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Abstract
Diagnosis of psychiatric disorders based on brain imaging data is highly desirable in clinical

applications. However, a common problem in applying machine learning algorithms is that

the number of imaging data dimensions often greatly exceeds the number of available train-

ing samples. Furthermore, interpretability of the learned classifier with respect to brain func-

tion and anatomy is an important, but non-trivial issue. We propose the use of logistic

regression with a least absolute shrinkage and selection operator (LASSO) to capture the

most critical input features. In particular, we consider application of group LASSO to select

brain areas relevant to diagnosis. An additional advantage of LASSO is its probabilistic out-

put, which allows evaluation of diagnosis certainty. To verify our approach, we obtained se-

mantic and phonological verbal fluency fMRI data from 31 depression patients and 31

control subjects, and compared the performances of group LASSO (gLASSO), and sparse

group LASSO (sgLASSO) to those of standard LASSO (sLASSO), Support Vector Machine

(SVM), and Random Forest. Over 90% classification accuracy was achieved with gLASSO,

sgLASSO, as well as SVM; however, in contrast to SVM, LASSO approaches allow for iden-

tification of the most discriminative weights and estimation of prediction reliability. Semantic

task data revealed contributions to the classification from left precuneus, left precentral
gyrus, left inferior frontal cortex (pars triangularis), and left cerebellum (c rus1). Weights for

the phonological task indicated contributions from left inferior frontal operculum, left post
central gyrus, left insula, left middle frontal cortex, bilateral middle temporal cortices, bilat-
eral precuneus, left inferior frontal cortex (pars triangularis), and left precentral gyrus. The
distribution of normalized odds ratios further showed, that predictions with absolute odds ra-

tios higher than 0.2 could be regarded as certain.
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Introduction
Major depressive disorder (MDD) belongs to the mental, neurological, and substance-abuse
diseases (MNS) currently regarded as significant challenges in global mental health [1]. Due to
the complexity and variety of symptoms, MDD diagnosis requires time-consuming interviews,
which rely heavily on the clinical experience of the doctor, as well as on patient cooperation.
Objective diagnosis methods based on biological markers have yet to be found. The aim of this
study is to corroborate development of a diagnostic method for MDD and other mental disor-
ders by applying machine learning algorithms to functional brain imaging (fMRI) data.

Recent imaging studies show that task-related brain activation of MDD patients, as well as
brain activation during rest, differs significantly from that of healthy controls [2–6], thus en-
couraging the diagnosis of MDD from brain imaging data using statistical machine learning al-
gorithms (see e.g. [5, 7]). This idea is supported by the emerging field of computational
psychiatry, which emphasizes the integrative, explanatory role of computational ideas in neu-
roscience and the impact it could have on assessing mental illnesses [8].

However, a major obstacle in applying statistical machine learning methods to brain imag-
ing data is that the dimension of input variables (voxels) considerably exceeds the number of
training samples (subjects), resulting in over-fitting. Often Support Vector Machine (SVM) [7,
9–11] is used to overcome this problem. It can largely prevent over-fitting using the principle
of large margin separation [12, 13]. However, a shortcoming of SVM lies in the assignment of
weights to all input features. The discriminative relevance of individual features (here, neural
activation in each voxel of the imaging data) is difficult to interpret. A further limitation of de-
terministic classification algorithms such as SVM, is that they do not provide a measure of clas-
sification reliability. This has also been pointed out in Nouretdinov et al. [14].

In consideration of the above, we propose the application of sparse logistic regression with a
least absolute shrinkage and selection operator (LASSO [15, 16]). Standard LASSO limits the
number of effective variables through regularization of the L1 norm of the attributed weights.
The regularization penalty is controlled through a regularization parameter (λS).

Standard LASSO finds solutions based on a minimum number of features, but allows for se-
lection of isolated voxels. This compromises robustness with respect to local variation in inter-
subject brain function. As previous functional brain imaging studies have shown, brain activity
in certain brain areas such as thalamus and frontal lobe is altered in depression patients [6, 17].
We aim to extract brain regions, rather than individual voxels. For this purpose, we propose
the use of group LASSO [18], which constrains groups of features. Regularization of the num-
ber of groups is thereby subject to the Euclidian norm of weights in each group. As with stan-
dard LASSO, regularization strength can be controlled by a parameter (λG). This approach
facilitates interpretation of the learned classifier, since the remaining features inherently com-
prise groups. Defining voxel groups according to known functional and anatomical brain
areas, we expect group LASSO to reveal brain areas critical for depression diagnosis.

Feature-wise regularization and group-wise regularization can be employed at the same
time, so that the number of voxel groups (brain areas), as well as the number of individual vox-
els, is sparsified. The algorithm hence depends on a pair of regularization parameters (λ = (λS,
λG)) and is then referred to as sparse group LASSO.

We verified the performance of group LASSO (gLASSO), and sparse group LASSO
(sgLASSO) in comparison to that of standard LASSO (sLASSO) in the analysis of fMRI data
obtained from depression patients and age-matched healthy control subjects. Since executive
dysfunction is a neuropsychological constituent of depression [19], fMRI experiments were
based on semantic and phonological verbal fluency tasks, in which depression patients are
known to perform poorly [10, 20–23]. Moreover, Bom de Araujo et al. [24] have demonstrated

Logistic Group LASSO for the Diagnosis of Depression from fMRI Data

PLOS ONE | DOI:10.1371/journal.pone.0123524 May 1, 2015 2 / 23

brainprogram.mext.go.jp/missionF/). All authors of
this study are supported by this program. This
program does not have a grant number. The funders
had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://brainprogram.mext.go.jp/missionF/


that disease severity has a direct impact on verbal fluency, regardless of age, educational level,
or gender. This fact is beneficial for unbiased population results. We also compared LASSO re-
sults to those of SVM [12, 13] and the Random Forest algorithm [25].

Materials and Methods
This study was approved by the Research Ethics Committee at the Okinawa Institute of Science
of Technology as well as the Research Ethics Committee of Hiroshima University (permission
nr. 172). Written consent was obtained from all subjects participating in the study (approved
by the Research Ethics Committee of the Okinawa Institute of Science and Technology and the
Research Ethics Committee of Hiroshima University).

Subjects
Thirty-one drug naive, i.e. first time diagnosed, patients (age 26–63, average 38:81 ± 9:76, 16
male) with major depression disorders were recruited by the Psychiatry Department of Hiro-
shima University and collaborating medical institutions, based on the Mini-international neu-
ropsychiatric interview (M.I.N.I [21]), which enables doctors to identify psychiatric disorders
according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV [26]). As a control group, 31 persons (ages 23–63, average 33.45 ± 12, 15 male) with
no history of mental or neurological disease, were recruited by advertisement in local newspa-
pers. All controls underwent the same self-assessment and examinations administered to the
test group. Subjects of both groups completed the Japanese version of the National Adult Read-
ing Test [27].

Data Acquisition & Task
fMRI measurements were performed at Hiroshima University on a 3T GE Signa HDx scanner
with a 2D EP/GR (TR = 3s, TE = 27ms, FA = 90deg, matrix size 64 × 64 × 32, voxel size 4 × 4 ×
4mm, no gap, interleaved). As mentioned above, subjects underwent two-block designed verbal
fluency tasks known to pose difficulties for depressive patients. Structural T1 images were ac-
quired after the fMRI experiments for correction of head position changes in the subsequent
analysis (IRP FSPGR, TR = 6.824ms, TE = 1.9ms, FA = 20deg, FOV 256mm, matrix size
256 × 256 × 180, voxel size 1 × 1 × 1mm).

Semantic Verbal Fluency. After an initial rest period of 30 seconds, a categorical word
(e.g., furniture) was presented to each participant for 2500ms (Fig 1). A fixation cross was pre-
sented for the next 500ms. Subjects were asked to find a word matching the given category
(e.g., table) and press a button once they had uttered the chosen word in their minds. After five
consecutive trials repeating the same categorical word, five trials employing a different categor-
ical word followed. Under control conditions, subjects were presented two words selected from
a certain category (e.g., table), five times each. Subjects had to repeat each word in their minds
and were again asked to press a button once they had done so. Nine seconds of blank screen in-
dicated the end of the task and control blocks. This whole sequence was repeated three times
and required approximately four minutes, during which 94 volumes of the whole brain
were acquired.

Phonological Verbal Fluency. The setting of the phonological verbal fluency task was
identical to that of the semantic task. Instead of categorical groups, a syllable of the Japanese al-
phabet was presented. Subjects then had to think of a word beginning with that syllable and to
repeat it in their minds. Subjects were asked to press a button immediately thereafter.
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Data Preprocessing
For each subject, the first five volumes of each time series were discarded so as to allow for
magnetic field equilibrium. The remaining volumes were processed with SPM8 (Wellcome
Trust Centre for Neuroimaging, UCL, London), using following standard procedure: After
slice timing correction, motion correction, co-registration to anatomical MRI, normalization
with standard brain template, and smoothing (kernel width 8 × 8 × 8mm), a model conforming
to the task was specified and the contrast between task and control conditions was evaluated.
Z-scores that exceeded the absolute value of 5 were considered outliers and corresponding vox-
els were discarded from the dataset. Z-scores of voxels which could not be labeled by Automat-
ed Anatomical Labeling software (AAL [28]), provided by SPM8, were also excluded from the
analysis. Vectorized subject volumes were assembled to a matrix of size 62 × 65280, in which a
row represented brain activity Z-scores in the voxels of a given subject. Columns (voxels) that
were zero for all subjects were discarded, leaving a data matrix of size 62 × 14055 (= number of
subjects × number of remaining voxels). In the following, we refer to the remaining voxels as
features and the resulting matrix as the feature matrix. The latter was normalized voxel-wise

Fig 1. fMRI Semantic Verbal Fluency Task. The experiment consisted of three task and three control blocks. In the task condition, subjects were presented
with a categorical word (semantic task) or syllable of the Japanese alphabet (phonological task) for 2500ms (e.g. occupation) for which they had to find a
matching word, utter it in their minds and press a button. A white cross displayed for 500ms indicated the end of the trial. This was repeated five times each
for two words referring to two different categories in the semantic task and two different syllables in the phonological task. In the control condition, the button
press occurred after repeating the displayed word in the mind. Two different words were displayed five times each. The end of each block was indicated by 9
seconds of blank screen.

doi:10.1371/journal.pone.0123524.g001
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and served as input for all classification algorithms applied in this study, LASSO regressions as
well as SVM and Random Forest algorithms. For combined semantic and phonological data,
we simply concatenated both feature matrices.

For group LASSO, we defined voxels belonging to the same brain area as a group. Brain
areas themselves were determined and labeled using the MNI standard brain template provid-
ed by the AAL toolbox. Out of 116 brain areas defined in this atlas, fMRI data covered 105
areas. Areas not covered by data were as follows: bilateral superior frontal orbital gyri, bilateral
middle frontal orbital gyri, left olfactory gyrus, left medial frontal orbital gyrus, bilateral rectus,
left middle temporal pole and bilateral cerebellum (pars10). For the combined verbal fluency
data we therefore arrived at 210 groups (105 brain areas for each dataset).

Classification Algorithms
For classification, we considered three variants of logistic regression using LASSO [15, 16],
SVM [12], and Random Forest [25].

LASSO logistic regression. Let xi = (xi1, � � �, xid) 2 R
d be the vector of values representing

brain activation in each voxel of the i-th subject (hereafter referred to as feature vector, i = 1 � � �
n, n the number of subjects). The binary label yi 2 {±1} indicates whether the subject belongs to
the control (yi = −1) or the patient group (yi = +1). Logistic regression predicts the probability
of the label y from the corresponding feature vector x, and is defined as

Pðyjx;wÞ ¼ 1

1þ exp ½�yxTw� ; ð1Þ

where xT is the transpose of the vector x. w = (w1, � � �, wd) 2R
d is a vector representing the con-

tribution weights of each element in the vector x, and determined such that it fits the given
dataset D = {(xi, yi)ji = 1, � � �, n}. This can be achieved by minimizing the negative mean log-
likelihood:

f ðwÞ ¼ � 1

n

Xn

i¼1

logPðyijxi;wÞ: ð2Þ

However, the minimizer is not well defined for d� n, as is the case in our study.
The Least Absolute Shrinkage and Selection Operator (LASSO) [15, 16] is a regularization

technique to restrict the number of non-zero elements in the minimiser and to make the solu-
tion unique. Consider G partitions on x, then the weight vector w is determined so as to mini-
mize

JðwÞ ¼ f ðwÞ þ lSkwk1 þ lG
XG

g¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

j¼1

I g;jw
2
j

vuut ; ð3Þ

where kwk1 ¼
Pd

j¼1 jwjj and Ig,j is the indicator function such that Ig,j = 1 if the j − th voxel be-

longs to the g-th partition and Ig,j = 0 otherwise. The parameters λS, λG� 0 adjust the balance
between model fitting precision (first term in Eq 3), voxel-wise sparseness (second term), and
group-wise sparseness (third term). λS> 0 and λG > 0 imposes both voxel-wise and group-
wise sparseness. We refer to this case as sparse group LASSO (sgLASSO). For λS> 0 and λG =
0 the above therefore yields the standard sparse LASSO (sLASSO) while λS = 0 and λG> 0 de-
fines the group LASSO (gLASSO).

The advantage of group LASSO is that prior knowledge of possibly related input features
can be incorporated by suitably setting the indicator function Ig,j. We exploit this advantage to
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incorporate functional localization within brain regions. Input to the algorithm consists of a
feature matrix formed from standardised brain activation Z-scores xi of 62 subjects, where 31
rows represent control subjects (label yi = −1) and 31 rows depressive patients (label yi = +1).
105 brain areas were considered in the analysis, i.e., G = 105 and Ig,j = 1 if the j-th voxel belongs
to the g-th brain area.

Once the weight vector w is determined, the logistic regression model can be used as a dis-
criminant function for the binary classification (in the fashion of the most probable explana-
tion, a special case of the maximum a-posteriori probability). For each feature vector x, the
label y is determined as follows:

y ¼
( þ1 if Pðy ¼ þ1jxÞ > Pðy ¼ �1jxÞ; i:e:; xTw > 0

�1 otherwise; i:e:; xTw < 0

Unless specified otherwise, we evaluated classification performance in our study based on this
discriminant function.

Support Vector Machine. The SVM training algorithm is a non-probabilistic binary clas-
sifier that represents samples as points in space, so that samples of different categories are sepa-
rated by a margin as large as possible (large margin principle of separation [13]). Here we use
parameter-free linear (hard margin) SVM [12].

Random Forest. The Random Forest algorithm is an ensemble learning method that con-
structs a multitude of decision trees and yields the mode of the class output by individual trees
as result [25].

Performance Criteria
Parameter tuning of LASSO algorithms was based on the mean log likelihood μlog L, a standard
performance measure for probabilistic models:

mlog L
¼ 1

n

Xn

i¼1

logPðyijxi;wÞ: ð4Þ

For better visualization of the class probability distributions, we calculated the logarithmic

odds ratio logðPðy¼þ1jxÞ
Pðy¼�1jxÞÞ and normalized it by the maximum logarithmic odds ratio of all test

data. In the following, we refer to these values as normalized discriminative scores.
For performance comparison of probabilistic LASSO models with non-probabilistic models

such as SVM, we used the four criteria defined below. We defined patients who were correctly
classified as depressive, as true positives (TP), and those incorrectly classified as healthy, as
false negatives (FN). We referred to control subjects who were correctly classified as healthy, as
true negatives (TN), and those incorrectly classified as depressed, as false positives (FP).

Sensitivity and Specificity evaluate the probability of correct diagnosis of patients and con-
trol subjects, respectively:

Sensitivity ¼ #correctly classified patients

#all patients

¼ #TP
#TP þ#FN

ð5Þ
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Specificity ¼ #correctly classified controls

#all controls

¼ #TN
#TN þ#FP

ð6Þ

Accuracy and Fscore evaluate overall performance. The Fscore provides a more rigorous mea-
sure when the number of control subjects is larger than that of patients, in which case, true neg-
atives can dominate the Accuracymeasure.

Accuracy ¼ #correctly classified subjects

#all subjects

¼ #TP þ#TN
#TP þ#FN þ#TN þ#FP

ð7Þ

Fscore ¼ 2

1=Precisionþ 1=Recall

¼ #TP
#TP þ ð#FN þ#FPÞ=2

ð8Þ

where Precision ¼ #TP
#TPþ#FP

, is the probability that a subject classified as a patient really is a pa-

tient and Recall ¼ #TP
#TPþ#FN

(= Sensitivity), the probability that a patient is classified as a patient.

Parameter Tuning and Performance Evaluation
Classification performance of the algorithms was evaluated in a 10-fold cross-validation. In
order to account for model variability, the procedure was repeated 100 times, each time pseu-
do-randomly shuffling sample contributions to the training and test datasets.

For SVM and Random Forest, conventional 10-fold cross-validation was used. For LASSO
algorithms, cross-validation was conducted in a nested manner as described below, in order to
account for parameter validation (Fig 2).

Nested 10-fold cross-validation. The first cross-validation (inner cross-validation) served
to optimize regularization parameters, while the second cross-validation (outer cross-valida-
tion) evaluated predictive performance when using (optimal) parameters obtained in the first
cross-validation to a new dataset. For sLASSO 200 logarithmically distributed values of λS in
the range of [0.01 0.2512] were evaluated, while for gLASSO we chose 100 logarithmically dis-
tributed values of λG in the range of [0.1 0.6310]. For sgLASSO we used 200 combinations of
20 logarithmically distributed values of λS and 10 logarithmically distributed values of λG in the
range of [10−6 0.1] and [0.0631 0.3162], respectively. The approximate range of the parameters
was determined by grid search.

In detail, the procedure consisted of following twelve steps:

1. Data from controls and patients were divided into 10 non-overlapping sets with approxi-
mately equal number of subjects.

2. One of these datasets was taken as test data (TestData1) and the rest were used as training
data (TrainingData1).

3. Step 1 was repeated for TrainingData1, i.e., it was divided into 10 separate and non-
overlapping sets.
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4. One of the datasets produced in Step 3 was used as test data (TestData2) and the rest were
used as training data (TrainingData2).

5. Models were trained for a range of parameters using TrainingData2.

6. Class probabilities for TestData2 were predicted using the resulting models.

7. Steps 4 to 6 were repeated ten times, each time defining different datasets as TestData2 and
TrainingData2.

8. The mean log likelihood (μlogL) was evaluated for each setting of the parameters and test
dataset and the optimal parameter (λSopt, λGopt and λopt = (λSopt, λGopt) for sLASSO, gLASSO
and sgLASSO respectively), for which μlogL is maximized was determined.

9. A model was estimated using TrainingData1 and λmax.

10. Class probabilities for TestData1 were predicted.

11. Steps 2 to 9 were repeated ten times, each time choosing a different dataset from the 10
sets produced in Step1, as TestData1.

12. Prediction performance was evaluated.

Fig 2. Nested 10-fold cross-validation. 10% of the data were defined as test dataset (TestData1) while the remaining 90% (TrainingData1) were used to
evaluate the best performing regularization parameter λopt (= λSopt in the case of sLASSO, = λGopt in the case of gLASSO, = (λSopt, λGopt) in the case of
sgLASSO) in a 10-fold cross-validation (inner 10-fold cross-validation). Parameters thus determined were then used to train TrainingData1 and to evaluate
the final performance using TestData1. The same procedure was repeated ten times, altering the set of train and test data each time, so as to complete a
10-fold cross-validation (outer 10 fold cross-validation).

doi:10.1371/journal.pone.0123524.g002
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Fig 2 illustrates the procedure. As for SVM and Random Forest, this procedure was repeated
100 times, each time pseudo-randomly shuffling the combination of data in Step1.

All routines were programmed in Matlab (Mathworks). For SVM and Random Forest, func-
tions provided in the Matlab optimization Toolbox were used while for LASSO algorithms we
made use of the sparse learning package (SLEP) provided by Liu et al. [29].

Results

Task Performance and SPM Evaluation
Semantic Verbal Fluency. The number of successfully completed tasks was significantly

higher for controls than for depression patients (two sample t-test, p = 0.03). The same was
true for corresponding button press reaction times (p = 0.0098). On average, the control group
accomplished 29.19 trials out of 30 correctly with a standard deviation of 1.51, while the de-
pression group completed on average 27.81 ± 3.12 trials. Reaction times for the control group
averaged 1.28 ± 0.32 seconds, while the depression group mean was 1.50 ± 0.33 seconds.

A group-wise two-sample t-test of SPM-evaluated brain activation revealed no significant
difference in brain activation between depressed and control subjects (uncorrected p = 0.01).

Phonological Verbal Fluency. As in the semantic task, a two-sample t-test revealed that
phonological task performance was significantly different between the two subject groups. The
number of successfully completed tasks totaled 29.19 ± 1.52 and 26.58 ± 2.86 for control and
depression group, respectively (p = 0.0003). Reaction times for the control group averaged 1.39
±0.36 seconds while for the depression group it was 1.65 ± 0.34 seconds (p = 0.0047) (Table 1)

SPM group-wise analysis for the phonological task revealed 12 voxel clusters that were sig-
nificantly more activated in controls than depressive subjects (uncorrected p = 0.01). They
were mainly located around the bilateral lingual and cerebellar cortex, as well as the bilateral
cuneus and precuneus.

Parameter Dependence
As the performance of LASSO algorithms depend on regularization parameters (λS for
sLASSO, λG for gLASSO and λ = (λS, λG) for sgLASSO, respectively), we first verified the regu-
larization parameters evaluated as optimal in a grid search combined with a 10-fold cross vali-
dation (see Materials and Methods for details). We compared Fscores, mean log likelihood and
the number of selected weights of the test data yielded when using optimal parameters and
when using other specific values of the regularization parameters (Fig 3a–3c). Naturally, with

Table 1. Study participants and behavioral performance (mean±std).

Control group Depression group p

n 31 31

age 33.45 ± 12 38.81 ± 9.76 0.06

gender (male) 15 16 0.80

reading test (JART) 113.33 ± 8.51 109.29 ± 10.19 0.10

Semantic task:

successful trials 29.19 ± 1.51 27.81 ± 3.12 0.03

mean reaction time (s) 1.28 ± 0.32 1.50 ± 0.33 0.0098

Phonological task:

successful trials 29.19 ± 1.54 26.58 ± 2.86 0.0003

mean reaction time (s) 1.39 ± 0.36 1.65 ± 0.34 0.0047

doi:10.1371/journal.pone.0123524.t001
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larger settings of λS and λG, the number of non-zero weights decreased (Fig 3c). Plotting of re-
spective discriminative score distributions (Fig 3d) confirmed that distributions obtained with
the parameters yielding a higher mean log likelihood were favorable to those yielding a lower
mean log likelihood, even if the Fscore was the same (Fig 3a–3c). This validated our decision to
base the choice of optimal parameters on the highest mean log likelihood.

As a second step, we verified by visual means (Fig 4) that the optimal parameters chosen in
each cross validation were not randomly distributed. In standard LASSO (Fig 4a), the optimal
parameter λSopt was similar for both semantic and phonological task data, while it was smaller
for the combined dataset. A similar result was found for the distribution of λGopt of the group
LASSO (Fig 4b). In the two-dimensional parameter space of sgLASSO, λSopt and λGopt had
unimodal distributions (Fig 4c).

Classification Performance
Fig 5 and Table 2 summarize the classification results:

Semantic Verbal Fluency. Using sLASSO, depressed and control subjects could be classi-
fied with 68.48 ± 2.47% accuracy (sensitivity 74.52 ± 5.59%, specificity 62.45 ± 5.64%),
Fscore = 0.70 ± 0.04 and mean likelihood of L = 0.61 ± 0.01 (see Fig 5 and Table 2. Standard de-
viations were calculated from 100 evaluations of the models obtained in a nested 10-fold,
cross-validation repeated 100 times with shuffled training data).

Fig 3. Maximummean log likelihood provides better separation of normalized discriminative score distributions than the Fscore. (a) Fscore, (b)
mean log likelihood μlog L, and (c) the number of non-zero weights for different combinations of the regularization parameters λS and λG, in an inner cross-
validation (see Material and Methods) of sgLASSO applied to the semantic data. (d) Distribution of discriminative scores (normalized log odds ratios) at the
maximummean log likelihood (indicated by the black circle in (b)). (e) Distribution of discriminative scores at a non-optimal parameter setting (indicated by
the grey circle in (b)). For this case, the Fscore (a, grey circle) is higher, but the separation of discriminative score distributions (d, top) is less clear than at the
optimal setting (a, black circle, d, bottom).

doi:10.1371/journal.pone.0123524.g003
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gLASSO and sgLASSO performed significantly better than sLASSO (p< 0.001, u-test).
gLASSO yielded 81.29 ± 1.95% accuracy (87.16 ± 2.79% sensitivity and 72.71 ± 3.98% specifici-
ty) and Fscore = 0.70 ± 0.01 with a mean likelihood of L = 0.70 ± 0.01, while sgLASSO yielded
81.06 ± 2.41% accuracy (86.74 ± 3.04% sensitivity and 75.39 ± 3.69% specificity) and
Fscore = 0.82 ± 0.02 with a mean likelihood of L = 0.72 ± 0.01. Classification performances of
SVM and Random Forest were significantly lower than those of sLASSO, gLASSO, and
sgLASSO (p< 0.001, u-test).

Fig 4. Histograms confirm stability of the parameters yielding the best classification performance in each cross-validation. For all datasets and
algorithms, the distribution of optimal parameters over 100 nested 10-fold cross-validations shows a roughly Gaussian distribution.

doi:10.1371/journal.pone.0123524.g004
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Fig 5. Relative performance of gLASSO, sgLASSO and SVM, depended on the dataset, while sLASSO and Random Forest were generally
outperformed by the other algorithms. (a) semantic verbal fluency, (b) phonological verbal fluency and (c) combined datasets. Classification performance
was significantly different between all algorithms and significantly higher for each algorithm with the combined dataset (p < 0.001, u-test).

doi:10.1371/journal.pone.0123524.g005

Table 2. Classification Performance (mean±std over 100 10-fold cross-validations).

Data & Algorithm Sensitivity Specificity Accuracy Fscore Likelihood

Semantic task

sLASSO 74.52±5.59 62.45±5.64 68.48±4.22 0.66±0.04 0.61±0.01

gLASSO 87.16±2.79 72.71±3.98 81.29±1.95 0.70±0.01 0.70±0.01

sgLASSO 86.74±3.04 75.39±3.69 81.06±2.41 0.82±0.02 0.72±0.01

SVM 72.23±3.91 79.61±3.11 75.92±2.45 0.75±0.03 -

Random Forest 62.06±7.25 77.55±6.37 69.81±4.75 0.67±0.06 -

Phonological task

sLASSO 63.16±7.66 72.55±5.53 67.85±4.89 0.66±0.06 0.57±0.02

gLASSO 74.26±3.84 83.71±2.57 78.98±2.47 0.78±0.03 0.65±0.01

sgLASSO 70.58±4.48 81.77±3.05 76.18±2.74 0.74±0.032 0.64±0.02

SVM 80.74±3.96 83.52±1.44 82.13±2.22 0.82±0.03 -

Random Forest 58.10±8.98.37 57.00±8.19 65.50±5.41 0.62±0.07 -

Combination

sLASSO 84.61±4.60 83.03±4.80 83.82±3.57 0.84±0.04 0.77±0.02

gLASSO 91.35±2.90 92.55±2.70 91.95±2.02 0.92±0.02 0.89±0.02

sgLASSO 88.45±2.72 91.71±3.12 90.08±2.02 0.90±0.02 0.90±0.02

SVM 94.48±2.48 94.87±2.43 94.68±1.86 0.95±0.02 -

Random Forest 60.65±8.34 78.74±5.93 69.69±5.42 0.66±0.07 -

doi:10.1371/journal.pone.0123524.t002
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Phonological Verbal Fluency. Here, sLASSO yielded an accuracy of 67.85 ± 4.89% (sensi-
tivity 63.16 ± 7.66%, specificity 72.55 ± 5.53%) and Fscore = 0.66 ± 0.06 with a mean likelihood
of L = 0.57 ± 0.02. Again, gLASSO and sgLASSO outperformed sLASSO (p< 0.001, u-test).
Performance values for gLASSO were: accuracy 78.98 ± 2.47 (sensitivity 74.26 ± 3.84%, speci-
ficity 83.71 ± 2.57%), Fscore = 0.78 ± 0.03 and L = 0.65 ± 0.01. Those for sgLASSO were: accu-
racy = 76.18 ± 2.74% (sensitivity 70.58 ± 4.48%, specificity 81.77 ± 3.05%),
Fscore = 0.74 ± 0.032 and L = 0.64 ± 0.02.

For this dataset, performance of SVM achieved an accuracy of 82.13 ± 2.22% and Fscore of
0.82 ± 0.03, which was significantly higher than performances of gLASSO and sgLASSO
(p< 0.001, u-test).

Combination of Semantic and Phonological Verbal Fluency Data. Classification perfor-
mance of all three LASSO algorithms, as well as SVM, significantly improved when data from
the semantic and phonological tasks (p< 0.001, u-test) were combined by simple vector con-
catenation. For sLASSO, the performance improved to: 83.82 ± 3.57% accuracy (sensitivity
84.61 ± 4.60% and specificity 83.03 ± 4.80%), Fscore = 0.84 ± 0.04 and L = 0.77 ± 0.02.

For gLASSO and sgLASSO, classification performance was even higher, showing following
performance: accuracy 91.95 ± 2.02% (sensitivity 91.35 ± 2.90% and specificity 92.55 ± 2.70%),
Fscore = 0.92 ± 0.02 and L = 0.89 ± 0.02, for gLASSO and accuracy 90.08 ± 2.02% (sensitivity
88.45 ± 2.72%, specificity 91.71 ± 3.12%), Fscore = 0.90 ± 0.02 and L = 0.89 ± 0.02 for
sgLASSO.

SVM achieved a classification accuracy of 94.68 ± 1.86% and an Fscore of 0.95 ± 0.22, while
Random Forest performed significantly more poorly than all other methods (p< 0.001, u-
test).

Discriminative Scores
Normalized Discriminative Score distributions for patients and control subjects largely overlap
when sLASSO was applied to semantic or phonological task data (Fig 6a). In comparison, dis-
tributions resulting from gLASSO and sgLASSO, are well separated with little overlap.

For all three LASSO algorithms, the separation becomes clearer when the two datasets are
analyzed in a combined fashion. Especially with gLASSO and sgLASSO, the discriminative
score showed good separation of patients and control subjects, with false positives and false
negative located only near the classification border. All false positive subjects showed a dis-
criminative score< 0.2 and all false negative subjects had scores> −0.2.

For all three datasets, false negative and false positive subjects in each cross-validation were
confirmed to coincide. All false negative subjects in the classification of semantic and phono-
logical data showed only weak symptoms of depression six weeks after participation in our
study and medical treatment with Hamilton Rating Scale of Depression scale score (HRSD)
smaller than 11. We refer to these patients as in remission. However, only for some, the HRSD
decreased more than 50% of the original score (response). For all patients misclassified based
on the combined dataset, remission as well as response could be confirmed. For misclassified
control subjects (false positives), no common characteristic could be found. However, only two
control subjects were misclassified. One of them had a history of a manic episodes and the
other showed very low performance in the phonological task. The true relation of misclassifica-
tion and biomarkers has to be confirmed with larger datasets.

Contributing Features and Brain Areas
In our LASSO approach, features relevant to classification can easily be identified. We only
need to look at voxels with non-zero weights. In Fig 7 we illustrate the effect for the weights
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selected when the algorithms are applied to the combined verbal fluency dataset. Positive
weights (in red) indicate voxels that are typically more highly activated in depressed subjects
than in control subjects. Conversely, negative weights (in blue) indicate voxels that are typically
more highly activated in control subjects than in depressed subjects. The number of selected
voxels varies depending on the algorithm employed (Table 3). While contributing voxels in
sLASSO (Fig 7a) were naturally very sparse and often isolated, group-wise sparsification with
gLASSO (Fig 7b) resulted in a large number of non-zero weights. The sum of positive and neg-
ative voxels covered entire brain areas while with sgLASSO (Fig 7c), voxels within these brain
areas were sparsified as well, but still spatially connected. As anticipated, this allows for isola-
tion of relevant regions in the brain, rather than single voxels. SVM (Fig 7d) attributes weights
to all voxels, making it difficult to identify brain areas most relevant to the classification.

Semantic Verbal Fluency. Using sLASSO, on average 19.14 ± 5.91 voxels were selected in
individual models of cross-validations (Table 3). However, the sum of all voxels selected in all

Fig 6. For all algorithms the separation of class probability distributions became clearer when semantic and phonological data were combined.
normalized discriminative score distribution was evaluated over all 1000 test datasets produced during the nested cross validation. The discriminative score
is given by the logarithmic odds ratio and is here normalized by the maximum value of all test data.

doi:10.1371/journal.pone.0123524.g006
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Fig 7. gLASSO constrains the number of groups of voxels (example combined dataset). This avoids the problem seen with sLASSO, where single
voxels may erroneously suggest that brain areas containing those voxels distinguish between depressed and non-depressed patients. (a) For sLASSO, the
number of non-zero weights is naturally sparse. Contributing voxels tend to be scattered, thus jeopardizing predictions in the case of even slight data
distortion. (b) In gLASSO this is prevented by assigning voxels to groups. (c) sgLASSO further sparsifies contributing voxels within these groups, thus
eliminating redundant weights, but preserving topological continuity. (d) The SVM algorithm uses all voxels to estimate the classification model (Plotted with
mricron [30]). Positive weights are displayed in red, indicating voxels typically more highly activated in depressed subjects than in control subjects. Negative
weights are displayed in blue, indicating voxels typically more highly activated in control subjects. Only voxels selected in more than 80% of the 1000 models
evaluated in the hundred 10-fold nested cross-validation are displayed. Contributions in the evaluation of the separated datasets were similar to that of the
combined evaluation, but less stable with respect to selection frequency in the cross validation models (see Fig 8).

doi:10.1371/journal.pone.0123524.g007

Table 3. Feature Selection (mean±std over 100 10-fold cross-validations, i.e. 1000 classification models).

Data &
Algorithm

#selected voxels in each
model

#voxels (#brain areas) selected at
least once

max occurrence of same
voxel

#voxels with > 80%
occurrence

Semantic task

sLASSO 19.14 ± 5.91 450 (71) 89.9% 1

gLASSO 2497.95 ± 527.50 6906 (31) 100% 1703

sgLASSO 1956.87 ± 699.16 9041 (47) 100% 727

SVM 14055 (all) 14055 (all) 100% 14055 (all)

Phonological
task

sLASSO 20.14 ± 6.70 478 (65) 92.8% 1

gLASSO 2438.32 ± 597.45 5931 (26) 100% 1885

sgLASSO 1838.72 ± 1227.52 8852 (43) 100% 395

SVM 14055 (all) 14055 (all) 100% 14055 (all)

Combination

sLASSO 41.98 ± 5.41 735 (54+58) 98.60% 6

gLASSO 6094.51 ± 1001.26 13241 (26+32) 100% 3926

sgLASSO 3387.33 ± 750.13 10695 (19+28) 100% 1878

SVM 14055 (all) 14055 (all) 100% 14055 (all)

doi:10.1371/journal.pone.0123524.t003
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evaluated models together, resulted in 450 different voxels distributed over 71 brain areas. Vox-
els of only two brain areas contributed to the classification in more than 80% of the models,
namely left precuneus, which also yielded the highest mean average positive weight and left pre-
central cortex, which held the highest average negative weight (Fig 8(a), Semantic task).

As desired, gLASSO limits the number of voxels based on whole brain areas. Accordingly,
the average number of voxels selected in individual models was larger than that selected with
sLASSO: 2497.95 ± 527.50 (Table 3). Altogether 6,906 different voxels originating from 31
brain areas were selected. The following brain areas were selected in more than 80% of all mod-
els: left precuneus, left precentral cortex, right superior temporal cortex, left cerebellum (Crus1),
left middle temporal cortex and left thalamus. These areas were assigned the highest average
negative and the highest average positive weights. Hereby, the left precuneus contributed to all
classification models (Fig 7(a), Semantic task), i.e., 100% of the time.

Results from sgLASSO were similar to those of gLASSO. Since an additional parameter (λS)
sparsifies the number of contributing voxels in each brain area, on average 1956.87 ± 699.16
weights remained in each estimated model (Table 3). During cross-validation, altogether 9,041
voxels originating from 47 brain areas were selected. Brain areas selected more than 80% of the
time coincided with those of gLASSO. However, the left thalamus contributed negative weights
only, while other brain areas contained positive as well as negative weights. Again, the left pre-
cuneus was selected in all classification models.

Phonological Verbal Fluency. sLASSO resulted in 20.14 ± 6.70 remaining voxels in classi-
fication models, summing to 478 voxels from 65 different brain areas. Only voxels located in
the left postcentral gyrus contributed to more than 80% of all cross validated models (Table 3).
These voxels had only positive weights (Fig 8(a), Phonological task).

gLASSO selected 5,931 different voxels covering 26 brain areas. On average
2438.32 ± 597.45 voxels remained in individual models (Table 3). Brain areas that contributed
most frequently with the highest average positive weights coincided with those having the high-
est average negative weights. As above, these areas were selected in more than 80% of all mod-
els: left postcentral gyrus, left inferior frontal operculum, left middle temporal cortex, left middle
frontal cortex and right precuneus.

On average, 1838.72 ± 1227.52 voxels were selected when applying sgLASSO, the union of
which amounted to 8,852 different voxels from 43 different brain areas (Table 3). Four brain
areas were selected in more than 80% of the models. The following brain areas had the highest
average positive as well as highest average negative weights: left post central gyrus, left inferior
frontal operculum and left middle frontal cortex. The positive weights of the left post central
gyrus were selected in all models. The right precuneus showed positive as well as negative
weights; however, positive weights appeared in only 70.1% of the models and were therefore
disregarded. Negative weights, in contrast, contributed to the classification model 94.50% of
the time. While the left postcentral gyrus was selected only 92.8% of the time with sLASSO, it
contributed in 100% of the models when using gLASSO and sgLASSO (Fig 8a).

Combined Verbal Fluency Data. When the two verbal fluency datasets were combined,
brain areas contributing to the classification models are similar, but became more distinct with
respect to the relative frequency of contribution to the cross validated models. For all three
LASSO algorithms, the selection frequency of the brain areas is generally higher than in the
analysis of the individual dataset (Fig 8), indicating higher model stability.

Using sLASSO, each model contained on average 41.98 ± 5.41 voxels, where on average
20.30 ± 3.70 voxels came from semantic data and 21.68 ± 4.11 from phonological data
(Table 3). Brain areas most frequently contributing to the semantic data were left precuneus
and left precentral cortex with positive and negative weights, respectively. Positive weights in
the phonological data were located in the left supplementary motor area (SMA), left inferior
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Fig 8. In the combined evaluation, model stability is higher than in the separate evaluation. This is indicated by the selection frequency of the same
brain areas during the cross validation. The frequency is generally lower for (a) separate evaluation than in the (b) combined evaluation. Only brain areas
selected in more than 80% of all cross validated models are given. Numbers indicate the selection frequency. The colors indicate average values over all
positive and negative weights (normalized by the highest average positive and negative value over all brain areas, resp.). Areas more highly activated in
control subjects than in depressed subjects are in blue; areas more highly activated in depressed subjects than in control subjects are in red. For gLASSO,
the sum of negatively and positively weighted voxels cover 100% of the brain area of interest, so that the selection frequency is the same.

doi:10.1371/journal.pone.0123524.g008
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frontal operculum and left post central cortex, while no negative weights could be found. Voxels
attributed non-zero weights in semantic data were in similar locations to those attributed non-
zero weights when analyzing semantic data alone. In contrast, left inferior frontal operculum
and left supplementary motor area (SMA) contained non-zero weights when processing phono-
logical data alone, but were not selected when semantic and phonological data were analyzed
together (Fig 8(a) and 8(b), Phonological task).

For gLASSO, the number of selected voxels amounted to 6094.51 ± 1001.26 of which
2681.98 ± 715.75 were selected from the semantic dataset and 3412.53 ± 403.83 from the pho-
nological dataset (Table 3). Brain activation of four brain areas exhibited during the semantic
task, was discriminative in more than 80% of all models: left precuneus, left precentral gyrus, left
inferior frontal cortex (pars triangularis) and left cerebellum (crus1). All of them contained posi-
tive as well as negative weights. The left inferior frontal cortex (pars triangularis) was not prom-
inent when classifying semantic data alone. On the other hand left thalamus and the temporal
areas did not frequently contribute to models resulting from the combined data.

Phonological data contributed to the classification with weights in eleven different brain
areas, namely left inferior frontal operculum, left post central gyrus, left insula, left middle frontal
cortex, left middle temporal cortex, right precuneus, right middle temporal cortex, left inferior
frontal cortex (pars triangularis), left precentral gyrus and left precuneus. As in the case of se-
mantic data, all of these areas contained negative as well as positive values. Here, the number of
contributing brain areas in more that 80% of all models has increased.

As expected from the sparseness constraint on the voxels, fewer non-zero weight voxels
were observed in models trained with sgLASSO than with gLASSO (3387.33 ± 750.13 with
1185.28 ± 409.55 contributed by semantic data and 2202.05 ± 454.76 by phonological). Areas
that contributed most frequently to classification were left precuneus, left precentral cortex, left
inferior frontal cortex (pars triangularis) with the semantic data and left inferior frontal opercu-
lum, left postcentral gyrus, left insula, left middle frontal cortex, right precuneus, right middle
temporal cortex with the phonological data. All areas contained negative as well as
positive weights.

Using gLASSO and sgLASSO, positive as well as negative weights of left precentral cortex
and left precuneus (semantic data) and right post central cortex (phonological data) contributed
to classification models 100% of the time.

Discussion
We applied three variants of logistic regression LASSO and two deterministic classification al-
gorithms, SVM and Random Forest, to fMRI data from semantic and phonological verbal flu-
ency tasks to demonstrate the advantages of group LASSO for classification of fMRI data,
specifically the ability to identify relevant brain regions of interest.

More than 90% accuracy was achieved in distinguishing depression patients from matched
healthy control subjects when applying gLASSO, sgLASSO, and SVM to the combination of
the two datasets. Our results surpass classification performance in similar studies involving de-
pression related fMRI and SVM (65% to 86% [9, 10, 14]). Similarly accurate prediction results
with respect to depression-related MRI data, to the best of our knowledge have only been
achieved by Mwangi et al. [31]. However, in contrast to our study, the latter authors relied on
structural MRI data from patients considered to be chronically depressed. For such patients,
structural brain changes are very likely [32]. Depression studies based on whole structural
brain data are the most common and are reviewed in [33]. Except for the study mentioned
above [31], the maximum classification accuracy between healthy controls and depression pa-
tients in other relevant studies was 70%. Considering that in general, classification accuracy for
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treatment responsive and non-responsive subjects is generally 80% [33], we assume that the
classification success of [31] results from the homogenous, chronically depressed patient
group. Kipli et al. also provide a comparative study on classification accuracy for various brain
volume attributes and varying combinations of machine learning algorithms for feature selec-
tion and classification [34]. Here, the maximum classification accuracy for depression reached
85.3%. However, the evaluation of the algorithms was solely based on classification accuracy
for preselected brain volumetric attributes. Sparse algorithms were not considered.

sLASSO vs gLASSO/sgLASSO
Since sLASSO prediction relies on mostly spatially isolated voxels (Fig 8a), activities shifted to
adjacent voxels due to inter-subject variability can lead to classification errors. In contrast,
gLASSO and sgLASSO estimate class label probability from values of spatially continuous vox-
els (Fig 8b and 8c). These voxels not only indicate brain regions of interest, thereby facilitating
interpretation of results; brain activity shifted due to inter-subject variability is likely to be re-
trieved by neighboring weights. This argument is supported by the small number of commonly
selected voxels over different runs of the cross-validation (Table 3).

In the application of sLASSO to semantic and phonological task data, the number of voxels
selected in at least one of the evaluated models was 450 and 478, selected from 65 and 71 brain
areas, respectively. Only a single voxel was selected commonly in more than 80% of the models
in the cross-validation. In contrast, the highest occurrence rate in gLASSO and sgLASSO
reached 100%. More than 500 voxels were selected in more than 80% of the models for each of
the algorithms and datasets. These numbers increased when the two datasets were combined
(Table 3).

gLASSO vs sgLASSO
The relative performance of gLASSO and sgLASSO varied depending on the datasets. Both al-
gorithms attributed the highest weights to the same brain areas and even the same locations
within these brain areas (Fig 8b and 8c). While sgLASSO can be more effective in selecting
truly relevant voxels, a more relaxed voxel selection with gLASSO might be advantageous when
taking variability in individual brain areas and activation into account. Also, sgLASSO relies on
two regularization parameters, λS for voxel sparseness and λG for group sparseness, which
makes fine parameter tuning and optimization computationally demanding. A preferable pro-
cedure would thus be to use gLASSO to achieve good classification performance without heavy
computing needs for parameter optimization and use simple thresholding of weights as a prac-
tical way to determine the most relevant voxels within selected brain areas. Alternatively, if
enough test data is available, sgLASSO can be applied using only voxels of brain areas prese-
lected with gLASSO. This is preferable when handling large datasets.

gLASSO vs SVM
Both gLASSO and sgLASSO achieved better accuracy and Fscore than SVM for semantic task
data. Their performance was slightly, but significantly surpassed by SVM for the phonological
task and combined data. However, as mentioned above, gLASSO and sgLASSO offer other ben-
efits, which are highly advantageous in clinical practice.

The major advantage is the straight-forward interpretation of weights attributed to features.
SVM constructs weights by linear combination of support vector data, which results in non-
zero weights for all voxels (Fig 8(d)). This makes it difficult to draw conclusions about brain
areas relevant to diagnosis. In contrast, gLASSO as well as sgLASSO reveal discriminating
brain areas by reducing the number of voxels to those most relevant. In the case of gLASSO
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this is done in a group-wise manner, while in the sgLASSO, the number of voxels within groups
is reduced as well.

Brain areas contributing to the prediction were in agreement with their known functions
and their relationships to verbal fluency and symptoms of depression. The left precuneus, for
example, is generally interpreted as a hub to the prefrontal lobe [35], a connection that affects
motivation, planning, social behavior, and speech production [36]. It is also part of the default
mode network, that evidence suggests is altered in depressive patients. Moreover, Krug et al.
[37] found in a study with a similar verbal fluency task, that the left precuneus was more acti-
vated in healthy subjects carrying an allele variant of a specific gene, found to be overrepresent-
ed in patients suffering from bipolar disorder, MDD, or schizophrenia. Similarly, the left
precentral gyrus is explicitly involved in semantic tasks [38], as well as emotion processing [14].
However, the true relation between indicated brain areas and depression remains to be investi-
gated, especially since verbal fluency is impaired in a variety of mental diseases. On the other
hand, this implies that the same experiment conducted with patients with other diseases, could
reveal either differences or coincidences in the neural origin of common symptoms. The results
of such experiments would be of high clinical value and could be revealed by extending the
LASSO approach to a multi-class problem.

Another advantage of the LASSO algorithm is its graded, probabilistic prediction. In the
presented study, for example, when applying gLASSO or sgLASSO to the combined data, clas-
sification was only incorrect for subjects with an absolute normalized discriminative score
lower than 0.2 (Fig 6). That means that the diagnosis of a subject as depressed can be consid-
ered certain if the normalized discriminative score is higher than 0.2. Similarly, a subject can
certainty be considered diagnosed as healthy if the normalized discriminative score is lower
than −0.2.

Remarkably, false negative classification occurred only for patients whose condition im-
proved significantly over the following six weeks, so we can assume that patients with normal-
ized discriminative scores< 0.2 are likely to recover. Alternatively, we can define a separate
measure of confidence based on the overlap of the two discriminative score distributions. How-
ever, these assumptions have to be confirmed using more extensive datasets.

Mwangi et al. [31] as well as Nouretdinov et al. [14] have already drawn attention to the ad-
vantage of probabilistic prediction. Mwangi et al. illustrated this by comparing SVM and Rele-
vance Vector Machine, which has an identical functional form to SVM, but uses Baysian
inference to achieve probabilistic classification [39]. However, as with SVM, weights are diffi-
cult to interpret with respect to the most relevant brain areas. In addition, computation time
can increase considerably with increased data size [39].

Nouretdinov et al. propose transductive conformal predictors (TCP, [14, 40]) to provide the
classification model with a confidence measure. In contrast to our approach, where the confi-
dence level of a prediction can be deduced from the overlap of discriminative score distribu-
tions, TCP provides a confidence level for each prediction based on the relative number of
training samples that differ markedly from the test sample in terms of a certain non-conformity
measure. However, even though all predictions with a confidence level of 95% were correct, the
number of certain predictions (predictions for which the output predictor contained only one
label) was 0. This type of dual output is difficult to interpret compared to discriminative score
distributions provided by the LASSO method.

Further, TCP is based on pre-selection of voxels via two sample t-test. This step is not neces-
sary in the application of LASSO and prevents potentially useful information from being dis-
carded. The present study demonstrates this effect. Feature selection with a two-sample t-test
of semantic verbal fluency data would have left us with no features to which the LASSO algo-
rithm could be applied. Similarly, results of phonological data show that LASSO picked up

Logistic Group LASSO for the Diagnosis of Depression from fMRI Data

PLOS ONE | DOI:10.1371/journal.pone.0123524 May 1, 2015 20 / 23



voxels from brain regions that were not indicated as significantly different in the two-sample t-
test (frontal, post central and temporal areas).

Summary
In summary, we verified that gLASSO and sgLASSO are superior to sLASSO in terms of classi-
fication robustness and preferable to the commonly used SVM with respect to feature selection,
i.e., identification of relevant brain areas, and probabilistic prediction. The large number of
input features is successfully handled without the need of low-dimensional feature extraction.
Topographic continuity of non-zero weights can be achieved by adequately grouping input fea-
tures, thus elucidating discriminative brain areas. Finally, a measure of diagnosis reliability is
provided by the discriminative score. We therefore found that gLASSO and sgLASSO are pref-
erable for classification of depression-related fMRI data and identification of relevant brain
areas. Further investigation of these brain areas may contribute to the establishment of new
prevention and therapeutic programs. This study is the first to explicitly control for data from
patients who had not previously been diagnosed with depression.

Sparse classification algorithms for imaging data have independently been considered in
two recent studies concerning Alzheimer’s and mild cognitive impairment [41, 42]. Liu et al.
[41] raised similar concerns about standard LASSO as presented here and proposed a tree-
guided approach combined with SVM to achieve spatial feature grouping. Xin et al. [42] pre-
sented a fast, scaleable, generalized, fused LASSO algorithm for the same problem, which could
provide an alternative to sgLASSO. However, this remains to be investigated (Sparse group
LASSO is also used in studies by Zhou et al. [43], Tsao et al. [44] and [45] but concerns tempo-
ral grouping of progressive stages rather than grouping of structural features.).
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