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Abstract

The clinical utility of the Mini-Mental State Examination (MMSE) and its shorter version

(SMMSE) is still debated. There is a need to better understand the neuroanatomical corre-

lates of these cognitive tests. The objective of this cross-sectional study was to determine

whether lower MMSE and SMMSE scores correlated with focal brain volume reduction in

older adults. Participants from the GAIT study (n = 207; mean, 70.9±5.9 years; 57% female;

mean MMSE 26.2±3.9; mean SMMSE 5.1±1.1) were evaluated using the MMSE and

SMMSE and received a 1.5-Tesla MRI scan of the brain. Cortical gray and white matter

subvolumes were automatically segmented using Statistical Parametric Mapping. Age,

gender, education level, and total intracranial volume were included as potential confound-

ers. We found correlations between the MMSE score and specific cortical regions of the

limbic system including the hippocampus, amygdala, cingulate gyrus, and parahippocam-

pal gyrus, independently of the diagnostic category (i.e., mild cognitive impairment or Alz-

heimer disease or controls). Regarding correlations with the SMMSE score, only one

cluster in the left hippocampus was identified, which overlapped with the cluster that was

positively correlated with the MMSE score. There were no correlations with the volume of

white matter. In conclusion, worse MMSE and SMMSE scores were associated with gray

matter atrophy mainly in the limbic system. This finding highlights that atrophy of specific

brain regions are related to performance on the MMSE and the SMMSE tests, and provides

new insights into the cognitive function probed by these tests.
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Introduction

The Mini-Mental State Examination (MMSE), published in 1975 by Folstein and colleagues, is
a practical method of grading cognitive impairment [1,2] that has gradually become the most
common cognitive test, used by almost 9 out of 10 specialists [3]. The MMSE is typically
applied to help evaluate cognitive performance as a whole [1] and detect suspected dementia
[4]. In addition to diagnosis, it has been used extensively to grade cognitive impairment in trials
and observational studies of dementia [4,5]. Despite its widespread use, many non-specialists
consider the MMSE too time consuming to administer [6], and a shorter version of the MMSE
(i.e. short MMSE, SMMSE) was recently proposed [7]. The metrological properties of the latter
version were very similar to those of the originalMMSE [8], making it an interesting alterna-
tive, but the same concerns about diagnostic accuracy exist for it as for the MMSE.

More than 70 validation studies of the MMSE are available to date [5]. Although such a
large evidence base enhances the understanding and knowledge of the utility of the MMSE by
health professionals, opinion remains divided about its accuracy, relevance, and reliability
[4,5]. One reason is that most validation studies were underpowered and hence may have given
a misleading impression of accuracy [9]. Additionally, two recent meta-analyses of 34 dementia
studies reported that the MMSE actually offers only modest accuracy in diagnosing cognitive
disorders [5], and should be usedmainly in low prevalence settings [4].

As the clinical utility of the MMSE and SMMSE scores is still debated, there is a need to bet-
ter understand how these cognitivemeasures relate to changes in brain structure. Surprisingly,
despite the widespread use of the MMSE in clinical and research settings, very few studies have
examined the relationship between these cognitive tests and brain structuremeasured by imag-
ing [10–13]. Reporting an anatomical correlation with test performance would strengthen their
reliability and interest in assessing brain function.We had the opportunity to examine the cor-
relations of MMSE and SMMSE scores with gray matter (GM) and white matter (WM) vol-
umes in a large representative community survey of older adults with memory complaint in
the GAIT (Gait and Alzheimer Interactions Tracking) study [14]. The objective of this cross-
sectional analysis was to determine whether lower MMSE and SMMSE scores correlated with
focal brain volume reduction.

Materials and Methods

Participants

We studied participants with subjectivememory complaint followed in the Memory Clinic of
Angers University Hospital, France, and recruited in the GAIT study betweenNovember 2009
and January 2013. The GAIT study is an observational cross-sectional study designed to exam-
ine gait in older community-dwellers reporting subjectivememory complaint. The sampling
and data collection procedures have been described elsewhere [14]. The main exclusion criteria
were age below 60 years, MMSE score<10, inability to walk independently, history of stroke,
any acute medical illness in the preceding 3 months, current delirium, severe depression, and
inability to understand or answer the study questionnaires. All participants included in the
present analysis received a full medical examination, a neuropsychological assessment, and a
1.5 Tesla magnetic resonance imaging (MRI) scan of the brain.

MMSE and SMMSE scores

Neuropsychological assessment was performed during a face-to-face examination performed
by a neuropsychologist at the time of the MRI scan. The MMSE is composed of 19 individual
tests of 11 domains covering orientation, learning, attention or calculation (serial sevens or
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spelling), recall, naming, repetition, comprehension (verbal and written), writing, and con-
struction [1]. The MMSE score ranges from 0 to 30 (best). The SMMSE score was calculated, as
previously published, from 6 memory items of the MMSE following the formula: [free recall of
3 words + delayed recall of 3 words] [7]. The SMMSE score ranges from 0 to 6 (best). Here, the
SMMSE was not performed as a single test, but built from the MMSE.

MRI procedure

MRI acquisition. All images were acquired on the same 1.5 Tesla MRI scanner (Magne-
tom Avanto, Siemens Medical Solutions, Erlangen, Germany) at the University Hospital of
Angers, France, using a standard MRI protocol [15]. A high-resolution 3D T1-weighted vol-
ume was obtained covering the whole brain (acquisition matrix = 256x256x144,
FOV = 240mm, TE/TR/TI = 4.07ms/2170ms/1100ms, flip angle = 15°, voxel size
1mm×1mm×1.3mm).
Voxel-based morphometrywith DARTEL analysis. Basic voxel-basedmorphometry

(VBM) with DARTEL analysis (http://www.neuro.uni-jena.de/vbm8/VBM8-Manual.pdf) was
conducted using standard functionalities (default options) available in the VBM8
toolbox (http://dbm.neuro.uni-jena.de/VBM8/) implemented in the SPM8 software (http://
www.fil.ion.ucl.ac.uk/spm).VBM analysis was performed following standard procedures
(http://www.fil.ion.ucl.ac.uk/~john/misc/VBMclass10.pdf).The default options of the VBM
procedure provided in VBM8 were used. Native MR images were segmented into distinct tissue
classes: GM, WM and cerebrospinal fluid (CSF), using a new segmentation approach available
in SPM8. The extended option “thorough cleanup”, which is particularly useful for atrophic
brain, was used during the first module “estimate and write”. Customized DARTEL-templates
were created using affine registered tissue segments [16]. These customizedDARTEL templates
replaced the default DARTEL templates. Hence, GM and WM volumes were normalized using
high dimensional spatial normalization to a customizedDARTEL template. A modulation of
the segmented and normalizedGM (modulated GM) and WM (modulated WM) volumes
were undertaken [17]. The final resolution of the modulated GM and WM images was
1.5mm×1.5mm×1.5mm,but these were smoothed with a 6 mm FWHM (full-width-at-half-
maximum) Gaussian Kernel to minimize individual gyral variations. All images were visually
inspected to ensure that the steps described above were successful and that each modulated
GM and WM map covered the whole brain.

Covariables

The cognitive diagnosis was made during multidisciplinarymeetings involving geriatricians,
neurologists and neuropsychologists of Angers University Memory Center, France, and was
based on a variety of standardized neuropsychological tests, physical examination findings,
blood tests and MRI brain imaging [14]. Clinical suspicion of dementia was diagnosed using
the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, criteria [18]. Proba-
ble Alzheimer disease (AD) was diagnosed according to the criteria of the National Institute of
Neurological and Communicative Disorders/Alzheimer’s Disease and Related Disorders Asso-
ciation working group [19]. Mild Cognitive Impairment (MCI) was diagnosed according to
Dubois et al. consensus criteria [20]. Nondemented participants without MCI and who had
normal neuropsychological and functional performance were considered as cognitively healthy
individuals (CHI).

The following variables were used as potential confounders in the analyses: age, gender, edu-
cation level, and total intracranial volume (TIV). Education level was evaluated using standard-
ized questionnaires. Higher education level was defined as an education level (whether
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undergraduate or postgraduate) following the completion of a school providing a secondary
education. The TIV was approximated for each participant by calculating the sum of GM, WM
and CSF maps obtained during the pre-processing steps.

Ethics

The study was conducted in accordance with the ethical standards set forth in the Helsinki
Declaration (1983). Written informed consent was obtained at enrolment and the entire study
protocol was approved by the University of Angers Ethical ReviewCommittee (CPP Ouest II—
2009–12).

Data analysis

The smoothed,modulated, normalized imaging datasets were used for voxelwise statistical
analysis using SPM8. We correlated GM and WM volumes with the MMSE score and the
SMMSE score (quantitative variables) using separate multiple regressions models. All statistical
parametricmaps were interpreted after applying a family-wise error (FWE) correction for mul-
tiple comparisons at the whole-brain level with a significance level p-value (corrected)< 0.05.
Minimum cluster size was set at 10 contiguous voxels. Anatomy toolbox 2.1 was used for ana-
tomical localizations [21].

To facilitate interpretation and for the sake of visual clarity, correlation scatter plots were
built for the voxel that showed within the cluster the highest correlation with the MMSE and
SMMSE scores in the VBM analyses (i.e., local maximum peak voxel). Because the brain pro-
cessing of cognitive functions generally involves symmetrical left and right hemispheres to a
different degree, we built the symmetrical counterpart of the local maximum peak voxel to
allowing visual exploratory comparison of the magnitude of correlations in each homologous
region on each side (right and left). In addition, scatter plots were stratified by disease catego-
ries (i.e., CHI, MCI, or AD) to give visual overwiewof the relationships between the brain sub-
volumes and the MMSE or SMMSE scores according to the three diagnostic groups,

Results

Two hundred and seven participants (mean±standard deviation 70.88±5.88 years; 57% female;
22% graduate studies; 33.8% diagnosed as cognitively healthy; 44.9% with MCI; 21.2% with
AD) met the selection criteria and were included in the present analysis. The mean MMSE
score was 26.2±3.9 [95% confidence interval (CI): 25.7–26.7] (range, 10–30) among studied
participants, and the mean SMMSE score was 5.1±1.1 [95%CI: 4.9–5.3] (range, 0–6). The mean
TIV was 1397.0±127.3 cm3 [95%CI: 1379.0–1414.0] (range, 1089.0–1699.0).

Fig 1 illustrates the brain regions that positively correlated with the MMSE score after
adjusting for age, gender, TIV, and education level. The VBM-DARTEL analysis identified
large bilateral clusters overlapping cortical regions of the limbic system including notably
hippocampus, amygdala, cingulate gyrus, and parahippocampal gyrus. Regions showing the
highest correlation with the MMSE score were: the right amygdala (MNI coordinates [x y z];
[26–7–11], t = 7.26), the left middle temporal gyrus ([-62–33–5], t = 7.00), and the right middle
temporal gyrus ([62–33–5], t = 6.62) (Table 1 provides detailed results on the clusters size and
MNI coordinates). The correlations between the MMSE score and the regional GM volume in
right and left amygdala (Fig 2) persisted while considering each disease category separately
(i.e., CHI, MCI, and AD) (Fig 3), which confirmed the interest of the MMSE for this brain
region in each subgroup of patients. In contrast, no significant negative correlation was found
between the MMSE score and the GM volume across the whole brain.
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Regarding correlations with the SMMSE score, the VBM-DARTEL analysis identified only
one cluster located in the left hippocampus ([-24–9–17], t = 5.25; [-20–3–23], t = 5.04), which
overlapped with the cluster that was positively correlated with the MMSE score (Fig 2, Fig 4,
and Table 1).

Of note, using a more permissive threshold in VBM, the patterns of brain structure where
the GM volume positively correlated with the MMSE and SMMSE scores were the same but
appeared more symmetrical (data not shown). However, the plot correlations between bilateral
homologous regions showed a persistent right and left predominance for amygdala and hippo-
campus respectively (Fig 3 and Fig 4).

Finally, after adjusting for age, gender, TIV and education level, the VBM-DARTEL multi-
ple regression analysis revealed that the MMSE and SMMSE scores did not correlate (positively
or negatively) with the volume of WM across the whole brain, even when a more permissive
approach was applied.

Discussion

Our results show that, among community-dwelling older adults with memory complaint, the
MMSE score correlated positively with GM volume in the limbic system and in the middle
temporal gyrus. The SMMSE score correlated positively with GM volume only in the left hip-
pocampus and associated structures. There was no correlation with the WM volume. These
findings provide new insights into understanding which brain structures and therefore func-
tions are actually probed by these two cognitive tests.

Fig 1. Gray matter regions showing a positive correlation with MMSE score. The statistical map is co-registered and superimposed on 3D-T1 (A) axial

(MNI coordinates: z = -20 to z = +75) and (B) coronal slices (MNI coordinates: y = -42 to y = +12) (MNI T1 template available on MRICRON software).

Results are showed with a significance of P<0.05 corrected for multiple comparisons (FWE-corrected). Colour bar indicates the t-score for the regression

slopes (from blue colour [t = 3.5] to red colour [t = 7.5]).

doi:10.1371/journal.pone.0162889.g001
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Table 1. Detailed results of the VBM analysis: correlation of gray matter volume with MMSE score and SMMSE score.

Number of voxels Localization MNI coordinates t-score

x y z

Brain subvolume positively correlated with MMSE score

Cluster 1 1646 R Middle Temporal G 62 -33 -5 6.62

63 -37 -2 6.56

60 -39 3 6.47

59 -40 4 6.46

51 -37 0 6.44

60 -30 -9 6.39

57 -15 -18 5.64

59 -16 -17 5.61

62 -6 -15 5.17

Cluster 2 1218 L Caudate Nucleus -6 9 -8 6.11

R Caudate Nucleus 9 9 -6 5.72

L Rectal G -11 18 -11 5.37

-8 21 -18 5.19

L Inferior Frontal G (p.Orbitalis) -18 15 -20 5.05

Cluster 3 1001 R Amygdala 26 -7 -11 7.26

R Temporal Pole 30 5 -24 5.46

Cluster 4 892 L Middle Temporal G -62 -33 -5 7.00

-62 -42 3 5.97

-56 -67 1 5.79

-60 -58 1 5.34

-60 -46 -2 5.27

-63 -51 0 5.07

L Inferior Temporal G -59 -63 -5 6.08

Cluster 5 786 L Hippocampus -24 -34 -5 5.79

-27 -31 -8 5.65

-29 -22 -15 5.18

L Fusiform G -36 -22 -29 5.36

-30 -27 -26 5.26

-30 -37 -20 5.12

Cluster 6 579 L Temporal Pole -33 9 -23 5.38

Cluster 7 481 L Inferior Frontal G (p.Orbitalis) -27 33 -15 6.01

-30 29 -12 5.88

-33 20 -15 5.66

L Insula Lobe -29 21 -18 5.44

-35 24 -3 4.91

Cluster 8 460 L Insula Lobe -41 9 0 6.11

-39 -7 9 5.50

Cluster 9 427 R Middle Temporal G 50 -75 10 5.85

51 -69 1 5.46

R Middle Occipital G 41 -78 16 5.58

45 -75 18 5.39

36 -76 27 5.35

Cluster 10 379 R ParaHippocampal G 33 -25 -17 5.78

33 -19 -21 5.37

R Fusiform G 36 -34 -20 5.54

(Continued )
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The identification of the location and nature of brain changes related to the MMSE and
SMMSE scores has received little attention to date [10–13]. Consistent with the present SMMSE
findings, correlations between immediate and delayed free recalls were found with the GM vol-
ume of the left hippocampus in a smaller sample of 18 participants with MCI, 21 with AD and 11
CHI [13]. Additionally, correlations were reported between the MMSE score and the total GM
volume [13], as well as the GM subvolumes of various brain regions including the parietal GM
[13], the frontal GM [13], and the parahippocampal [12] and hippocampal subvolumes [11,12].
Of note, and consistent with our findings, the latter correlation was not mediated by the diagnos-
tic category (i.e., MCI, AD, or CHI) [11]. Finally, Kovacevic et al. [10] interestingly revealed in
269 participants with MCI that baseline volumes of the hippocampus, amygdala, and temporal
horn were independent predictors of MMSE changes over a 6-month follow-up. Consistent with
these prior results, and without assuming any a priori regions of interest, we provided here fur-
ther evidence that worse MMSE and SMMSE scores correlated with GM atrophy in the limbic
system (i.e., a complex set of structures of the brain that lie on either side of the thalamus under
the cerebrum) and in the middle temporal gyrus (located between the superior temporal gyrus

Table 1. (Continued)

Number of voxels Localization MNI coordinates t-score

x y z

38 -31 -18 5.49

30 -31 -21 4.97

Cluster 11 301 L Inferior Temporal G -56 -40 -26 6.30

-48 -42 -26 5.92

Cluster 12 215 L Inferior Temporal G -45 -58 -9 5.50

Cluster 13 170 R Insula Lobe 41 18 1 5.45

38 6 7 5.12

Cluster 14 116 L Superior Temporal G -51 -12 -5 5.54

-44 -12 -5 5.30

L Middle Temporal G -47 -16 -8 5.09

Cluster 15 109 L Middle Temporal G -59 -15 -11 5.24

-66 -12 -18 5.13

-60 -10 -15 5.00

Cluster 16 93 L Angular G -48 -64 28 5.29

-44 -64 34 5.11

-47 -70 30 4.99

Cluster 17 83 R Middle Cingulate Cortex 3 -37 31 5.09

L Middle Cingulate Cortex 0 -39 39 4.82

Cluster 18 79 L Superior Temporal G -54 0 -2 5.51

Cluster 19 77 R Inferior Temporal G 48 -67 -9 5.66

54 -60 -9 4.85

Cluster 20 51 R Insula Lobe 42 -12 4 5.12

Cluster 21 46 L Superior Parietal Lobule -21 -48 70 5.47

Cluster 22 27 L Insula Lobe -35 -22 13 5.00

Cluster 23 26 L Superior Temporal G -59 -10 7 5.05

Brain subvolume positively correlated with SMMSE score

Cluster 1 67 L Hippocampus -24 -9 -17 5.25

-20 -3 -23 5.04

R: right; L: left; MNI: Montreal Neurological Institute. In bold characters: clusters with the highest t-score. See also Fig 1 and Fig 2.

doi:10.1371/journal.pone.0162889.t001
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and inferior temporal gyrus). Since the clinical expression of neurological damage is directly
related to its location, our findings provide insight into the brain regions and associated functions
that are actually probed by these tests. Specifically, the structures correlating with the MMSE
score were i) the hippocampus, which plays a central role in the storage, consolidation and
retrieval of explicit memories [22]; ii) the amygdala, which relates to perception and emotion
including processing and storing memories of emotional events, or triggering affects and emo-
tions from specificmemories [23]; iii) the cingulate gyrus,which ends the Papez circuit support-
ing memory function [24]; iv) the parahippocampal gyrus,which is related to neurosensory
structures of environment linking [25]; and v) the middle temporal gyrus,which has been con-
nectedwith processes as different as recognition of known faces, and accessing word meaning
while reading [26]. All together these results argue that the MMSE explores primarily learning
and memory resources, but is also sensitive to motivation and perception of testing conditions,
including the relationship to the examiner and the management of the environment, stress, and
reading. These findings, including the lack of relationship between the MMSE and the subvo-
lumes of the vast majority of brain structures, are consistent with the allegation that the MMSE
should be consideredmore as a memory test than a composite test exploring the global cognitive
performance of the whole brain in older adults without severe cognitive impairment [7,8]. How-
ever, our results also showed that the MMSE does not test solely memory, unlike the SMMSE.
Indeed, we found that the SMMSE, which consists of learning, storing and returning a 3-word

Fig 2. Gray matter regions showing a positive correlation with MMSE score (blue color) and SMMSE score (red color). The statistical map is co-

registered and superimposed on 3D-T1-weighted axial (MNI coordinates y = -8) and coronal slices (MNI coordinates z = -16) (MNI T1-weighted template

available on MRICRON software). Results are showed with a significance of P<0.05 corrected for multiple comparisons (FWE-corrected).

doi:10.1371/journal.pone.0162889.g002
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list [7], correlated with the volume of GM in the left hippocampus and left parahippocampal
gyrus.These structures are both involved in memory recall [27] by binding together pieces of
memory constructednot only by the hippocampus, but also by other regions of the brain, to be
recalled at a later time [28]. According to Eichenbaum [27], the left hippocampus and parahippo-
campal area are critical for effectively combining the ‘what, ‘when,’ and ‘where’ qualities of each
experience to construct the retrievedmemory. Thus the very precise and unique location of the
GM subvolume associatedwith performance on the SMMSE emphasizes the specificity of this
test for evaluation of memory processing.

Fig 3. Correlation between the MMSE score and the regional gray matter volume (rGMV) in right (R) and left (L) amygdala according to

participants’ diagnostic category. Plots points indicate the quantification of the VBM signal sampled from the voxels of the right and left amygdala. In

black: whole sample of participants; red: cognitively healthy participants; blue: participants with MCI; green: participants with AD. L, left in [x y z], MNI

coordinates. Results are shown for P<0.05 corrected for multiple comparisons FWE corrected.

doi:10.1371/journal.pone.0162889.g003
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Some potential limitations of our study should be considered. First, the study cohort was
restricted to Caucasian older outpatients followed in a memory clinic for a memory complaint
therefore the results cannot be generalized to all older adults. Second, although we were able to
control for important characteristics that could modify the correlation, residual potential con-
founders might still be present. Third, the SMMSE was built from the MMSE and not per-
formed as a single test, which may induce variation in score. Other MMSE subscores were not
available to determine how the atrophy pattern associated with each individual item corre-
sponded to the global pattern. Fourth, VBM has been criticized because of segmentation and

Fig 4. Correlation between the SMMSE score and the regional gray matter volume (rGMV) in right (R) and left (L) hippocampus according to

participants’ diagnostic category. Plots points indicate the quantification of the VBM signal sampled from the voxels of the right and left hippocampus. In

black: whole sample of participants; red: cognitively healthy participants; blue: participants with MCI; green: participants with AD. L, left in [x y z], MNI

coordinates. Results are shown for P<0.05 corrected for multiple comparisons FWE corrected.

doi:10.1371/journal.pone.0162889.g004
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normalisation defects. Segmentation of brain into GM and WM is a major difficulty due to par-
tial volume effects at the boundary betweenGM and WM, and because of mislabelling.We mini-
mized these limitations by using SMP8 unified segmentation that is based on a generative model
and thus performs better than previous versions. Moreover, major differences have been reported
between registration algorithms.We tried to avoid this issue by using DARTEL, a fluid deforma-
tion algorithm capable of precisely realigning brain structures, which was one of the four highest-
ranking registrationmethods in an evaluation of 14 non-linear deformation algorithms [29].

In conclusion, we found that worse MMSE and SMMSE scores correlated with GM atrophy
mainly in the limbic system, independently of the diagnosis of CHI,MCI or AD. This finding
highlights that the MMSE and SMMSE cognitive tests might be sensitive to changes in specific
brain regions, and provides new insights into the interpretation of results from these two cogni-
tive tests. Based on our results, it appears that both the MMSE and SMMSE explore learning and
memory and that, although the SMMSE appears more specific to memory (left hippocampus),
the MMSE may also be sensitive to motivation and perception of testing conditions (right amyg-
dala). Further research is needed to corroborate this finding, and to determinewhether specific
mechanisms of atrophy can be identified by performance on the MMSE and SMMSE tests.
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