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Radiomics refers to the high-throughput extraction of quantitative features from radiological scans 

and is widely used to search for imaging biomarkers for prediction of clinical outcomes. Current 

radiomic signatures suffer from limited reproducibility and generalizability, because most features 

are dependent on imaging modality and tumor histology, making them sensitive to variations 

in scan protocol. Here, we propose novel radiological features that are specially designed 

to ensure compatibility across diverse tissues and imaging contrast. These features provide 

systematic characterization of tumor morphology and spatial heterogeneity. In an international 

multi-institution study of 1,682 patients, we discover and validate four unifying imaging subtypes 

across three malignancies and two major imaging modalities. These tumor subtypes demonstrate 

distinct molecular characteristics and prognoses after conventional therapies. In advanced lung 

cancer treated with immunotherapy, one subtype is associated with improved survival and 

increased tumor-infiltrating lymphocytes compared with the others. Deep learning enables 

automatic tumor segmentation and reproducible subtype identification, which can facilitate 

practical implementation. The unifying radiological tumor classification may inform prognosis 

and treatment response for precision medicine.

Introduction

Radiological imaging is an integral component of cancer care and is used for screening, 

diagnosis, and staging, as well as for evaluation of treatment response and surveillance 

for disease relapse. Beyond its routine clinical applications, imaging can also provide rich 

information about tumor phenotypes, which are fundamentally governed by the underlying 

biological processes of the malignancy1. This is achieved by the high-throughput extraction 

of quantitative image features from standard-of-care radiological scans. This approach 

known as radiomics has been extensively applied in various cancer types with the goal of 

predicting therapy response and outcomes2. In addition, specific radiomic features have been 

linked to genetic and molecular characteristics of the tumor and its microenvironment3–8.

Currently, radiomics analysis in any given study is focused on one imaging modality and 

one cancer type only. This is necessary because most radiomics features (e.g., texture) 

are highly sensitive to variations in image intensity, making them modality-dependent and 

histology-specific9, 10. In clinical practice, each disease has a preferred imaging modality 

that maximizes tissue contrast, for instance, computed tomography (CT) in lung cancer and 

magnetic resonance imaging (MRI) in breast cancer. As a result, it has been challenging to 

apply radiomics signatures identified in a cohort with a given disease and imaging modality 

to other settings, which limits their reproducibility and generalizability11–13.

The Cancer Genome Atlas (TCGA) consortium recently performed an integrated molecular 

analysis of over 10,000 tumors in 33 cancer types14. With their greater statistical power, 

such pan-cancer studies may help identify commonly conserved patterns and unifying 

biological themes across cancers. Microsatellite instability (MSI), neurotrophin receptor 

tyrosine kinase (NTRK) gene fusions, and tumor mutational burden (TMB) are prime 

examples of tissue-agnostic biomarkers that are used to select patients for specific treatment 

regardless of tumor histology15.
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Given the availability of standardized genomic and transcriptomic data, current pan-cancer 

studies have mainly focused on molecular aspects of the tumor. In the context of radiological 

imaging, however, pan-cancer studies are notably lacking, significantly hampered by lack 

of standardization and diverse tissue contrast in different modalities. Compared with the 

conventional radiomic approach focusing on one cancer type and one imaging modality, a 

cross-histology and cross-modality strategy may lead to the discovery of unifying imaging 

phenotypes that are conserved across multiple cancer types and imaging modalities, which 

will have a broad impact on a larger population of patients.

In this study, we proposed novel radiological features to systematically characterize 

tumor morphology and spatial heterogeneity. These features were meticulously designed 

to ensure that they are comparable across diverse tissues and imaging contrast. Based 

on multi-institutional cohorts that span three cancer types and two major modalities, we 

identified and validated four unifying imaging subtypes that are associated with distinct 

oncogenic processes and prognoses after conventional therapies. We further demonstrated 

their potential predictive value in patients treated with immunotherapy.

Results

Overview of study design

We sought to define a radiological tumor classification scheme that is broadly applicable 

across cancer types and imaging modalities (Fig. 1a). To achieve this goal, we conducted 

an international multicenter study from 12 independent cohorts with a total of 1,682 cancer 

patients recruited from the US, Europe, and Japan (Supplementary Table 1). Our analysis 

included three cancer types (i.e., lung, breast, and brain malignancies); and two imaging 

modalities (i.e., CT and MRI). All patients had a pathologically confirmed diagnosis 

of primary malignancy, and had received standard therapies including surgery, radiation, 

chemotherapy, and/or hormonal therapy. We collected their pre-treatment radiological 

scans and, if available, tumor molecular profiles, clinicopathological and outcome data 

(Supplementary Tables 2–4). To rigorously assess reproducibility of our findings, we divided 

the 12 primary cohorts into discovery and independent validation sets as stratified by 

cancer types and imaging modalities. Further, we assessed the clinical relevance of the 

imaging subtypes in a separate cohort of 102 advanced lung cancer patients treated with 

anti-PD-1/PD-L1 immune checkpoint blockade (Supplementary Table 5).

Radiological features applicable across histology and imaging modality

We proposed two broad categories of quantitative features to characterize radiological 

phenotypes: tumor morphology and spatial heterogeneity (Fig. 1b–d). These features are 

specifically designed to account for diversity in tissue origin and imaging contrast. For 

morphology, we transformed the 3D tumor shape into a structured sequence of coefficients 

through spherical harmonic decomposition (Extended Data Fig. 1a). These coefficients 

provide an unbiased, optimal representation of the original tumor shape in the spatial 

frequency domain and can be used to fully reconstruct any tumor shape via a unique one-to

one mapping (Extended Data Fig. 1b–c). For spatial heterogeneity, we analyzed 3 distinct 

regions of interest including tumor core, intratumoral invasive margin, and peritumoral 
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parenchymal margin. Based on these non-overlapping regions, we defined 20 features 

to describe multiregional intensity variations through pair-wise comparison of normalized 

probability distribution functions. In total, 313 image features were extracted for each tumor.

We first confirmed that these image features were distributed similarly and thus comparable 

across imaging modality and cancer type (Extended Data Fig. 2). To test the reproducibility 

of extracted features against variation in tumor delineation, we randomly perturbed the 

original tumor contour and observed an overall high consistency with intraclass correlation 

coefficient of 0.83, indicating that our proposed features are robust to variation in tumor 

segmentation (Supplementary Fig. 1).

Efficient encoding of radiological features using machine learning

We split the patients in the 12 primary cohorts into discovery set and validation set stratified 

by cancer types, where the discovery set contains 601 lung cancer, 269 breast cancer, and 

136 GBM, and the validation set contains 360 lung cancer, 185 breast cancer, and 131 GBM. 

Given the large number of features, we trained an artificial neural network (ANN) called 

autoencoder in discovery cohort to learn efficient representations of the original features 

and mitigate the curse of dimensionality (Extended Data Fig. 3a). The trained autoencoder 

was tested in the validation set (Extended Data Fig. 3b). Instead of linear PCA, we used 

autoencoder for feature representation due to its capability of modelling complex non-linear 

patterns. After training, the autoencoder substantially reduced the dimension of features to 

10 from 313, while at the same time maximally preserving information in the original data 

(Extended Data Fig. 3b–c). The feature dimension reduction has the dual advantages of 

effectively removing redundancy in the features and improving stability and efficiency of 

subsequent clustering analysis.

Discovery and validation of tumor subtypes across histology and imaging modality

In the discovery set (n = 1006), based on the consensus clustering of radiological tumor 

phenotypes encoded by 10 autoencoder features, we determined the optimal cluster number 

to be four (Fig. 2a, Supplementary Fig. 2a), which maximized consensus within clusters 

while minimizing ambiguity in cluster assignments. Next, we independently applied the 

same consensus clustering analysis and trained autoencoder in the validation set (n = 676) 

and also identified 4 clusters of patients (Fig. 2b, Supplementary Fig. 2b). To measure 

the reproducibility of clusters across the discovery and validation sets, we computed the 

in-group proportion (IGP) statistics, which showed high consistency for 4 clusters, with IGP 

values of 92.4% (P < 1e-10), 91.1% (P = 0.002), 83.2% (P = 0.008), 78.0% (P = 0.021), 

respectively.

We then split the patients based on imaging modalities, i.e., CT vs. MRI. Based on the 

discovery set of CT features in 961 lung cancer patients, we again identified 4 clusters (Fig. 

2c, Supplementary Fig. 2c). Similarly, four clusters were identified in the validation set 

based on MRI features in 454 breast cancer and 267 GBM patients (Fig. 2d, Supplementary 

Fig. 2d). These clusters were found to be highly consistent across imaging modality, with 

IGP values of 81.0% (P = 0.032), 80.0% (P = 0.041), 91.8% (P = 0.014), and 91.2% (P = 

0.008), respectively.
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After confirming the consistency of patient clusters across imaging modalities and cancer 

types, we refined the subtypes by using all patients in the primary cohorts (Fig. 2e, 

Supplementary Fig. 2e). Overall, this resulted in 580 patients (34.5%) in cluster 1, 647 

patients (38.5%) in cluster 2, 272 patients (16.2%) in cluster 3, and 183 patients (10.9%) 

in cluster 4. All four clusters were represented in each of the three cancer types (Extended 

Data Fig. 4a). The distribution of clusters was largely independent of cancer type (Cramér’s 

V = 0.21, P = 0.073). We further evaluated the accuracy of the clustering results (see 

details in Methods). Overall, the cluster purity scores were 91–97%, confirming validity 

of the clustering results (Fig. 2f). Within each cancer type and imaging modality, the 

clusters remained highly reproducible. These histology and modality-independent clusters 

are thereafter named imaging subtypes 1 through 4.

Imaging characteristics distinguishing the tumor subtypes

To better understand specifically which factors contribute to the distinction among the 

subtypes, we performed differential analysis by using the original 313 imaging features 

while controlling for multiple testing (Extended Data Fig. 5). We identified four main 

categories of image features associated with the subtypes, which measure tumor volume, 

shape symmetry, shape regularity, and regional variation (Fig. 3a–b). Based on this analysis, 

we summarized the radiological interpretations of four subtypes in Fig. 3c. Specifically, 

Subtype 1 mainly consisted of small tumors with large variations across tumor-parenchyma 

interface (i.e., distinct, sharp margin); Subtype 2 consisted of intermediate sized tumors 

with moderately well-defined margin; Subtype 3 consisted of large tumors with ill-defined, 

blurred margin; Subtype 4 was characterized as large tumor with moderately well-defined 

margin. For tumor morphology, subtypes 1 to 3 had similarly smooth and regular shape, 

while Subtype 4 had the highest complexity with rugged and irregular shape. Figure 3d 

shows a graphical representation of the 4 imaging subtypes in the feature space.

Clinical validation for the prognostic significance of the imaging subtypes

We tested the prognostic relevance of the imaging subtypes and observed significant 

differences in patient prognosis within each cancer type (Fig. 4a–c). In NSCLC, subtype 

1 was associated with the best survival, subtypes 2 and 3 with intermediate prognoses, 

and subtype 4 with the worst prognosis. Consistently, in breast cancer and GBM, patients 

in subtype 4 also had the worst prognosis. In multivariate analysis, subtype 4 remained 

an independent predictor for poor survival after adjusting for stage, tumor volume, 

clinicopathological factors, and specific molecular features (Fig. 4d–f, Supplementary Table 

6–7).

We further evaluated the prognostic significance of the imaging subtypes by focusing on 

patients in clinically relevant subgroups. Specifically, we confirmed that their prognostic 

value was largely independent of disease stage and primary treatment in NSCLC. The 

distribution of subtypes for clinical stage in NSCLC is shown in Extended Data Fig. 4b. 

Moreover, the imaging subtypes remained prognostic within early (stage I/II) as well as 

locally advanced (stage III) NSCLC (Extended Data Fig. 6a–b). One notable exception 

is subtype 4, which was associated with a worse prognosis compared with subtype 3 for 

patients treated with surgery (HR=1.82, 95% CI 0.89–3.75, P=0.064). On the other hand, 
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subtype 4 appeared to have an improved prognosis that is similar to subtype 3 for patients 

treated with radiotherapy (HR=0.94, 95% CI 0.61–1.46, P=0.8), (Extended Data Fig. 6c–d). 

Fewer patients in subtypes 3 and 4 received surgery compared with radiotherapy (n = 67 vs 

160). We tested the interaction between therapeutic regimen (surgery vs radiotherapy) and 

subtype 3 vs 4 and found a possible interaction effect (P = 0.063). Moreover, we performed 

subgroup analysis by stratifying tumors according to driver gene alterations in NSCLC, such 

as EGFR and ALK (Extended Data Fig. 7a–c).

Similarly, we tested the imaging subtypes in different histological subtypes of breast cancer 

and confirmed prognostic significance especially in HER2-positive patients (Extended Data 

Fig. 7d–f). For GBM, we tested the survival stratification by imaging subtypes in different 

patient subgroups defined by MGMT methylation or IDH1 mutation status (Extended Data 

Fig. 7g–i).

To further demonstrate the advantage of using these cross-modality and cross-histology 

image features, we compared the performance for prognostic prediction using the 

conventional radiomic approach. Specifically, we trained a radiomic model in a supervised 

manner to predict survival of lung cancer patients (Extended Data Fig. 8a–b). We observed 

that the radiomics risk score was highly correlated with tumor size (Pearson correlation 

coefficient = 0.92, Extended Data Fig. 8c), and the radiomics model had a C-index of 0.60 

(95% CI: 0.56–0.64) in the validation cohort. In comparison, our proposed imaging subtypes 

were independent of tumor volume and achieved a C-index of 0.67 (95% CI: 0.63–0.72) 

in validation, which is significantly better than radiomics model (P < 0.001, Extended Data 

Fig. 8d).

Biological validation for the molecular basis of the imaging subtypes

We performed gene set enrichment analysis to identify molecular pathways associated with 

the imaging subtypes. In NSCLC, for subtype 1 with the most favorable prognosis, the 

majority of cancer hallmark pathways, including proliferation, angiogenesis, and hypoxia, 

were significantly downregulated compared with other subtypes, (Extended Data Fig. 9a, 

Supplementary Table 9). By contrast, many cancer hallmarks including glycolysis and 

metastasis-related pathways were upregulated in subtype 4, suggesting a more aggressive 

phenotype consistent with the poor survival in these patients (Extended Data Fig. 9b, 

Supplementary Table 10). Of note, we also observed an increased expression of genes 

related to radiation response such as cell cycle, apoptosis, and DNA repair, consistent with 

their increased survival when treated with radiotherapy.

Similar enrichment analyses were also performed separately for breast cancer and GBM. 

However, we did not observe any pathways that reached the predefined statistical 

significance level at FDR < 0.05, likely owing to limited statistical power given a small 

number of samples (Extended Data Fig. 9c–f). We further investigated the distribution of 

established molecular subtypes among the different imaging subtypes (Extended Data Fig. 

4c–d), and they were independent of each other, with Cramér’s V = 0.18 (P = 0.539) for 

breast cancer and Cramér’s V = 0.16 (P = 0.490) for GBM.
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Imaging subtypes stratify survival in patients treated with immunotherapy

The imaging subtypes were discovered and validated in 12 primary cohorts of patients 

treated with conventional therapies. We sought to further evaluate their clinical relevance in 

the immunotherapy setting in a completely independent cohort. To this end, we collected 

data from an institutional cohort of 102 advanced NSCLC patients who were treated 

with immune checkpoint blockade. Given the extracted CT features of primary tumors, 

we trained a multiclass classification model using XGBoost (Supplementary Methods) 

to predict the imaging subtype of each new patient. The majority of these patients with 

advanced NSCLC were classified as either subtype 3 (37%) or subtype 4 (50%), as shown 

in Fig. 5a, and both subtypes had large tumors. This is consistent with the fact that 

advanced-stage tumors tend to be larger than early-stage tumors. We then confirmed that 

the distributions of characteristic imaging features followed the same patterns in both the 

primary and immunotherapy cohorts (Fig. 5b). In particular, tumors in subtype 3 had regular 

shape and ill-defined, blurred margin, whereas those in subtype 4 had irregular shape and 

moderately well-defined margin.

There was no statistically significant difference in survival between patients in subtypes 1&2 

and subtype 4 (Extended Data Fig. 10). Strikingly, we observed that patients in subtype 

4 had significantly better survival compared with subtype 3 (HR = 0.46, 95% CI: 0.23–

0.93, P = 0.034), as shown in Fig. 5c. This is in stark contrast with the results in our 

primary cohorts treated with conventional therapies, where patients in subtype 4 had a 

significantly worse prognosis. We further compared the immune cell composition in the 

tumor microenvironment between subtypes 3 versus 4. Tumors in subtype 4 had a higher 

infiltration of several adaptive immune cell populations, including activated CD56dim natural 

killer (NK) cells, cytotoxic CD8 T cells, CD4 T helper cells, and γδ T cells (Fig 5d, 

Supplementary Table 11).

Deep learning enables automated tumor segmentation and reproducible identification of 
imaging subtypes

Our previous analysis of the imaging subtypes requires the tumor contour, which involves 

manual delineation and is subject to inter- and intra-rater variability. To overcome this issue 

and facilitate practical implementation, we trained a deep learning model based on 2D U-Net 

(Fig. 6a) to perform automated tumor segmentation. The U-Net model performed well at 

segmenting tumors in NSCLC, with average DICEs of 0.90, 0.88, and 0.84 for training, 

validation, and testing, respectively (Fig. 6b). This model performed especially well for large 

tumors (>10 cc), with DICE > 0.9, and for tumors not attached to mediastinum, with DICE 

> 0.85 (Fig. 6c–d). On the other hand, the U-Net model did not perform well in breast 

cancer, with DICEs of 0.73, 0.72, and 0.69 for training, validation, and testing, respectively 

(Supplementary Fig. 3). For GBM, tumor segmentation was performed with a pre-trained 

deep learning model.

Finally, we applied the automatically generated tumor segmentations of lung patients and 

repeated the entire pipeline for imaging subtype discovery (Fig. 6e). The clustering results 

were highly reproducible, with the cluster assignment for the majority (83.5%) of patients 
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remaining unchanged based on manual versus deep learning generated segmentations (Fig. 

6f).

Discussion

In this international multi-cohort study of 1,682 patients, we discovered and independently 

validated novel tumor subtypes that are broadly applicable across major imaging modalities 

and three cancer types. These subtypes demonstrate distinct radiological and molecular 

features, as well as survival outcomes after conventional therapies. Moreover, their 

prognostic value was independent of established clinical risk factors including tumor 

volume. Importantly, we showed that specific imaging subtypes are associated with 

differential outcomes after immunotherapies. Finally, we demonstrated that deep learning 

can be used to automate tumor segmentation, which will help standardize subtype 

identification and facilitate its implementation in clinical practice.

Radiologic-based classification has several important advantages compared with 

histopathologic assessment or molecular tumor profiling. First, imaging evaluation is 

performed for the entire 3D tumor in situ, which overcomes the sampling bias of a small 

biopsy due to intratumoral spatial heterogeneity. Second, imaging provides a non-invasive 

means for evaluation, which would allow longitudinal monitoring and follow-up of disease. 

Because radiomic features provide a representation of tumor phenotypes from a radiological 

perspective, the proposed radiologic-based tumor classification could complement current 

clinical and molecular classification. We envision that integration of information from 

different domains may further enhance prediction of treatment response and prognosis for 

precision oncology16, 17.

It is important to emphasize that the purpose of our work is not to develop a predictive 

model for a specific clinical endpoint (such as prognosis) in a particular cancer as is done 

in the traditional radiomics approach with supervised machine learning. Rather, our study 

is aimed at the discovery of unifying radiological phenotypes across different imaging 

modalities and cancer types. By identifying these converging radiographic hallmarks, we 

further revealed biological insights and established their connection with prognosis and 

response to different cancer treatments including surgery, radiation and chemotherapy, as 

well as immunotherapy.

Previous works on radiomics have been limited to one cancer type and one imaging modality 

in any given study. Consequently, it is difficult to generalize the findings that are often 

based on relatively small datasets13. Here, we aimed to discover common radiological 

patterns with biological and clinical relevance across histology and modality. To achieve 

this goal, we meticulously designed image features that are robust to tissue contrast. This 

study provides a conceptual framework that will allow aggregation of datasets with disparate 

modalities and cancer types, similar to integration of molecular data in pan-cancer studies by 

TCGA.

Despite extensive investigations in radiomics, the progress toward clinical translation has 

been slower than anticipated12, 13. One major reason is a lack of reproducibility and rigorous 
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validation, given the exploratory nature and inclusion of small numbers of patients in 

many studies12, 18. Textural features, which usually represent the overwhelming majority of 

features in a typical radiomics study, have been shown to be highly sensitive to imaging 

protocol and technical factors9. This has precluded meaningful comparison of existing 

radiomics signatures across studies with different modalities and various cancer types11.

To overcome these issues, we focused on two broad categories of radiological features 

(i.e., tumor morphology and spatial heterogeneity) and made special efforts to ensure 

their compatibility across imaging modalities. Geometric features are computed based on 

a binary image of the tumor contour, which are insensitive to tissue contrast and can be 

readily comparable across different imaging modalities and cancer types19. Specifically, 

we applied the spherical harmonic decomposition method to approximate the 3D tumor 

shape with a series of orthonormal basis functions defined on the surface of the sphere. 

Similar to Fourier analysis of time series, this allows us to interrogate in an unbiased manner 

the geometric patterns with an ordered sequence of coefficients in the frequency domain. 

Previous morphological features only focus on the low-frequency component (Extended 

Data Fig. 1c, degree 1) and disregard rich information captured at higher spatial frequencies 

(degrees 2 to 15).

While texture features are widely used as a measure of tumor heterogeneity, current 

approaches typically do not distinguish different regions within the tumor; most are focused 

on the primary tumor, ignoring the surrounding parenchyma. There is emerging evidence 

supporting the clinical relevance of these different regions20, 21. Here, we measure tumor 

heterogeneity by performing spatially explicit analysis of intratumoral and peritumoral 

regions as well as the invasive margin. By making pair-wise comparison of normalized 

density functions and using each region as an internal control, we generated features that 

are robust to variability in tissue contrast. It is worth noting that our tumor subregions 

are defined from a ‘geometric’ perspective, which is simple to implement and is generally 

applicable across cancer types and imaging modalities. On the other hand, physiological 

tumor subregions or habitats such as hypoxia and hypermetabolic activity can provide 

more meaningful biological information, and they do not necessarily follow this simple 

geometric paradigm22, 23. One caveat is that these physiological tumor subregions are likely 

cancer type-specific and imaging modality-dependent, and reliable identification of these 

subregions requires sophisticated algorithms, such as habitat imaging24, 25.

Here, we showed that the imaging subtypes are associated with distinct survival outcomes in 

three cancer types after conventional therapies. Further, the prognostic value of our imaging 

subtype was independent of tumor volume and other clinical factors. A key limitation of 

previous radiomic studies is that some signatures may be correlated with tumor burden, 

which would diminish their clinical relevance26. Similarly, we also observed that radiomics 

model was highly correlated with tumor size (Extended Data Fig. 8c). This underscores the 

importance that any useful biomarker must provide additional value beyond established risk 

factors.

The new imaging subtypes may have therapeutic implications. In particular, we found that 

subtype 4 was associated with improved survival in NSCLC patients treated with immune 
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checkpoint blockade. Consistently, we found a higher infiltration of cytotoxic NK and T 

lymphocytes in the tumor microenvironment of subtype 4. These results suggest that subtype 

4 tumors are associated with a pre-existing antitumor immunity and thus may preferentially 

respond to immunotherapy27. Interestingly, a recent study developed a CT-based radiomics 

signature specifically for estimating tumor-infiltrating CD8 T cells, which was correlated to 

survival after immunotherapy4. These findings are based on retrospective analysis, and will 

require prospective validation in future randomized trials.

For clinical implementation, different imaging modalities used in different malignancies 

may introduce some practical challenges. For instance, in lung cancer imaging, normal 

breathing can induce some degree of tumor motion depending on its anatomic location, 

which may cause blurring artifacts in the CT image. Methods for dynamic lung modeling 

and tumor tracking may be useful28. Modern multi-slice CT scanners allow fast imaging 

with a breath-hold protocol and can largely mitigate this issue. On the other hand, MRI 

is subject to its own source of variability due to the use of various sequence protocols 

and parameters. Further development in quantitative imaging with standardized acquisition 

should improve image quality and reproducibility of radiomic biomarkers29. In breast 

cancer, MRI may be acquired after tumor biopsy, which can introduce imaging artifacts 

and affect the calculation of certain features related to spatial variation.

One limitation of the radiogenomic analysis is that gene expression profiling was performed 

for the bulk tumor from surgical specimens. Single-cell gene expression analysis can 

provide much refined details and offer a deeper insight about tumor heterogeneity30. In 

future work, the radiogenomic association findings should be confirmed at the protein level 

using immunohistochemistry or immunofluorescence assays. Further, it will be important 

to establish a ‘mechanistic’ link between the imaging subtypes and their biological 

underpinnings, which will require gene knock-in/knock-out experiments using in vivo 

animal studies.

Deep learning such as convolutional neural networks has emerged as a powerful technique 

for medical image analysis and achieved promising performance in various clinical 

applications31–33. Future development of advanced deep learning techniques including 

physics-reinforced or physics-award algorithms34–36 that can lead to further improvement 

for more reliable automated tumor segmentation37, which will allow consistent identification 

of imaging subtypes defined here.

Finally, we note that while finding unifying imaging phenotypes across cancers are useful 

as demonstrated here, there certainly exist modality- and histology-specific features that are 

also important in determining disease outcomes. For instance, the edematous and diffusive 

growth pattern as visualized by specific MRI sequences is unique to GBM38. In this study, 

we mainly investigated anatomical imaging with CT and MRI, two most widely used 

modalities in clinical oncology practice. Our result does not contradict the ongoing or future 

investigation of imaging characteristics that are specific to modality or cancer type. More 

advanced, specialized imaging technologies may allow direct visualization of the functional 

and molecular characteristics, which could provide complementary information about the 

disease.

Wu et al. Page 10

Nat Mach Intell. Author manuscript; available in PMC 2022 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In conclusion, we have proposed a radiological tumor classification system that is applicable 

across imaging modality and histology. These imaging subtypes are associated with distinct 

oncogenic and microenvironmental features as well as survival patterns. Future studies are 

needed to validate the potential of this system to identify patients who are likely to benefit 

from immunotherapy.

Methods

Study design and patient cohorts

For subtype discovery and validation, we included a total of 12 cohorts: 6 non-small cell 

lung cancer or NSCLC cohorts (n=961) with CT scans, 4 breast cancer cohorts (n=455) and 

2 glioblastoma multiforme or GBM cohorts (n=266) with MRI scans. Among these, data for 

3 cohorts (one for each cancer type) were retrospectively collected from each participating 

center and the remaining 9 cohorts are publicly available. Follow-up and outcome data were 

available for 1,289 patients. We evaluated prognostic significance of the imaging subtypes 

in different clinical settings. Further, using tumor gene expression data available for 652 

patients, we investigated molecular correlates of the imaging subtypes. Finally, we collected 

data from an independent cohort of 102 patients with advanced lung cancer treated with 

anti-PD-1/PD-L1 immune checkpoint blockade and assessed clinical relevance of imaging 

subtypes in the immunotherapy setting. Detailed clinical characteristics for the discovery 

cohorts and the immunotherapy validation cohort are summarized in Supplementary Tables 

2–5 (see also Supplementary Methods).

Scan acquisition and image processing

We collected pre-treatment scans for the most commonly used imaging modality for each 

cancer, i.e., CT for NSCLC, MRI for breast and GBM. Given the heterogeneous scan 

protocols, we applied a series of image processing algorithms to harmonize the image data 

and facilitate robust feature extraction. The primary tumor was manually delineated in all 

slices by experienced physicians and the surrounding lung, brain, and breast parenchyma 

was automatically segmented. The details about scan protocols, image processing, and 

segmentation are presented in Supplementary Methods.

Radiological features

We defined two broad categories of quantitative features, i.e., tumor morphology and 

spatial heterogeneity. For morphology, we transformed the 3D tumor shape into a structured 

sequence of coefficients through spherical harmonic decomposition (Extended Data Fig. 1a). 

Special efforts are made to ensure that the shape decompositions are invariant to scale (size), 

translation, and rotation. Based on these coefficients, we proposed additional second-order 

features to summarize the shape complexity, including shape irregularity that measures the 

boundary smoothness as well as shape symmetry that measures directionally dependent 

tumor expansion. We extracted five features to characterize tumor burden, resulting in 

293 shape descriptors (f⃑S). For spatial heterogeneity, we analyzed 3 distinct regions of 

interest given the tumor contour and its surrounding parenchyma, designated as tumor 

core, intratumoral invasive margin, and parenchymal (peritumoral) margin. Based on these 
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nonoverlapping regions, we defined 20 features (f⃑R) to describe multiregional intensity 

variations through pair-wise comparison of normalized probability distribution functions. 

The details of the image features and their interpretations are explained in Supplementary 

Methods and Table 12. In total, 313 quantitative image features were extracted for each 

tumor.

In order to evaluate the sensitivity of feature extraction with respect to variation in tumor 

segmentation, we generated a new set of tumor segmentation through random perturbation 

of the original tumor contour by applying elastic deformation in 100 randomly selected 

patients via Matlab function affine3d. We then repeated the pipeline for image feature 

extraction and computed the intraclass correlation coefficient between the two sets of 

extracted image features.

We trained and validated an autoencoder, a type of artificial neural network used for 

dimensionality reduction and representation learning, to efficiently encode the original 313 

image features in a low-dimensional space (Extended Data Fig. 3). We chose autoencoder 

rather than linear PCA to account for complex non-linear relationship among high 

dimensional features. The dimensionality reduction will avoid undue influence of redundant 

features and also reduce noise. Details are described in Supplementary Methods.

Discovery and validation of imaging subtypes

We identified intrinsic imaging subtypes by applying unsupervised consensus clustering to 

study patients from 12 multi-center cohorts (see details in Supplementary Methods). The 

patients were divided into discovery and validation sets based on cancer types and imaging 

modalities, to assess reproducibility of the clustering analysis and prevent information 

leakage. As there were multiple cohorts, the largest cohort within each cancer type was 

preselected as the validation set and the remaining ones were merged into the discovery 

set. The consensus clustering analysis was carried separately in the discovery and validation 

cohorts with identical configurations. In detail, the partition around medoids clustering 

algorithm39 with the Pearson’s correlation distance metric was used as the basis for 

clustering. We performed 10,000 bootstraps with 80% item resampling of the autoencoder 

features. The optimal number of clusters was determined by varying from 2 to 10 and 

finding one that produced the most stable consensus matrices and the most unambiguous 

cluster assignments across permuted runs. The in-group proportion (IGP) statistic40 was 

applied to measure the similarity of imaging subtypes identified between the discovery and 

validation sets. IGP ranges from 0% to 100%, where higher value indicates more similarity 

between 2 data sets.

With confirmation of the highly consistent imaging subtypes across discovery and validation 

cohorts, we refined the final imaging subtypes pulling all patients in the 12 cohorts. To get a 

robust subtype definition, the reproducibility of clustering analysis was evaluated in repeated 

5 fold cross-validation scheme, where patients were randomly separated into training and 

testing sets at a ratio of 4:1. The training set was used to build the clustering model, 

which in turn was used to predict patient labels in the hold-out testing set. Cluster purity41 

was used to evaluate the clustering robustness. Cluster purity ranges from 0% to 100%, 
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where higher value indicates more robustness of clustering results. Finally, we identified 

specific radiological features that were significantly associated with the newly identified 

imaging subtypes. Specifically, the single-sample GSEA (ssGSEA) algorithm42 was applied 

to compute the enrichment scores, and the limma algorithm43 was implemented to model the 

differential expression in imaging features.

Clinical validation for prognostic significance

For 1,289 patients with detailed follow-up information, we evaluated prognostic relevance of 

the imaging subtypes. Within each of the three cancer types, we adjusted for established 

clinicopathological risk factors in the multivariate analysis. For NSCLC (n=701), we 

adjusted for age, gender, stage, tumor volume; for breast cancer (n=226), we included 

age, ER, PR, HER2 status, and tumor volume; for GBM (n=260), we considered age, 

gender, MGMT methylation, IDH1 mutation status, and tumor volume. We further evaluated 

prognostic significance of the imaging subtypes in clinically relevant subgroups, such as 

primary treatment (surgery vs. radiotherapy) in NSCLC and established molecular subtypes 

in breast cancer and GBM.

Biological validation to identify molecular correlates

We performed gene set enrichment analysis (GSEA) to identify molecular pathways 

associated with each of the imaging subtypes. This was done in a subset of patients 

for whom both imaging and gene expression data are available, i.e., NSCLC (n=274), 

breast cancer (n=254), and GBM (n=124). Specifically, the single-sample GSEA (ssGSEA) 

algorithm42 was applied to compute the enrichment scores of 50 cancer hallmark pathways 

curated from MSigDB. Moreover, ssGSEA is a powerful way to mitigate batch effects 

and overcome discrepancies between different technologies (RNA-seq vs. microarray). The 

limma algorithm43 was implemented to model the differential expression pathways.

Clinical evaluation in lung cancer immunotherapy

We analyzed an independent cohort of 102 advanced NSCLC patients treated with anti-PD-1 

or anti-PD-L1 immune checkpoint blockade, and assessed clinical outcomes in relation to 

the previously identified imaging subtypes. For imaging feature extraction, we focused on 

the lesion with the largest size. Since this cohort was not included in the imaging subtype 

discovery and validation sets, we built an ensemble learning classifier (i.e., XGBoost, 

Supplementary Methods) to predict the imaging subtype label of each new patient given 

the radiological features bypassing the procedure of dimension reduction and clustering. 

Since the immune cell composition in tumor microenvironment may influence response to 

immunotherapy, we assessed the enrichment of tumor-infiltrating immune cells for each 

individual imaging subtype. In particular, we took the gene expression for 274 primary 

NSCLC tumor samples and then estimated the abundance of 16 immune cell populations by 

using a previously curated list of genes (Supplementary Table 13).

Evaluation of subtype reproducibility with deep learning of automated tumor segmentation

We trained a deep convolutional neural network (i.e., U-Net44) to fully automate the 

tumor segmentation process (see details in Supplementary Methods). The main goal here 
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is to reduce the inter-observer variations and improve consistency in tumor segmentation 

by standardizing this process. Further, automated segmentation can facilitate clinical 

implementation of the tumor subtyping approach by saving time and annotation efforts. 

Sørensen–Dice coefficient was used to measure the quality of automated segmentation, 

with manual contours serving as the ground truth. The automated contours were used as 

input to repeat the entire computational analysis and assess reproducibility of the previously 

identified imaging subtypes.

Statistical analysis

Kaplan-Meier analysis and logrank tests were used to evaluate statistical significance of 

patient stratification by the imaging subtypes. Cox proportional hazard regression model 

was used to adjust for relevant clinicopathologic variables in multivariable analysis. For 

differential expression analysis, the Benjamini-Hochberg method was used to adjust for 

multiple statistical testing and control the false discovery rate (FDR). The Cramér’s V 

statistic was used to assess correlation between imaging clusters and cancer types. All 

statistical tests were two-sided, with a p-value less than 0.05 or FDR less than 0.05 

considered statistically significant. All statistical analyses were performed in R.

Data availability

The data is available within the Article or the Supplementary Information. The 

imaging data for 9 out of totally 13 cohorts used in this study are publicly 

available through TCIA website (https://www.cancerimagingarchive.net/) as described in 

the Supplementary Information. The imaging data for the breast cancer cohort from 

Hokkaido University, Japan is publicly available at https://drive.google.com/drive/folders/

1AsI-bvUWwdmwMd7SHXzJttUsKqmImAGz?usp=sharing

The imaging data for Stanford Lung Cancer, Lung Cancer Immunotherapy, and Cambridge 

GBM cohorts are not publicly available because they contain sensitive information that may 

comprise patient privacy as well as the ethical constriction or the regulation policy of local 

institutions. These data will be made available to individuals who contact the corresponding 

authors with a reasonable request, e.g., for non-commercial, research purposes. The gene 

expression data and mutational data of TCGA samples are publicly available in the Genomic 

Data Commons (https://gdc.cancer.gov/). The gene expression data for the other cohorts 

are available from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/; 

[accession number: GSE22226, GSE103584, GSE58661]).

Code availability

For the spherical harmonic decomposition, we used the SPHARM-MAT software (http://

www.iu.edu/~spharm/). For autoencoder, XGboost, consensus clustering, we used R 

software (version 3.5.3, R Foundation for Statistical Computing, Vienna, Austria); 

package autoencoder (version 1.1), XGboost (version 1.1.1.1), ConsensusClusterPlus 

(version 1.52.0). The U-Net architecture is available at https://github.com/lyakaap/

Kaggle-Carvana-3rd-place-solution Custom codes45 are available at https://github.com/

WuLabMDA/PanCancer
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Extended Data

Figure 1. 
Morphological characterization of tumors by spherical harmonic decomposition. a) Overall 

design of morphological analysis; b) Illustration of 3D spherical harmonic basis functions 

at different degrees and orders; c) Illustration of 3D tumors reconstructed by coefficients 

obtained from spherical harmonic decomposition. Each row represents a selected 3D tumor, 

which is reconstructed using decomposition results at 5 different degree levels. Here, 

lower degree captures more global patterns and higher degree corresponds to more detailed 

morphological patterns.
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Figure 2. 
The ridgeline plots present the distribution of 20 regional variation features in three different 

cancer types. Here, we investigate 2 tumor regions, tumor core (TC) and tumor invasive 

margin (TIM), plus 2 peritumor regions, parenchymal margin at 5 mm or 10 mm (PM5 

or PM10). In total, 5 pair-wise regions are considered, namely, TC-TIM, TC-PM5, TC

PM10, TIM-PM5, TIM-PM10. Variation for each pair-wise region was quantified with four 

measures (chi-square, Bhattacharyya distance, correlation, intersection), yielding 5*4 = 20 

regional variation features. TC-PM5 and TC-PM10 related features are colored in green, 

while TIM-PM5 and TIM-PM10 related features are colored in blue.
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Figure 3. 
Details of imaging feature dimension reduction via an autoencoder model. a) The structure 

of autoencoder used to learn a low-dimensional mapping of the original feature signals with 

detailed tuning hyperparameters; b) The optimal autoencoder loss curves in training and 

validation; c) Heatmap of pairwise correlations between 10 autoencoded features.
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Figure 4. 
Distribution of imaging clusters (subtypes) in different clinical groups. a) The distribution 

of all patients in four clusters (subtypes) across three cancer types; b) The distribution of 

lung cancer patients in four clusters (subtypes) across different clinical stage; The molecular 

subtype distribution in four imaging subtypes for c) breast cancer with luminal A/B, Her2+, 

and triple negative; d) GBM with different MGMT methylation status.
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Figure 5. 
Volcano plot of enrichment scores through single-sample Gene Set Enrichment Analysis 

(ssGSEA) of 313 proposed imaging features in all three cancer types. a) imaging subtype 1 

versus rest, b) subtype 2 versus rest, c) subtype 3 versus rest, and d) subtype 4 versus rest. 

The data for all enrichment scores are plotted as log2 fold change versus the −log10 of the 

adjusted p-value. Thresholds are shown as dashed lines. Pathways deemed as significantly 

different (false discovery rate or FDR<0.05) are highlighted with different color schemes.
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Figure 6. 
Evaluation of prognostic value of the four imaging subtypes in lung cancer subgroups. 

Kaplan-Meier curves for a) stage I+II; b) Stage III; c) Patients treated with surgery; d) 

Patients treated with radiation.
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Figure 7. 
Evaluation of prognostic value of the four imaging subtypes in subgroups within three 

cancer types. Kaplan-Meier curves for lung cancer subgroups: a) EGFR Wild Type; b) 

EGFR Mutant; c) ALK Wild Type; for breast cancer subgroups: d) ER+ group; e) HER2+ 

group; f) Triple Negative (TN) group; for GBM cancer subgroups: g) MGMT Methylated 

group; h) MGMT Unmethylated group; i) IDH1 Wild group.
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Figure 8. 
Comparison between the proposed imaging subtypes and conventional radiomics analysis 

for survival prediction in lung cancer cohorts. a) Details of the final radiomic model; b) 

Distribution of the radiomic risk score in training and validation cohorts; c) Scatterplot 

shows the correlation between radiomic risk score and tumor size measured in 2D; d) 

Distribution and comparison of c-index for the radiomic signature and the proposed imaging 

subtypes in the validation cohort.
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Figure 9. 
Oncogenic processes associated with the imaging subtypes in three cancer types. Limma

modeled enrichment analysis by single-sample Gene Set Enrichment Analysis (ssGSEA) of 

50 cancer hallmark pathways is applied. Volcano plot of enrichment scores in lung cancer: 

a) subtype 1 versus rest, and b) subtype 4 versus rest; in breast cancer: c) subtype 1 versus 

rest, and d) subtype 4 versus rest; in GBM: e) subtype 1 versus rest, and f) subtype 4 versus 

rest. The enrichment scores of 50 cancer hallmark pathways are plotted as log2 fold change 

versus the −log10 of the adjusted p-value. Thresholds are shown as dashed lines. Pathways 
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deemed as significantly different (false discovery rate [FDR] < 0.05) are highlighted with 

different color schemes.

Figure 10. 
Evaluation of imaging subtypes in the advanced lung cancer treated with immunotherapy. 

Kaplan-Meier curves of overall survival stratified by imaging subtype 1 and 2 versus 4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was partially supported by the National Institutes of Health (NIH) grants R01 CA233578, R01 
CA222512, and R01 CA193730 to RL. JW acknowledges the NIH K99/R00 CA218667 and University of Texas 
MD Anderson Cancer Center Lung Moon Shot Program. SJP is funded by a National Institute for Health Research 
(NIHR), Career Development Fellowship (CDF-18-11-ST2-003) and NIHR Brain Injury MedTech Co-operative 
based at Cambridge University Hospitals NHS Foundation Trust and University of Cambridge; The views expressed 
are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social 
Care. CBS acknowledges the EPSRC Centre Nr. EP/N014588/1. CL acknowledges Cancer Research UK grant 
(CRUK/A19732) and EPSRC Centre Nr. EP/N014588/1.

Wu et al. Page 24

Nat Mach Intell. Author manuscript; available in PMC 2022 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The authors would like to thank TCGA and TCIA for sharing the imaging and genomics data for a subset of 
patients used in this study.

References:

1. Lambin P et al. Radiomics: extracting more information from medical images using advanced 
feature analysis. Eur J Cancer 48, 441–446 (2012). [PubMed: 22257792] 

2. Gillies RJ, Kinahan PE & Hricak H Radiomics: images are more than pictures, they are data. 
Radiology 278, 563–577 (2015). [PubMed: 26579733] 

3. Itakura H et al. Magnetic resonance image features identify glioblastoma phenotypic subtypes with 
distinct molecular pathway activities. Sci Transl Med 7, 303ra138 (2015).

4. Sun R et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti
PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet 
Oncol 19, 1180–1191 (2018). [PubMed: 30120041] 

5. Jiang Y et al. Noninvasive imaging evaluation of tumor immune microenvironment to predict 
outcomes in gastric cancer. Ann. Oncol 31, 760–768 (2020). [PubMed: 32240794] 

6. Vaidya P et al. CT derived radiomic score for predicting the added benefit of adjuvant chemotherapy 
following surgery in Stage I, II resectable Non-Small Cell Lung Cancer: a retrospective multi-cohort 
study for outcome prediction. Lancet Digit Health 2, e116–e128 (2020).

7. Fan M, Xia P, Clarke R, Wang Y & Li L Radiogenomic signatures reveal multiscale 
intratumour heterogeneity associated with biological functions and survival in breast cancer. Nature 
communications 11, 1–12 (2020).

8. Wu J et al. Magnetic resonance imaging and molecular features associated with tumor-infiltrating 
lymphocytes in breast cancer. Breast Cancer Research 20, 1–15 (2018). [PubMed: 29291743] 

9. Berenguer R et al. Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of 
CT Acquisition Parameters. Radiology, 172361 (2018).

10. Mackin D et al. Measuring Computed Tomography Scanner Variability of Radiomics Features. 
Invest Radiol 50, 757–765 (2015). [PubMed: 26115366] 

11. Traverso A, Wee L, Dekker A & Gillies R Repeatability and Reproducibility of Radiomic Features: 
A Systematic Review. Int. J. Radiat. Oncol. Biol. Phys 102, 1143–1158 (2018). [PubMed: 
30170872] 

12. Limkin E et al. Promises and challenges for the implementation of computational medical imaging 
(radiomics) in oncology. Annals of Oncology 28, 1191–1206 (2017). [PubMed: 28168275] 

13. Lambin P et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat 
Rev Clin Oncol 14, 749 (2017). [PubMed: 28975929] 

14. Hoadley KA et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 
Tumors from 33 Types of Cancer. Cell 173, 291–304 e296 (2018). [PubMed: 29625048] 

15. Pestana RC, Sen S, Hobbs BP & Hong DS Histology-agnostic drug development — considering 
issues beyond the tissue. Nature Reviews Clinical Oncology (2020).

16. O’Connor JPB et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14, 
169–186 (2017). [PubMed: 27725679] 

17. Wu J, Mayer AT & Li R in Seminars in Cancer Biology (Elsevier, 2020).

18. Chalkidou A, O’Doherty MJ & Marsden PK False discovery rates in PET and CT studies with 
texture features: a systematic review. PLoS One 10, e0124165 (2015). [PubMed: 25938522] 

19. Zhang YJ Geometric modeling and mesh generation from scanned images. (CRC Press, 2018).

20. Wu J et al. Intratumoral spatial heterogeneity by perfusion MR imaging predicts recurrence-free 
survival in locally advanced breast cancer treated with neoadjuvant chemotherapy. Radiology 288, 
26–35 (2018). [PubMed: 29714680] 

21. Braman NM et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of 
pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast 
Cancer Research 19, 1–14 (2017). [PubMed: 28052757] 

22. Wu J et al. Robust intra-tumor partitioning to identify high-risk subregions in lung cancer: a pilot 
study. International Journal of Radiation Oncology* Biology* Physics 95, 1504–1512 (2016 ).

Wu et al. Page 25

Nat Mach Intell. Author manuscript; available in PMC 2022 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



23. Yankeelov TE et al. Clinically relevant modeling of tumor growth and treatment response. Sci 
Transl Med 5, 187ps189 (2013).

24. Wu J et al. Tumor subregion evolution-based imaging features to assess early response and predict 
prognosis in oropharyngeal cancer. Journal of Nuclear Medicine 61, 327–336 (2020). [PubMed: 
31420498] 

25. Syed AK, Whisenant JG, Barnes SL, Sorace AG & Yankeelov TE Multiparametric analysis of 
longitudinal quantitative MRI data to identify distinct tumor habitats in preclinical models of 
breast cancer. Cancers 12, 1682 (2020).

26. Welch ML et al. Vulnerabilities of radiomic signature development: The need for safeguards. 
Radiotherapy and Oncology 130, 2–9 (2019). [PubMed: 30416044] 

27. Cristescu R et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based 
immunotherapy. Science 362 (2018).

28. Zhang YJ, Jing YM, Liang XH, Xu GL & Dong L Dynamic lung modeling and tumor tracking 
using deformable image registration and geometric smoothing. Computational Modelling of 
Objects Represented in Images: Fundamentals, Methods and Applications Iii, 215–220 (2012).

29. Shukla-Dave A et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for 
improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J 
Magn Reson Imaging 49, e101–e121 (2019). [PubMed: 30451345] 

30. Lawson DA, Kessenbrock K, Davis RT, Pervolarakis N & Werb Z Tumour heterogeneity 
and metastasis at single-cell resolution. Nature cell biology 20, 1349–1360 (2018). [PubMed: 
30482943] 

31. Lou B et al. An image-based deep learning framework for individualising radiotherapy dose: a 
retrospective analysis of outcome prediction. The Lancet Digital Health 1, e136–e147 (2019). 
[PubMed: 31448366] 

32. Coudray N et al. Classification and mutation prediction from non-small cell lung cancer 
histopathology images using deep learning. Nat Med 24, 1559–1567 (2018). [PubMed: 30224757] 

33. Jiang Y et al. Radiographic assessment of tumor stroma and treatment outcomes using deep 
learning: a retrospective multicohort study. Lancet Digit Health (2021).

34. Li A, Chen R, Farimani AB & Zhang YJ Reaction diffusion system prediction based on 
convolutional neural network. Scientific reports 10, 1–9 (2020). [PubMed: 31913322] 

35. Li A, Farimani AB & Zhang YJ Deep learning of material transport in complex neurite networks. 
Scientific Reports 11, 1–13 (2021). [PubMed: 33414495] 

36. Tajdari M et al. Image-based modelling for Adolescent Idiopathic Scoliosis: Mechanistic machine 
learning analysis and prediction. Computer methods in applied mechanics and engineering 374, 
113590 (2021).

37. Kickingereder P et al. Automated quantitative tumour response assessment of MRI in neuro
oncology with artificial neural networks: a multicentre, retrospective study. The Lancet. Oncology 
20, 728–740 (2019). [PubMed: 30952559] 

38. Barajas RF et al. Regional variation in histopathologic features of tumor specimens from 
treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro
Oncology 14, 942–954 (2012). [PubMed: 22711606] 

39. Reynolds AP, Richards G, de la Iglesia B & Rayward-Smith VJ Clustering rules: a comparison 
of partitioning and hierarchical clustering algorithms. Journal of Mathematical Modelling and 
Algorithms 5, 475–504 (2006).

40. Kapp AV & Tibshirani R Are clusters found in one dataset present in another dataset? Biostatistics 
8, 9–31 (2007). [PubMed: 16613834] 

41. Thorsson V et al. The immune landscape of cancer. Immunity 48, 812–830. e814 (2018). 
[PubMed: 29628290] 

42. Barbie DA et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require 
TBK1. Nature 462, 108–U122 (2009). [PubMed: 19847166] 

43. Ritchie ME et al. limma powers differential expression analyses for RNA-sequencing and 
microarray studies. Nucleic acids research 43, e47–e47 (2015). [PubMed: 25605792] 

44. Ronneberger O, Fischer P & Brox T in International Conference on Medical image computing and 
computer-assisted intervention 234–241 (Springer, 2015).

Wu et al. Page 26

Nat Mach Intell. Author manuscript; available in PMC 2022 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



45. 10.5281/zenodo.4906510. 

Wu et al. Page 27

Nat Mach Intell. Author manuscript; available in PMC 2022 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Overview of the study design and quantitative imaging analysis. a) Study design, which 

contains five phases; b-d) Illustration of the proposed image feature extraction pipeline. 

First, the primary tumor was manually delineated and surrounding parenchymal tissues 

(i.e., lung, fibro-glandular, and brain) were automatically segmented, b). Then, two broad 

categories of image features were calculated, including c), systematic shape descriptors 

through spherical harmonic decomposition and d) spatial heterogeneity described by 

regional variations among tumor core, tumor invasive margin, and parenchymal region.
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Figure 2. 
Identification of unifying tumor subtypes based on unsupervised consensus clustering of the 

extracted image features across three cancer types and across two modalities (CT and MRI). 

The consensus matrix corresponding to the optimal cluster number (k=4) for a) discovery 

set, b) validation set, c) CT set, d) MRI set, and e) whole population. Patients are both 

rows and columns. The matrix is ordered by consensus-clustered groups, depicted as a 

dendrogram above the heat map. f) The cluster purity score of four tumor subtypes in three 

individual cancer types.
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Figure 3. 
Radiological characteristics of the unifying tumor subtypes. a) Heatmap of four subtypes 

with respect to the original imaging features; b) Boxplots of four representative groups of 

features including tumor volume, positive-correlated regional variation, shape symmetry, 

and shape irregularity, stratified by imaging subtypes as well as cancer types; c) Summary 

of key imaging characteristics of four subtypes; d) Schematic diagram for distribution of 

the imaging subtypes in a 3D space formed by tumor size, shape complexity, and regional 

variation.
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Figure 4. 
Evaluation of prognostic value of the four imaging subtypes in three individual cancer types. 

Kaplan-Meier curves for a) overall survival in lung cancer, b) recurrence-free survival in 

breast cancer, and c) overall survival in glioblastoma multiforme. d-f) Forest plots show the 

hazard ratio and p values obtained from a multivariate Cox regression analysis including 

the proposed imaging subtypes and established clinicopathologic factors in different cancer 

types.
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Figure 5. 
Clinical evaluation of the imaging subtypes in advanced lung cancer treated with 

immunotherapy. a) Distribution of inferred imaging subtypes; b) Representative features 

stratified by imaging subtypes, including tumor volume, positive-correlated regional 

variation, shape symmetry, and shape irregularity; c) Kaplan-Meier curves of overall 

survival stratified by imaging subtype 3 versus 4; d) Comparison of tumor-infiltrating 

immune cell populations between subtypes 4 and 3.
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Figure 6. 
Deep learning to automate 3D tumor segmentation. a) The detailed architecture of proposed 

U-Net with dilation at bottleneck layers; b) DICE coefficients of trained U-Net model in 

NSCLC in training, validation, and testing sets; DICE coefficients of U-Net stratified by c) 

tumor sizes, and d) anatomical locations of the tumor; e) Representative CT slices and tumor 

contours of four different testing patients; f) Confusion matrix of clustering results based on 

manual tumor contouring and automated segmentation for NSCLC patients.
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