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Abstract: After skin injury, wound healing sets into motion a dynamic process to repair and replace
devitalized tissues. The healing process can be divided into four overlapping phases: hemostasis,
inflammation, proliferation, and maturation. Skin microbiota has been reported to participate in
orchestrating the wound healing both in negative and positive ways. Many studies reported that
skin microbiota can impose negative and positive effects on the wound. Recent findings have
shown that many bacterial species on human skin are able to convert aromatic amino acids into
so-called trace amines (TAs) and convert corresponding precursors into dopamine and serotonin,
which are all released into the environment. As a stress reaction, wounded epithelial cells release the
hormone adrenaline (epinephrine), which activates the β2-adrenergic receptor (β2-AR), impairing
the migration ability of keratinocytes and thus re-epithelization. This is where TAs come into play,
as they act as antagonists of β2-AR and thus attenuate the effects of adrenaline. The result is that
not only TAs but also TA-producing skin bacteria accelerate wound healing. Adrenergic receptors
(ARs) play a key role in many physiological and disease-related processes and are expressed in
numerous cell types. In this review, we describe the role of ARs in relation to wound healing in
keratinocytes, immune cells, fibroblasts, and blood vessels and the possible role of the skin microbiota
in wound healing.
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1. The Ambivalent Role of the Skin Microbiota in Wound Healing

It is textbook knowledge that the wound healing process occurs in four stages [1,2]:
hemostasis, inflammation, proliferation, and maturation [3,4]. Hemostasis is the process of
wound closure by clotting. The inflammatory phase begins immediately after the injury,
when transudate (consisting of water, salt, and protein) leaks from the injured blood vessels
and causes local swelling. The inflammation has two functions: it controls bleeding and
counteracts infection. In the proliferative phase, the wound is built up with new tissue from
collagen and extracellular matrix. The wound contracts with the help of myofibroblasts that
grip the wound edges and pull them together with a mechanism similar to that of smooth
muscle cells. Furthermore, a new network of blood vessels is established (angiogenesis) so
that the granulation tissue is healthy and receives sufficient oxygen and nutrients [5]. The
maturation phase is the remodeling phase of wound healing in which collagen is converted
from type III to type I and the wound closes completely. The cells that were used to repair
the wound but are no longer needed are removed by apoptosis, or programmed cell death.

Normally, the phases of wound healing are linear; however, wounds can progress
backward or forward depending on internal and external patient conditions. Failure to
progress in the stages of wound healing can lead to chronic wounds. Chronic wounds
frequently occur in patients with underlying disorders such as venous or arterial insuffi-
ciency, infection, diabetes, immunosuppression, poor nutrition, cell hypoxia, dehydration,
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or metabolic deficiencies of the elderly [6]. The transition from the inflammatory to the
proliferative phase is a key step during healing, and a compromised transition is associated
with wound healing disorders that can lead to chronic or nonhealing wounds [7]. The
nonhealing wounds are often complicated by bacterial infections that trigger a continuous
influx of neutrophils and macrophages, further delaying wound healing [8]. However,
many studies have also reported the positive effect of the skin microbiota in wound heal-
ing, either by modulating immune response, enhancing the wound healing process, or
preventing pathogen infection.

2. Certain Members of the Skin Microbiota Can Have a Negative Impact on
Wound Healing

The skin represents the primary interface between the host and the environment. This
organ is also home to trillions of microorganisms, commensal microbiota, that play an
important role in tissue homeostasis and maintaining a symbiotic relationship with the
immune system [9,10]. The commensals can be remodeled over time or in response to
environmental challenges. The precise relationship between the commensal microbiota
and impaired wound healing remains unclear. In a diabetic mouse model, it was shown
that over time the spectrum of colonizing bacteria shifted to Firmicutes species (includ-
ing Staphylococcus and Aerococcus), which was correlated with enhanced expression of
genes involved in defense and immune response [11]. Moreover, Corynebacterium stria-
tum, Alcaligenes faecalis, and S. aureus have a negative impact on diabetic wound healing
and severity [12], and biofilm-forming bacteria such as S. aureus, Pseudomonas aerugi-
nosa, Peptoniphilus, Enterobacter, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae,
Proteus mirabilis, Stenotrophomonas, Finegoldia, and Serratia spp. impair diabetic wound
healing [13–15].

In a study of diabetic foot ulcer (DFU), it was shown that the proportions of Bac-
teroidetes, Prevotella, Peptoniphilus, Porphyromonas, and Dialister were higher in the severe
groups than in the mild groups, whereas that of Firmicutes was lower in the severe
groups [16]. In refractory chronic venous leg ulcers, anaerobic bacteria, particularly Pep-
tostreptococcus spp., were present in the deep tissues, where they inhibit keratinocyte
wound repopulation and endothelial tubule formation [17]. Moreover, in patients with
neuropathic DFU, it was shown that the most abundant genera in a study with neuropathic
DFU were Staphylococcus (18%), Corynebacterium (14%), Pseudomonas (9%), and Streptococcus
(7%) [12]. In this study S. aureus led to a deterioration of wound healing, whereas the
typical commensals C. striatum and A. faecalis enhanced wound re-epithelialization.

S. aureus generally appears to play a negative role in wound healing. Chronic wounds
are characterized by high levels of oxidative stress (OS). To verify whether OS really impairs
wound healing, catalase inhibitors were applied in a diabetic mouse wound model, and
it was shown that increasing OS levels were correlated with increasing chronicity [18].
Interestingly, high OS levels in the wound tissue in the absence of the skin microbiome do
not lead to chronic wounds. These findings show that both high OS levels and bacteria are
needed for chronic wound initiation and development. S. aureus, which is a commensal
on the healthy human skin [19], is frequently reported to play a negative role in wound
healing. However, only a few studies differentiate whether they are Agr+ or Agr− negative
strains. Agr is a global regulator that particularly controls virulence gene expression. Agr−
strains hardly produce hemolysins and phenol-soluble modulins (PSMs). Particularly, the
N-formyl methionine-containing (fMet) PSMs not only have a high cytotoxic activity but
also activate the FPR2 receptor, leading to neutrophil activation, chemotaxis, and cytokine
release [20,21].

Regardless of the distinction between friend and foe in the skin microbiota, it can be
said that overall, it tends to play a negative role. This is supported by the observation that
wound repair of germ-free (GF) mice was much better compared to conventional (CV) mice
with a commensal microbiota [22]. In GF mice, levels of the anti-inflammatory cytokine
IL-10, the angiogenic growth factor VEGF, and angiogenesis were higher. Overall, this
study suggests that in the absence of any contact with microbiota, skin wound healing is ac-
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celerated and scarless, partially because of reduced accumulation of neutrophils, increased
accumulation of alternatively activated healing macrophages, and better angiogenesis at
wound sites [22]. That the microbiota is a primary cause for the pathogenesis of chronic
wounds was impressively demonstrated by seeding the microbiota from a human chronic
wound to a mouse that developed a similar chronic wound [23].

3. Positive Effect of Some Commensals and Probiotics on Wound Healing

The skin microbiota is an ecosystem comprising a multitude of microbial species
interacting with their surroundings, including other microbes and host epithelial and
immune cells [24]. We know that the skin microbiota is in principle good if it is in balance
with the skin immune system and protects the skin from pathogens. We also know that the
skin microbiota can be remodeled over time to a predominantly ‘bad’ population. However,
it is not so easy to determine which are the good and which are the bad bugs.

It is assumed that excessive and, above all, permanent stimulation of the innate
immune system and inflammatory responses of the host not only worsens wound healing
but also promotes a chronic course [25–27]. Apparently, commensal and pathogenic
bacteria differ in their immune stimulation and expression of defensins. For example,
commensal staphylococci induce antimicrobial peptides/proteins (AMPs) via TLR2, EGFR,
and NF-κB activation, whereas pathogenic staphylococci activate the mitogen-activated
protein kinase and phosphatidylinositol 3-kinase/AKT signaling pathways and suppress
NF-κB activation [28].

Skin wounds heal by coordinated induction of inflammation and tissue repair; thereby,
commensal skin microbiota can play a positive role by the activation of type I interferon
(IFN)-producing plasmacytoid DC (pDC) [29]. This activation leads to the expression
of the chemokine CXCL10, which recruits pDC and acts as an antimicrobial protein to
kill exposed microbiota, leading to the formation of CXCL10–bacterial DNA complexes.
The bacterial DNA complexes and not the host-derived DNA activate pDC to produce
type I IFNs, which accelerate wound closure by triggering skin inflammation and early
T-cell-independent wound repair responses, mediated by macrophages and fibroblasts that
produce major growth factors required for healing [29]. Besides, particular commensals,
such as S. epidermidis, were reported to induce IL-17A(+) CD8(+) T cells that home to the
epidermis, enhance innate barrier immunity, and limit pathogen invasion [9].

Although S. aureus is the most prominent cause of skin and soft tissue infections (SSTI)
worldwide, it has been shown that the two IgG-binding proteins, SpA and Sbi, play a
positive role in skin repair and wound healing, because corresponding mutants show an
increased abscess formation, increased bacterial load in skin lesion, and increased skin
lesion area [30]. However, what has not been shown is how the direct treatment with SpA
or Sbi affects wound healing.

Some coagulase-negative staphylococci (CoNS) species can inhibit quorum sensing
(QS) or even the growth of S. aureus. Staphylococcus caprae, for example, produces the S.
caprae autoinducing peptide (AIP) that inhibits QS of S. aureus and thus the expression
of various virulence genes [31]. Staphylococcus lugdunensis strains produce lugdunin, a
novel thiazolidine-containing cyclic peptide antibiotic that prohibits colonization by S.
aureus [32]. Quite a number of CoNS produce 6-thioguanine (6-TG), a purine analog
that suppresses S. aureus growth by inhibiting de novo purine biosynthesis and is also
effective in wound healing [33]. Other CoNS produce lantibiotics such as epidermin and
gallidermin, which inhibit cell wall biosynthesis and have broad-spectrum activity against
Gram-positive pathogens [34,35], or antimicrobial peptides (AMPs) that selectively kill
S. aureus and synergize with the human AMP LL-37 [36]. All these species could have a
positive influence on wound healing or prevent a chronic course. Other probiotic candidates
with a positive effect are lactic acid bacteria such as Lactobacillus plantarum, Lactobacillus
casei, Lactobacillus acidophilus, and Lactobacillus rhamnosus [37]. Recombinant lactobacilli
expressing the chemokine CXCL12, which is strongly chemotactic for lymphocytes, also
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improved wound closure in mice with hyperglycemia or peripheral ischemia, conditions
associated with chronic wounds [38].

Unfortunately, the knowledge we have about the negative and positive effects of
some bacteria in wound healing is still fragmentary. It is therefore important to identify
the causes and elicitors of these chronic and nonhealing wounds. Often microorganisms
play a role that counteracts and delays the healing process by excreting effectors such as
toxins and immune stimulants that counteract and delay the healing process. Evidence is
accumulating that excessive or persistent inflammatory responses triggered by bacteria are
major causes of chronic and nonhealing wounds. It is therefore necessary to identify the
triggers of the inflammatory reactions and find ways to neutralize their activity in order to
ensure the natural course of wound healing. In Table 1, skin microbiota species that have
an adverse or a promoting effect on wound healing are summarized.

Table 1. Microbiota species that have an adverse (A) or a promoting (B) effect on wound healing.

Species Effector Mode of Action References

(A) Adverse effect on wound healing

Peptostreptococcus spp.
(P. magnus, P. vaginalis, and P.

asaccharolyticus)
Bacterial supernatant

Inhibit fibroblast proliferation,
keratinocyte proliferation and

repopulation, and endothelial tubule
formation

[17]

Staphylococcus aureus, Pseudomonas
aeruginosa, Peptoniphilus sp.,

Stenotrophomonas sp., Finegoldia sp.,
Serratia sp., Bacillus sp., Enterococcus sp.,

Enterobacter aerogenes, Acinetobacter
baumanii, Klebsiella pneumoniae, Proteus

mirabilis, Aspergillus fumigatus,
Enterobacter cloacae, Corynebacterium

frankenforstense, Corynebacterium
striatum, Alcaligenes faecalis and

Acinetobacter sp.

Biofilm Related to wound chronicity [12,13,39,
40]

Skin commensals Can be particulate cell wall
peptidoglycan Augment S. aureus pathogenesis [41]

Bacteria Muramyl dipeptide

Delay wound repair by reducing
re-epithelialization; increasing

inflammation; and upregulating of
murine β-defensins 1, 3, and 14

[42]

Pathogenic staphylococci Secreted factors

Activate the mitogen-activated protein
kinase and phosphatidylinositol

3-kinase/AKT signaling pathways and
suppress NF-κB activation

[28]

Pathogenic fungi Wound necrosis [43]

(B) Promoting effect on wound healing

Staphylococcus epidermidis and possibly
other skin commensals with sadA gene Trace amines Accelerate wound healing by partially

antagonizing the β-adrenergic receptor [19,44]

Skin commensals predominantly from
Staphylococcus Bacteriocins

Inhibit pathogenic Gram-positive
bacteria such as Cutibacterium acnes,

Staphylococcus epidermidis, and MRSA
[45]

Staphylococcus caprae and other
coagulase-negative staphylococci Autoinducing peptide Inhibit quorum sensing of S. aureus [31,46]

Lactobacilli Organic acids
Antimicrobial activity against skin

pathogens and prevent biofilm
formation

[37,47,48]
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Table 1. Cont.

Species Effector Mode of Action References

Lactobacillus rhamnosus, Lactobacillus
reuteri Lysate Increase keratinocyte proliferation and

migration [49]

S. epidermidis Short chain fatty acids Suppress the growth of S. aureus and C.
acnes [50]

S. epidermidis Delta-toxin (PSMγ)
Cooperates with the host-derived

antimicrobial peptides in the innate
immune system to eliminate pathogens

[51]

S. epidermidis
Induces IL-17A+ CD8+ T cells,

enhances innate barrier immunity, and
limits pathogen invasion

[9]

S. epidermidis and S. hominis Antimicrobial peptides Selectively kill S. aureus and synergize
with the human AMP LL-37 [36]

Commensal staphylococci Secreted factors

Induce expression of the AMPs HBD-3
and RNase7 in primary human

keratinocytes via Toll-like receptor
(TLR)-2, EGFR, and NF-κB activation

[28]

Commensal staphylococci Lipoteichoic acid

Inhibit both inflammatory cytokine
release from keratinocytes and

inflammation triggered by injury
through a TLR2-dependent mechanism

[52]

S. aureus Peptidoglycan
Ameliorate

cyclophosphamide-impaired wound
healing

[53]

Staphylococci Surface proteins SpA and Sbi

Initiate signaling cascades that lead to
the early recruitment of neutrophils,
modulate their lifespan in the skin

milieu, and contribute to proper abscess
formation and bacterial eradication

[30]

Skin commensals

Trigger activation of neutrophils to
express the chemokine CXCL10 to kill
exposed microbiota; activate pDC to

produce type I IFNs, which accelerate
wound closure by triggering skin

inflammation and early
T-cell-independent wound repair

responses

[29]

Skin commensals
Induce T-cell responses that lead to

protection from pathogens and
accelerated skin wound closure

[54]

4. Adrenergic Receptors (ARs) Are Expressed in Many Cells of the Skin and
Contribute to Wound Healing

A stress reaction triggered by a wound leads to an increase, both locally and sys-
temically, in the production of stress hormones such as adrenaline and cortisol [55–58].
These stress hormones, particularly adrenaline (epinephrine), are crucial at the first stage
of wound healing, as well as for the homeostasis and inflammatory phase. However, the
prolonged increased level of adrenaline delays further stages of wound healing (Figure 1A),
namely the proliferative and maturation phases [59]. As adrenaline plays an important
role in wound healing [44], adrenergic receptors (ARs) also come into play.
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Figure 1. The role of adrenaline and TA in wound healing. (A) Cells of the epidermis, dermis, and
hypodermis express ß-AR and are therefore responsive to elevated adrenaline levels triggered by
wounding as a stress reaction. Sustained ß-AR activation due to elevated adrenaline levels results in
a number of sequelae: (a) impairment of the migration ability of keratinocytes and re-epithelization;
(b) delay of infiltration of the immune cells to the wound, as well as delay of cytokine production
and macrophage recruitment; (c) decrease in collagen production and migration of fibroblasts; (d)
inhibition of angiogenesis by endothelial vascular cells. (B) TAs, particularly those produced by skin
microbiota, antagonize the effect of adrenaline by interacting allosterically with ß2-AR, thus boosting
wound closing.

ARs are a class of G protein-coupled receptors that interact with catecholamines
such as noradrenaline (norepinephrine) and adrenaline. ARs are classified as alpha or
beta receptors, which can be further subdivided into α-1, α-2, ß-1, ß-2, and ß-3 and even
to further subtypes [60]. ARs play a key role in many physiological or disease-related
processes and are present in numerous cell types involved in wound healing processes.
For example, keratinocytes express β2- and α1-AR [61–63]; endothelial cells express β2-
AR [64,65]; immune cells, such as neutrophils and macrophages, express β2-AR [66,67];
and fibroblasts express β1-, β2-, β3-, and α1-AR [68–73].
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4.1. Keratinocytes

Keratinocytes make up over 90% of the cells of the epidermis, the outermost layer of
the skin. Keratinocytes undergo a differentiation process starting from the basal membrane
up to the keratinized epithelium (the outermost layer). Keratinocytes represent the first
cell layer to respond to stressors such as injury or invasion of pathogens by releasing
cytokines or hormones like adrenaline. They express two key enzymes for adrenaline syn-
thesis, namely tyrosine hydroxylase and phenylethanolamine-N-methyl transferase, within
cytoplasmic vesicles [74]. An injury induces an increase in adrenaline level locally by upreg-
ulating the phenylethanolamine-N-methyltransferase in keratinocytes [57]. The increase in
adrenaline level is followed by the adrenaline’s exocrine and paracrine effects in the wound
area. Due to their re-epithelialization capacity, keratinocytes play an important role in
wound healing; they proliferate and migrate to the injured site. The activation of β2-AR in
keratinocytes induces an increase in the intracellular Ca++ level [75]; thus, the keratinocyte
proliferation is increased as intracellular Ca++ regulates cell proliferation [76,77].

However, the β2-adrenergic receptor activation also impairs the re-epithelization due
to stabilization of the actin cytoskeleton [78], which leads to a reduction in the migration
ability of keratinocytes [57]. The directional migration of keratinocytes is modulated by
β2-AR activation by two distinct mechanisms: cAMP-independent and cAMP-dependent
mechanisms [79,80]. In keratinocytes, β2-AR activation is followed by the increase in β2-AR
association with protein phosphatase 2A (PP2A) and association of PP2A with extracellular
signal-regulated kinase 2 (ERK) [79]. Moreover, β2-AR activation in keratinocytes also
downregulates the Akt pathway [57]. As the ERK2 pathway and the Akt pathway are
promigratory signaling cascades, these phenomena lead to a nonmigratory phenotype in
keratinocytes.

4.2. Immune Cells

The immune system orchestrates the wound healing process by modulating the
secretion of cytokines, chemokines, and growth factors to promote cell-to-cell communi-
cation [27]. ARs somehow take a role in immune modulation in wound healing, as ARs
are found in lymphocytes, macrophages, and neutrophils [81,82]. For example, in the
inflammation stage, the increase in adrenaline due to injury activates the macrophage’s
β2-AR and induces IL-6 production. The increase in IL-6 leads to neutrophil trafficking to
the wound area. This event is important to eradicate any potential pathogen to prevent
infection.

However, the extended β2-AR activation due to high adrenaline production in the
wound area hinders the healing process [83]. The wound healing process can be impeded
by not only the increased local adrenaline but also the high level of systemic adrenaline. A
study conducted by Romana-Souza in 2010 [59] using rotation-stressed mice revealed the
following changes: a delay in the infiltration of neutrophils and mast cells into the wound
area, a delay in TNF-α expression, and recruitment of F4/80-positive macrophages. These
series of events are modulated by β-AR activation [59,78]. The mechanisms through which
β2-ARs signal, how β2-AR functions and is regulated by the sympathetic nervous system
(SNS), and how β2-AR cross-talks with other signaling pathways activated by immune
challenge is summarized by Lorton and Bellinger [84].

4.3. Fibroblasts

Fibroblasts engage in wound healing by providing the extracellular matrix and colla-
gen structures to support effective wound healing and wound contraction [85]. To perform
its functions, a fibroblast needs to proliferate, migrate, and differentiate, which are processes
that are regulated by ARs. β1-, β2-, and β3-AR activation induces fibroblast proliferation
via different pathways. β2-AR activation increases ERK 1/2 phosphorylation and thus
enhances proliferation [85]. The activation of β2-AR increases migration of fibroblasts [72],
but the activation of β3-AR inhibits their migration by stimulating excessive nitric oxide
production and inhibiting Akt phosphorylation. After migrating and proliferating in the
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wound area, fibroblasts need to differentiate and produce collagen to complete their job.
Studies by Romana-Souza [59,78,85] in chronically stressed mice and murine dermal fi-
broblast cultures showed that β-AR activation increases myofibroblast differentiation but
decreases collagen production.

4.4. Blood Vessels

An injury with ruptured blood vessels leads to blood loss. The adrenaline produced
by keratinocytes [57] shows a paracrine effect on the smooth muscle surrounding the blood
vessels. The α1-AR activation of smooth muscle leads to muscle contraction, causing the
constriction of blood vessels and finally reducing the blood loss [86,87]. The ruptured
blood vessels in a wound will be recovered at the angiogenesis stage, which is, however,
inhibited by adrenaline.

The prolonged increase in adrenaline, both locally in the wound area and system-
ically, impedes angiogenesis via β-AR activation [88]. The activation of β-AR hinders
the endothelial migration via cAMP-dependent and protein kinase A (PKA)-independent
mechanisms. It also reduces the formation of the fibroblast growth factor 2 (FGF2) and
vascular endothelial growth factor A (VEGF-A), as well as proangiogenic growth factors
secreted by endothelial cells and keratinocyte cells, respectively, and suppresses endothelial
tubule formation, as shown in an in vitro study using cell cultures [88]. An in vivo study
using a murine excisional skin wound model also showed that activation of β-AR inhibits
the formation of new blood vessels in a wound [88].

5. Interplay between Adrenaline and Skin Bacteria
5.1. TA-Producing Skin Microbiota Might Accelerate Wound Healing via ARs

Many members of the genera Staphylococcus and Macrococcus are typical colonizers
of the human skin [89]. Recently, it has been shown that various staphylococcal species
of the human skin microbiota possess the sadA gene that encodes an aromatic amino acid
decarboxylase (SadA) that converts aromatic amino acids into so-called trace amines (TAs):
tryptamine, phenethylamine, and tyramine [90]. The TAs are more or less quantitatively
excreted and can therefore interfere with host cell specific TA-receptors. TA-producing
staphylococcal species are surprisingly common in the human gut and human skin micro-
biota [19,44,90]. TAs can interact with various ARs. They act as agonists of α2-AR [91,92]
and as antagonists of β-AR [44,93] and of α1-AR [94]. Some studies used antagonists to
block β-AR, which resulted in an increase in ERK phosphorylation, keratinocyte migration,
and re-epithelialization and conclusively accelerated wound healing [72,95]. It has been
proven that TAs accelerate keratinocyte migration via cAMP-dependent mechanisms by
blocking the β2-AR in vitro [44]. However, the positive effect of TA on wound healing
was also shown in a mouse model where not only topical administration of TA but even a
TA-producing Staphylococcus epidermidis strain accelerated wound healing in contrast to its
non-TA-producing mutant [44]. Since SadA is a highly promiscuous TA-producing decar-
boxylase in Firmicutes, the skin microbiome was specifically examined for the presence
of sadA-homologous genes. SadA is a highly promiscuous TA-producing decarboxylase
in Firmicutes, and its homologs were found in seven bacterial phyla and a large number
of genera of the human skin microbiome [19]. The TA-producing species among the mi-
crobiota enhance wound healing most likely at the early hemostasis stage. These results
support the hypothesis that skin commensals might play a positive role in wound healing
(Figure 1B).

However, the role of TA-producing skin commensals in wound healing is probably not
only due to the acceleration of keratinocyte migration. Because many crucial wound healing
processes are slowed down by β-AR activation, it is quite possible that TAs produced by
skin commensals also accelerate wound healing by initiating counteracting processes.
We think that the infiltration of neutrophils and mast cells into the wound region, the
recruitment of F4/80-positive macrophages, TNF-α expression, fibroblast proliferation–
migration–differentiation, and angiogenesis processes might also be affected by TAs. To
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better understand the influence of the skin microbiota on wound healing, we need more
knowledge on the molecular mechanisms of β-adrenergic receptor-mediated cross-talk
between sympathetic neurons on the one hand and epithelial and immune cells on the
other. We also need to know more about TA-induced receptor transactivation cascades.

5.2. Adrenaline Controls Not Only Sympathetic Nervous System but Also Quorum Sensing
in Bacteria

Adrenaline also controls metabolism and virulence traits of some members of the
skin microbiota. The spike in adrenaline due to injury affects not only the skin tissues
themselves but also members of the skin microbiota (Figure 2). Some bacterial species
that are normally found on skin, Micrococcus luteus and Cutibacterium acnes, showed an
increase in biofilm formation in the presence of adrenaline [96,97]. The increased biofilm
formation, particularly with C. acnes, is due to the possession of a catecholamine receptor
homolog as found in eukaryotes and E. coli [96]. Catecholamine receptors in bacteria have
been reported first in E. coli as a quorum sensing receptor named QseC that regulates some
phenotypes, such as motility and adherence. Later, QseC homologs were reported in many
other Gram-negative bacteria [98–102]. Recently, similar receptors were also discovered
in Gram-positive bacteria, such as VicK in Enterococcus faecalis that regulates adherence to
keratinocytes and biofilm formation as well [103].
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Figure 2. Adrenaline affects skin bacteria. The adrenaline level by injury stress also affects some
skin bacteria possessing QseBC-regulated pathways. Adrenaline acts as a QseBC quorum-sensing
activator, thus inducing bacterial motility, biofilm formation, adherence, and toxin production via
this signaling pathway. In addition, adrenaline may also support bacterial growth and metabolism
by complexing ferric ions as a siderophore, thus supplying these bacteria with additional iron.

Adrenaline also has been reported to support the growth of bacteria in general by
forming complexes with ferric ions as a siderophore [104]. In one study, using a guinea
pig model of surgical wound infection, it was shown that treatment of adrenaline together
with lidocaine exhibited a 20 times higher S. aureus colonization in the wound compared to
treatment with lidocaine alone [105]. Adrenaline also increases the metabolic activity of
Micrococcus luteus [97] and the swarming activity of Pseudomonas fluorescens [106].
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6. Topical Probiotics Are a Therapeutic Option in the Treatment of Chronic Wounds

Wound healing is a complex process and is orchestrated by a sophisticated interplay be-
tween factors. One of the intrinsic factors is adrenaline, which is crucial for the early stages
of the wound healing process via AR activation. The extended AR activation, however,
impedes keratinocyte migration, decreases collagen production, and delays the immune
cell activities and angiogenesis process. To overcome these impediments by ARs, the
administration and application of AR antagonists, particularly β-AR antagonists, showed
promising results both in in vitro and in vivo studies. Studies by Romana-Souza [59,78] in
stressed mice revealed that the administration of propranolol, a β-AR antagonist, reversed
the delay in infiltration of neutrophils and mast cells into the wound area, a delay in TNF-α
expression, and recruitment of F4/80-positive macrophages, which was later followed by
faster wound closing and re-epithelization. Besides propranolol, dopamine and TA appli-
cation could increase the keratinocyte migration rate by inhibiting the increase in cAMP
level through partial blockade of β2-AR and eventually accelerate wound healing [44].

Another potential therapeutic strategy to enhance wound healing is via skin micro-
biota manipulation. The purpose of skin microbiota manipulation is to increase the number
of advantageous microbiota, particularly in the wound healing process, either by prevent-
ing pathogen infection or by accelerating the healing process (Table 1). As mentioned above,
TAs can be produced by skin commensals that possess sadA gene. Indeed, it has already
been demonstrated that topical application of TA-producing bacteria (S. epidermidis O47) on
skin could enhance wound healing [44]. Even certain lactobacilli, which are not typical skin
commensals, and their lysate can increase keratinocyte migration and proliferation [49].
Moreover, lactobacilli are known to produce organic acids that show antimicrobial activity
against skin pathogens and inhibit biofilm formation on wounds [37,47,48]. Skin microbiota
manipulation can be also carried out by topical application of certain compounds, such as
traditional Chinese medicine that has been proven to be effective in treating chronic ulcers
by regulating wound microbiota [107].

7. Conclusions

Skin microbiota and ARs play an ambivalent role in wound healing. On the one
hand, they can hinder the wound healing process and lead to chronic wounds; on the
other hand, some bacterial species can accelerate the wound healing process and suppress
the colonization of pathogens. Skin injury induces the stress hormone adrenaline, which
delays early-stage wound healing by activating ß-ARs in skin cells. However, adrenaline
not only affects skin cells but also promotes virulence and growth of unwanted bacteria.
TA-producing skin commensals can override the effect of adrenaline and thus positively
influence wound healing (Figure 3). These bacteria are part of the skin microbiota. However,
their proportion varies from person to person and may be so low for some that the positive
effect does not come into play. Therefore, selected TA-producing commensal bacteria may
represent a promising therapeutic option in wound healing.
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