tumor Immune
Microenvironment and Immunotherapeutic Treatment.
RNA sequence transcription data, mutation data, and rele-
vant clinical information of BLCA patients were obtained
from the TCGA (https://cancergenome.nih.gov/) database
[41]. Immune function was analyzed based on three prog-
nostic gene models using R package limma, GSVA, GSEA-
Base, pheatmap, and reshape2 [42]. We used the TIDE
algorithm to predict immunotherapy response [43].

2.10. Correlation between Prognostic-Related Genes and
Their Target Drug. Gene Set Cancer Analysis (GSCALite,
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Figure 2: Overexpression of three genes is correlated with poor prognosis. (a)–(k) Associations between the expression of 11 hub genes and
OS, evaluated using the R survival package. (a) AURKA, (b) BIRC5, (c) CENPA, (d) CKS1B, (e) ECT2, (f) MYBL2, (g) NUF2, (h) RRM2, (i)
TK1, (j) TPX2, and (k) UBE2C. Only three key genes were associated with prognosis in BLCA.
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Figure 3: Continued.
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http://bioinfo.life.hust.edu.cn/web/GSCALite/) is a web
server for the analysis a set of genes in cancers with different
function modules [44]. In this study, we analyzed the drugs
in the Drug Bank database targeting these three genes using
the drug module of TISIDB. We further applied GSCALite
to analyze the drug sensitivity of key ceRNA signatures.

3. Results

3.1. Identification of Hub Genes. A total of 750 DEGs were
identified from the GEPIA database, and 1,881 DEGs were
identified from Oncomine. Sixty-nine common genes were
screened out using the Venn diagram (Supplementary 1,
Supplementary 2, Figure 1(a)). We then performed GO
and pathway enrichment analyses for the common genes
using Metascape. The results showed that these common
genes were involved in 20 main GO terms and pathways,
of which the top five were mitotic cell cycle, cGMP-PKG sig-
naling pathway, extracellular matrix organization, muscle
contraction, and response to hydrogen peroxide
(Figure 1(b)). Finally, a PPI network of DEGs was con-
structed using the STRING and Cytoscape software, con-
taining 69 nodes and 83 edges (Figure 1(c)). One
significant module was identified using MCODE. This mod-
ule contained 11 genes, Aurora-A kinase (AURKA), BIRC5,
CENPA, CKS1B, ECT2, MYBL2, NUF2, RRM2, TK1, TPX2,
and UBE2C, which were defined as hub genes (Figure 1(d)).

3.2. Construction of Prognostic Gene Model. The association
between the expression of 11 hub genes and overall survival
was evaluated using the R survival package. High expression
of three genes (AURKA, BIRC5, and CKS1B) was related to

an unfavorable prognosis (Figures 2(a)–2(k)). LASSO analy-
sis was applied to establish a prognostic gene model based
on these three prognostic DEGs (Figures 3(a) and 3(b)).
The risk score = ð0:214Þ ∗AURKA + ð−0:1054Þ ∗ CKS1B.
The BLCA patients were divided into high- and low-risk
score group based on risk score. Figure 3(c) displayed the
risk score distribution, survival status, and the expression
of these genes. BLCA patients with high-risk score had an
unfavorable prognosis than those with low-risk score
(Figure 3(d)). ROC curve analysis indicated that the AUCs
of the 1-, 3-, and 5-year prognosis models were 0.593,
0.556, and 0.54, respectively (Figure 3(e)).

3.3. Construction of Predictive Nomogram. According to the
clinicopathologic features and three prognostic genes, we
constructed a predictive nomogram to predict the survival
probability (Figures 4(a) and 4(b)). The C-index of the
nomogram was 0.624 (95% CI, 0.582-1). Calibration curves
also showed a favorable predictive power of the nomogram
(Figures 4(c) and 4(d)). Furthermore, we validated the prog-
nostic value of the three genes in BLCA using the PROGgen-
esV2, PrognoScan, and OSblca databases. Our results
showed that BLCA patients with higher expression levels
of the three hub genes exhibited poorer OS, DFS, and DSS,
indicating that the three hub genes may be associated with
unfavorable prognosis (Table 1). In summary, our data sug-
gested that the three key genes could serve as biomarkers of
poor prognosis.

3.4. Association between Three Key Genes and Clinical
Parameters in BLCA. A previous study reported that the
OS of BLCA patients was significantly associated with
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Figure 3: Construction of a prognostic model based on three key gene. (a) LASSO coefficient profiles of the three key genes. (b) Plots of the
ten-fold cross-validation error rates. (c) Distribution of risk score, survival status, and the expression of three prognostic genes in BLCA.
(d) Overall survival curves for BLCA patients in the high-/low-risk group. (e) ROC analysis was performed to measure the predictive value.
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Figure 4: Nomogram for prediction of the outcome of BLCA patients. (a, b) Univariate and multivariate Cox regression analyses were
applied to assess the independent predictive value of the three-gene signature. (c) Nomogram for prediction the 1-year, 3-year, and
5-year overall survival rate of BLCA patients. (d) The calibration plots of the nomogram. BLCA: bladder urothelial carcinoma.

Table 1: Confirmation of the associations of three hub genes with prognosis in three different databases. PROGgeneV2, PrognoScan, and
OSblca databases were used to confirm the prognostic value of three hub genes in BLCA. HR: hazard ratio.

Database Dataset Gene Endpoint P value HR [95% CI low-CI up]

PROGgenesV2

GSE13507 AURKA OS 0.00135 1.39 [1.14-1.7]

GSE13507 BIRC5 OS 0.01299 1.94 [1.15-3.26]

GSE13507 CKS1B OS 0.03256 1.24 [1.02-1.5]

GSE19915 BIRC5 OS 0.00009 2.62 [1.62-4.24]

PrognoScan

GSE13507_ILMN_1680955 AURKA OS 0.00128 1.39 [1.14-1.70]

GSE13507_ILMN_1680955 AURKA DFS 0.00011 1.91 [1.40-2.62]

GSE5287_210334_x_at BIRC5 OS 0.00560 7.68 [2.55-23.14]

GSE5287_202095_s_at BIRC5 OS 0.00183 2.43 [1.35-4.38]

GSE13507_ILMN_1710082 BIRC5 OS 0.00179 1.94 [1.15-3.26]

GSE13507_ILMN_1710082 BIRC5 DFS 0.00077 3.22 [1.65-6.31]

GSE13507_ILMN_1719256 CKS1B DFS 0.04721 1.56 [1.17-2.08]

OSblca

GSE13507_ILMN_1710082 BIRC5 OS 0.01880 1.837 [1.1059-3.0515]

GSE13507_ILMN_1680955 AURKA OS 0.00400 2.1412 [1.2742-3.5983]

GSE19915 BIRC5 DSS 0.00030 4.4378 [1.9813-9.9398]

GSE32548_ILMN_2349459 BIRC5 OS 0.04900 2.2344 [1.0036-4.9749]

GSE48507_ILMN_2349459 BIRC5 OS 0.00400 2.5862 [1.3551-4.936]

GSE48075_ILMN_1803124 BIRC5 OS 0.00900 2.3966 [1.2444-4.6154]

GSE32548_ILMN_1719256 CKS1B OS 0.03500 2.3667 [1.026-5.2711]

GSE32548_ILMN_2041046 CKS1B OS 0.00790 2.9205 [1.3245-6.4394]
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Table 2: Relationships of three prognostic genes with clinical characteristics. Clinical characteristics included age, histological subtype
(papillary or nonpapillary tumor), molecular subtype (luminal papillary, luminal infiltrated, luminal, basal squamous, and neuronal),
nodal metastasis status (N0: no regional lymph node metastasis; N1: metastases in 1–3 axillary lymph nodes; N2: metastases in 4–9
axillary lymph nodes; N3: metastases in 10 or more axillary lymph nodes), sample type, smoking, cancer stage, and TP53 mutation status.

Gene symbol Clinical characteristic Comparison P value

AURKA Age

Normal-vs-age (41-60 Y) 4.00E-15

Normal-vs-age (61-80 Y) <1E-12
Normal-vs-age (81-100Y) 7.10E-10

BIRC5 Age

Normal-vs-age (41-60 Y) 1.82E-10

Normal-vs-age (61-80 Y) 3.99991E-12

Normal-vs-age (81-100Y) 2.40E-09

CKS1B Age

Normal-vs-age (41-60 Y) 8.88E-16

Normal-vs-age (61-80 Y) 1.62E-12

Normal-vs-age (81-100Y) 2.617E-07

AURKA Histological subtypes

Normal-vs-papillary tumors 6.55E-15

Normal-vs-nonpapillary tumors <1E-12
Papillary tumors-vs-nonpapillary tumors 3.00E-03

BIRC5 Histological subtypes

Normal-vs-papillary tumors 6.40E-07

Normal-vs-nonpapillary tumors 8.40E-10

Papillary tumors-vs-nonpapillary tumors 1.10E-03

CKS1B Histological subtypes

Normal-vs-papillary tumors 1.77E-04

Normal-vs-nonpapillary tumors 3.27E-08

Papillary tumors-vs-nonpapillary tumors 2.38E-04

AURKA Molecular subtypes

Normal-vs-neuronal 1.54E-06

Normal-vs-basal squamous <1E-12
Normal-vs-luminal 2.26E-10

Normal-vs-luminal_infiltrated 1.49E-11

Normal-vs-luminal_papillary 1.67E-12

Neuronal-vs-luminal 1.05E-02

Neuronal-vs-luminal_infiltrated 2.48E-03

Neuronal-vs-luminal_papillary 6.00E-03

Basal squamous-vs-luminal 1.66E-05

Basal squamous-vs-luminal_infiltrated 8.65E-12

Basal squamous-vs-luminal_papillary 1.11E-09

BIRC5 Molecular subtypes

Normal-vs-neuronal 3.20E-07

Normal-vs-basal squamous 1.65E-12

Normal-vs-luminal 2.93E-07

Normal-vs-luminal_infiltrated 4.66E-07

Normal-vs-luminal_papillary 1.15E-08

Neuronal-vs-basal squamous 3.40E-03

Neuronal-vs-luminal 9.81E-05

Neuronal-vs-luminal_infiltrated 4.18E-05

Neuronal-vs-luminal_papillary 9.99E-05

Basal squamous-vs-luminal 3.10E-06

Basal squamous-vs-luminal_infiltrated 1.03E-11

Basal squamous-vs-luminal_papillary 1.36E-08

CKS1B Molecular subtypes

Normal-vs-neuronal 9.74E-07

Normal-vs-basal squamous 1.62E-12

Normal-vs-luminal 2.40E-08
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Table 2: Continued.

Gene symbol Clinical characteristic Comparison P value

Normal-vs-luminal_infiltrated 5.97E-11

Normal-vs-luminal_papillary 4.44E-15

Neuronal-vs-basal squamous 4.57E-02

Neuronal-vs-luminal 1.74E-03

Neuronal-vs-luminal_infiltrated 1.46E-03

Neuronal-vs-luminal_papillary 9.79E-04

Basal squamous-vs-luminal 9.60E-04

Basal squamous-vs-luminal_infiltrated 9.92E-05

Basal squamous-vs-luminal_papillary 2.26E-07

AURKA Nodal metastasis status

Normal-vs-N0 1.62E-12

Normal-vs-N1 1.69E-12

Normal-vs-N2 2.22E-12

Normal-vs-N3 1.25E-10

BIRC5 Nodal metastasis status

Normal-vs-N0 1.34E-11

Normal-vs-N1 1.69E-10

Normal-vs-N2 8.57E-09

Normal-vs-N3 7.04E-03

N1-vs-N2 2.50E-02

CKS1B Nodal metastasis status

Normal-vs-N0 1.62E-12

Normal-vs-N1 1.04E-09

Normal-vs-N2 1.63E-12

Normal-vs-N3 8.60E-04

N0-vs-N1 4.35E-02

N1-vs-N2 1.70E-02

N2-vs-N3 2.42E-02

AURKA

Sample types

Normal-vs-primary 1.62E-12

BIRC5 Normal-vs-primary 5.35E-11

CKS1B Normal-vs-primary 1.62E-12

AURKA Smoking habit

Normal-vs-nonsmoker 1.24E-14

Normal-vs-smoker 1.63E-12

Normal-vs-reformed smoker1 <1E-12
Normal-vs-reformed smoker2 1.33E-15

Nonsmoker-vs-reformed smoker1 8.60E-03

Nonsmoker-vs-reformed smoker2 9.46E-03

BIRC5 Smoking habit

Normal-vs-nonsmoker 1.82E-09

Normal-vs-smoker 2.35E-10

Normal-vs-reformed smoker1 3.83E-12

Normal-vs-reformed smoker2 3.34E-12

CKS1B Smoking habit

Normal-vs-nonsmoker 1.63E-12

Normal-vs-smoker 5.55E-16

Normal-vs-reformed smoker1 <1E-12
Normal-vs-reformed smoker2 1.62E-12

AURKA Cancer stage

Normal-vs-stage2 1.62E-12

Normal-vs-stage3 1.62E-12

Normal-vs-stage4 1.62E-12
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clinical characteristics, including TNM stage, smoking his-
tory, lymph invasion, and histological type [32]. The three
hub genes identified here were associated with various clini-
cal characteristics including age, histological subtype, molec-
ular subtype, nodal metastasis status, sample type, smoking,
cancer stage, and TP53 mutation status (Table 2). Most
importantly, overexpression of the three hub genes was pos-
itively correlated with histological subtypes (Figures 5(a)–
5(c)). The expression of the three hub genes was higher in
the basal squamous and neuronal subtypes than in the lumi-
nal subtype (Figures 5(d)–5(f)). BLCA patients with TP53
mutations also showed high expression of the three hub
genes (Figures 5(g)–5(i)). Moreover, we found that the three
prognosis-related genes had the highest expression levels in
the C2 (IFN-gamma dominant) subtype and the lowest in
the C3 (inflammatory) subtype (Figures 5(j)–5(l)). Taken
together, these results suggest that increased expression of
the three key genes might predict poor prognosis in patients
with BLCA.

3.5. CD8+ T Cell Infiltration Predicts Poor Prognosis in
BLCA. The TIMER and TISIDB databases were used to
explore the relationship between the three prognosis-
related genes and tumor-infiltrating immune cells. The three
genes were positively associated with levels of infiltrating
CD8+ T cells, neutrophils, and dendritic cells. Expression
of BIRC5 was negatively correlated with infiltration of B cells
(Table 3, Figures 6(a)–6(f)). High levels of infiltration of
CD8+ T cells were associated with poor prognosis
(Figure 6(g)). These results suggest that these genes may
affect prognosis via regulation of CD8+ T cells.

3.6. Three Key Genes Correlated with ICB Response. Our
results indicated that the expression levels of the three hub
genes were positively correlated with infiltration of PD-L1

(CD274) expression and TMB (Figures 7(a)–7(f)). We also
found that high infiltration of CD8 + T cell, high expression
of CD274, and high TMB were associated with prolonged
overall survival after anti-PD-L1 therapy in BLCA
(Figures 7(g)–7(i)). The association score of ICB survival out-
come showed that three genes were correlated with ICB ben-
efit in different cancer, especially in BLCA (Figures 8(a)–
8(d)). Finally, our results showed that the three hub genes
exhibited a significant difference in expression between
responders and nonresponders to atezolizumab in urothelial
cancer via TISIDB analysis (Table 4). Taken together, these
results suggest that the impact of the three hub genes on
response to immunotherapy in BLCAmay be associated with
TMB and PD-L1 expression. Our identified three key genes
might serve as an indicator to evaluate response to ICB
immunotherapy.

3.7. Evaluation of the Tumor Immune Microenvironment
and Immunotherapy Response Based on Prognostic-Related
Model. To explore the underlying molecular mechanisms
of three gene-related model, we performed immune function
enrichment analysis. The low-risk and high-risk groups dis-
played significant differences in the expression of immune
indicators, including type II IFN response and MHC class I
(Figure 8(e)). We further evaluated whether the risk model
based on three key genes could be used to predict immuno-
therapy response in BLCA. Our result showed that the TIDE
score of the high-risk group is less than that of the low-risk
group, indicating that compared with the low-risk group, the
high-risk group can benefit more from immunotherapy
(Figure 8(f)).

3.8. Drug–Gene Interaction Network. Drugs targeting three
key genes were collected from the Drug Bank database.
AURKA and 18 other targets were correlated with 15 drugs.

Table 2: Continued.

Gene symbol Clinical characteristic Comparison P value

BIRC5 Cancer stage

Normal-vs-stage2 1.53E-10

Normal-vs-stage3 3.81E-13

Normal-vs-stage4 7.86E-12

CKS1B Cancer stage

Normal-vs-stage2 <1E-12
Normal-vs-stage3 <1E-12
Normal-vs-stage4 1.62E-12

AURKA TP53 mutation status

Normal-vs-TP53-mutant 1.62E-12

Normal-vs-TP53-nonmutant 3.63E-13

TP53-mutant-vs-TP53-nonmutant 3.80E-12

BIRC5 TP53 mutation status

Normal-vs-TP53-mutant 1.63E-12

Normal-vs-TP53-nonmutant 8.02E-09

TP53-mutant-vs-TP53-nonmutant 7.83E-08

CKS1B TP53 mutation status

Normal-vs-TP53-mutant 1.62E-12

Normal-vs-TP53-nonmutant 8.44E-15

TP53-mutant-vs-TP53-nonmutant 2.20E-12
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BIRC5 and two targets were related to 3 drugs. CKS1B and
another 3 targets interacted with 2 drugs (Figures 8(g)–
8(i)). Based on GSCALite analysis, we found that most drugs
were effective in association with increased expression of
AURKA both in CTRP and GDSC database, while BIRC5
was positively regulated by 2 drugs and negatively regulated
by 2 drugs in GDSC database. Specifically, these molecules
could be exploited as potential therapeutic drug targets for
BLCA (Figures 8(j) and 8(k)).

4. Discussion

BLCA is one of the most common urinary cancers in the
world, with high recurrence and mortality rates that limit

the efficacy of treatment [45]. It is therefore essential to
understand the molecular mechanism of BLCA. With the
development of bioinformatics technology, increasing num-
bers of studies are using bioinformatics analysis to develop
biomarkers and explore the molecular mechanism of BLCA
[46, 47]. However, there are still no reliable biomarkers asso-
ciated with prognosis of BLCA patients. In recent years,
immunotherapy has attracted considerable attention owing
to its influence on the treatment of locally advanced and
metastatic BLCA, but the objective response rate of BLCA
to immune checkpoint inhibitors (ICIs) was low [12, 48].
Therefore, it is critical to identify satisfactory signatures to
effectively predict prognosis and evaluate the benefit of
immunotherapy in BLCA patients.

AURKA is a member of the serine/threonine kinase fam-
ily and has a role in regulation of the cell cycle [49]. Accu-
mulating evidence indicates that AURKA is overexpressed
in various cancers, including breast cancer, head and neck
cancer, esophagus cancer, hematological malignancies,
colorectal cancer, stomach cancer, pancreatic cancer, and
ovarian and prostate cancers [50, 51]. Pathological overex-
pression of AURKA is correlated with shorter survival of
cancer patients. According to previous reports, high expres-
sion of Aurora-A in tumor cells is closely related to poor
prognosis [46, 51]. BIRC5 is a member of the inhibitor of
apoptosis gene family, which has dual roles in promoting
cell proliferation and preventing apoptosis [50]. Overexpres-
sion of BIRC5 has been reported in several malignancies,
and higher BIRC5 expression was also found to be associated
with decreased survival [52]. CKS1B is an oncogene that has
been reported to show increased expression in various
tumors [53]. In accordance with previous studies, our results
demonstrated that high expression of three hub genes was
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Figure 5: Evaluation of the association between three prognosis-related key genes and clinical factors. Expression of three key prognosis-
related genes based on different sample types, according to (a)–(c) histological subtypes, (d)–(f) molecular subtypes, and (g)–(i) TP53
mutation status. (j)–(l) Associations between expression of three prognosis-related genes and immune subtypes across BLCA via TISIDB
database: (j) AURKA, (k) BIRC5, and (l) CKS1B. Act_CD8: activated CD8 T cell; Tcm_CD8: central memory CD8 T cell; Tem_CD8:
effector memory CD8 T; C1: wound healing; C2: IFN-γ dominant; C3: inflammatory; C4: lymphocyte depleted; C5: immunologically
quiet; C6: TGF-β dominant. Kruskal–Wallis test was used to evaluate the statistical significance of differential expression.

Table 3: Associations of three prognosis-related genes with
immune cell infiltration by TIMER.

Gene Immune cell Cor P value

AURKA

CD8 + T cell 0.288875857 1.82E-08

Neutrophil 0.166799639 0.001425828

Dendritic cell 0.317303773 5.56E-10

BIRC5

B cell -0.105547337 0.044470614

CD8 + T cell 0.203404473 8.89E-05

Neutrophil 0.108824791 0.038228327

Dendritic cell 0.299191494 5.53E-09

CKS1B

CD8 + T cell 0.290098344 1.58E-08

Neutrophil 0.12429351 0.017829713

Dendritic cell 0.302158923 3.83E-09
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associated with poor prognosis (Figures 2(a), 2(b), and 2(d)).
Further analysis revealed that these three key genes were
overexpressed in nonpapillary tumors, the basal squamous
subtype, TP53 mutation patients, and C2 (IFN-gamma
dominant) subtype (Figures 5(a)–5(l)). Three hub genes
were highly correlated with TMB and PD-L1 expressions
(Figures 7(a)–7(f)). Previous studies have reported that
TP53 mutation is associated with poor prognosis [54].
TMB has prognostic roles in various cancer types, including
BLCA [55]. High expression of PD-L1 is associated with
worse cancer outcomes [19]. A previous study reported that
the C2 subtype had the highest levels of CD8 + T cells, as
well as having less favorable outcomes [36]. These results
indicated that the expression of these three key genes may
represent a marker of poor prognosis in BLCA, as well as
in nonpapillary tumors, the basal squamous subtype, TP53
mutation patients, tumor with high TMB, and the C2
subtype.

Tumor immunity is an extremely complex biological
process, and factors affecting the efficacy of immune check-
point inhibitors (IMCIs) are associated with PD-L1 expres-
sion level, tumor-infiltrating lymphocytes (TILs), and
tumor mutational burden (TMB) [13]. TMB has been inves-
tigated in various malignancies and found to be correlated
with response to atezolizumab in mUC [20–22]. Increased
CD8 + T cell infiltration has been reported to be correlated
with better immunotherapeutic effect [56]. A previous study

showed that biomarkers related to CD8 + T cell infiltration
could facilitate the monitoring of immunotherapy response
and the exploration of the immune infiltration mechanism
in clear cell renal cell carcinoma. A previous study showed
that biomarkers related to CD8 + T cell infiltration could
facilitate the monitoring of immunotherapy response and
the exploration of the immune infiltration mechanism in
clear cell renal cell carcinoma. AURKA is overexpressed in
cancer cells but not in normal tissues, making it a potential
target for immunotherapy. AURKA-specific CD8(+) T cells
can selectively lyse leukemia cells [21]. CD8 + cytotoxic T
lymphocytes (CTLs) generated in vitro can recognize
AURKA epitope (YLILEYAPL). In addition, these CTLs
can kill leukemia cells endogenously expressing AURKA,
indicating that the homologous epitopes are naturally proc-
essed and presented at a level sufficient for immunothera-
peutic applications [57]. BIRC5 is a member of the
apoptosis inhibitor gene family, which regulates several can-
cers by activating cell apoptosis process [58]. BIRC5 is corre-
lated with T cell survival and proliferation, which can
increase the accumulation and persistence of CD8(+) T cells
following an encounter with Ag [59]. CKS1B is associated
with cell cycle. The association between CKS1B and ICI is
rare.

To further explore the molecular mechanism of three
genes related model. We found that immune function was
different between high- and low-risk groups (Figure 8(e)).
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Figure 6: Association between three hub genes and immune infiltration. (a, b) Correlations of (a, b) AURKA, (c, d) BIRC5, and (e, f) CKS1B
expression with immune infiltration level in BLCA. (g) Kaplan-Meier survival curves for different immune cells. Levels are divided into low
and high by a defined slider. P value of log-rank test for comparing survival curves of the two groups is shown in each plot.
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Our result indicated that three hub genes were highly corre-
lated with CD8 + T cell, TMB, and PD-L1 expression
(Figures 6(a)–6(f) and 7(a)–7(f)). We further found that
CD8 + T cell, TMB, and PD-L1 expression were positively
correlated with OS after anti-PDL1 therapy (Figures 7(g)–
7(i)). The association score of ICB survival outcome showed
that three genes were correlated with ICB benefit
(Figures 8(a)–8(d)). In addition, we found that three hub
genes exhibited a significant difference in expression
between responders and nonresponders to atezolizumab in
urothelial cancer via TISIDB analysis (Table 4). Studies
showed that TIDE score can effectively predict the response

of immunotherapy [23, 42]. In this study, TIDE score anal-
ysis suggested that patients with high-risk score get a better
response to immunotherapy. Taken together, we can infer
that the expression of three key genes and their related
model may provide reliable biomarkers to evaluate the
response to immunotherapy, and the mechanism of three
genes in ICB response remains to be further studied. Finally,
we developed potential drug targets that interact with three
genes (Figures 8(g)–8(k)). Collectively, these data suggest
that three prognostic genes were correlated with ICB
response in BLCA, which may be associated with CD8 + T
cells, TMB, and PD-L1 expression. Drug–gene interaction
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Figure 7: Evaluation of the value of three key genes in response to ICB. (a)–(c) Correlations between three hub genes and CD274 (PD-L1)
mRNA expression. (a) AURKA, (b) BIRC5, and (c) CKS1B. (d)–(f) TMB shows positive relationships with three hub genes in BLCA. (d)
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Figure 8: Estimation of the TME and cancer immunotherapy response and evaluation target drugs of these genes. Association between
three genes and immunosuppressive indices (columns), including T cell dysfunction score and ICB survival outcome. (b)–(d) Survival
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network analysis indicated that these genes and their related
drugs could be used in the development of new targets for
BLCA immunotherapy.

5. Conclusions

In summary, three key genes in BLCA were found to be cor-
related with poor prognosis and immunotherapy response in
BLCA. Three prognostic genes and their related drugs may
help to develop new targets for improving BLCA immuno-
therapy. Combination of three genes’ inhibitor and anti-
PDL1 may provide new insights for improving effectiveness
of immunotherapy. Nevertheless, the present study has cer-
tain limitations. For example, our experimental design
mainly focuses on the computational nature. In fact, no val-
idation analysis has been performed based on BLCA cell
lines or clinical samples, which greatly limit the impact of
our results. Moreover, the biological mechanism of three
gene-related model has not been fully elucidated. We will
perform external experiments based on BLCA cell lines or
clinical samples to support our results and investigate the
underlying molecular mechanism of three genes in predic-
tion immunotherapy response in our following work.
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