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Wounding triggers MIRO-1 dependent
mitochondrial fragmentation that accelerates
epidermal wound closure through oxidative
signaling

Hongying Fu'®, Hengda Zhou'?®, Xinghai Yu3, Jingxiu Xu'?, Jinghua Zhou', Xinan Meng', Jianzhi Zhao',
Yu Zhou® 3, Andrew D. Chisholm?# & Suhong Xu@® 25

Organisms respond to tissue damage through the upregulation of protective responses which
restore tissue structure and metabolic function. Mitochondria are key sources of intracellular
oxidative metabolic signals that maintain cellular homeostasis. Here we report that tissue and
cellular wounding triggers rapid and reversible mitochondrial fragmentation. Elevated mito-
chondrial fragmentation either in fzo-1 fusion-defective mutants or after acute drug treatment
accelerates actin-based wound closure. Wounding triggered mitochondrial fragmentation is
independent of the GTPase DRP-1 but acts via the mitochondrial Rho GTPase MIRO-1 and
cytosolic Ca2*. The fragmented mitochondria and accelerated wound closure of fzo-1
mutants are dependent on MIRO-1 function. Genetic and transcriptomic analyzes show that
enhanced mitochondrial fragmentation accelerates wound closure via the upregulation of
mtROS and Cytochrome P450. Our results reveal how mitochondrial dynamics respond to
cellular and tissue injury and promote tissue repair.
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itochondria are highly dynamic organelles organized in

sophisticated intracellular networks linked to their

physiological roles!. Mitochondria can rapidly and
transiently change their morphology in response to environ-
mental changes, altering their function in energy production,
Ca?* homeostasis, redox signaling, and metabolism?. Disrupted
mitochondrial morphology is associated with many human dis-
eases, including heart failure, neurodegenerative disorders, and
cancer!.

Fusion and fission of mitochondrial membranes are coordi-
nated. The balance between fusion and fission determines the
shape, size, and connectedness of mitochondria, accounting for
the variation in mitochondrial morphology in different cell
types>. The core regulators of these dynamic transitions are
highly conserved dynamin-like guanosine triphosphatases
(GTPases)*. Mitochondrial fission is conducted by the dynamin-
related protein 1(DRP1), which is recruited to the mitochondrial
surface in response to a variety of cues®=8. A sophisticated fission-
machinery, including DRP1-specific adapters, actin nucleating
proteins’, and myosin!?, assemble at contact sites between the
endoplasmic reticulum and mitochondria. A recent finding
indicates that Ca?* signals can regulate a rapid mitochondrial
shape transition (MiST) through DRP-1 independent but MIRO-
1-dependent way!l. Fusion, in contrast, is executed by the
Mitofusins 1/2 (MFN1/2) and OPA1, which drive outer and inner
mitochondrial membrane fusion, respectively?.

Fusion contributes to mitochondrial maintenance, whereas
fission causes mitochondrial fragmentation, which allows removal
of irreversibly damaged mitochondria by mitophagy!2. Frag-
mentation of the mitochondrial network occurs in response to
cellular stress and during cell death?. Although mitochondrial
fragmentation can cause mitochondrial dysfunction in disease,
mitochondrial fragmentation also plays a positive role. For
example, mitochondrial fragmentation promotes continued
clearance of apoptotic cells by macrophages!3, accelerates cell
proliferation!4, and regulates systemic glucose homeostasis!®.
However, the mechanisms by which fragmented mitochondria
protect against cellular stresses is not clear.

Tissue injury induces coordinated responses that allow for
efficient wound repair, which is important for animal survival and
reproduction. For example, in different species including mam-
mals, wounding activates intracellular, and intercellular tran-
scriptional growth factor and chemokine cascades that regulate
gene expression during tissue repair'®!”. Cellular and tissue
injury also triggers multiple damage signals, such as Ca2™, reac-
tive oxygen species (ROS), and ATP, which control transcription-
independent wound responses to restore cellular architecture and
function!8-25, Studies in a variety of organisms suggest mito-
chondrial ROS (mtROS) signals can promote tissue repair26-30,
However, the physiological roles of mitochondria in tissue
damage responses and repair have not been extensively
characterized.

Here we report that wounding C. elegans epithelial cells triggers
rapid and reversible mitochondrial fragmentation, a process we
refer to as wounding-induced mitochondrial fragmentation
(WIME). We show that enhanced mitochondrial fragmentation
accelerates wound closure in vivo. WIMF is independent of the
canonical DRP-1 mediated mitochondrial fission pathway but is
dependent on wound-induced Ca2* influx and the mitochondrial
Rho GTPase MIRO-1. We define a protective mechanism initi-
ated from mitochondrial fragmentation, which functions through
the upregulation of mtROS and cytochrome P450 to promote
wound closure. Our studies reveal a critical role for mitochondrial
morphology in response to and promoting tissue repair.

Results
Tissue wounding induces rapid and reversible mitochondrial
fragmentation. We visualized mitochondrial responses to acute
skin wounding in C. elegans (Fig. la). In the lateral epidermis of
late L4 or young adult animals, mitochondria are threadlike,
forming elaborate branched networks that are stable over periods
of tens of seconds (Fig. 1b, Supplementary Fig. 1a; Supplementary
Movie 1). We observed rapid alterations in the morphology of the
epidermal mitochondrial network after wounding (Fig. 1b-e).
Laser wounding destroyed the local mitochondrial network within
seconds (Fig. 1b, c); over the next 5-10min, the surrounding
mitochondria changed tubular shape to fragmented within
50-70 um of the wound site (Supplementary Movies 1 and 2).
Epidermal mitochondrial fragmentation was also observed
after needle wounding, both in the wounded syncytial epidermis
(hyp7) and adjacent seam cells (Fig. 1d, Supplementary Fig. 1b).
Mitochondria remained fragmented for several hours and
returned to normal morphology and network by 24 hours post-
wounding (Fig. 1d, e). Either needle or femtosecond laser
triggered rapid fragmentation within 50 + 10 ym of the wound
site, while Micropoint UV wounding increased the fragmented
region than a needle or femtosecond laser wounding (Supple-
mentary Fig. 1c, d; Supplementary Movies 1 and 2). Together,
these data show that wounded C. elegans epidermis displays a
rapid and reversible change in mitochondrial morphology that we
term wounding induced mitochondrial fragmentation (WIME).
To investigate whether WIMF occurs in other tissue and
cellular wound responses, we wounded the tail fin in zebrafish
larvae and found widespread mitochondrial fragmentation
around the wound edge 5min after injury (Fig. 1f). We also
observed similar mitochondrial fragmentation 5 min after scratch
wounding of a monolayer of U20S cells at the wounding edge
(Supplementary Fig. le, f), suggesting WIMF is a general
subcellular response to tissue wounding.

Chronic and acute induction of mitochondrial fragmentation
accelerates epidermal wound closure. To investigate the function
of mitochondrial fragmentation in epidermal wound repair, we
examined actin-mediated wound closure?3. The ring of actin
polymerization at the wound site is surrounded by fragmented
mitochondria (Supplementary Fig. 2a, Supplementary Movie 3).
In C. elegans, mitochondrial fusion requires the outer membrane
protein FZO-1 (orthologous to human MFN1/2) and the inner
membrane protein EAT-3 (orthologous to human Opal)3!; fis-
sion requires the cytosolic protein DRP-1 (orthologous to human
Drpl)°. fzo-1 and eat-3 null mutants are defective in mitochon-
drial fusion and display chronic mitochondrial fragmentation
(Fig. 2a). Surprisingly, these animals displayed faster wound
closure compared to the wild type (WT) (Fig. 2a, b, Supple-
mentary Fig. 2b, ¢, Supplementary Movie 4). Conversely, loss of
function in drp-1, which causes chronic mitochondrial elonga-
tion, did not significantly impair wound closure (Fig. 2a, b,
Supplementary Fig. 2c). Depleting the mitochondrial fusion gene
not only induces mitochondrial fragmentation but also results in
defective ETC activity>>33. We observed that the oxygen con-
sumption rate (OCR) was significantly reduced in fzo-1 and eat-3
as well as in drp-1 mutants (Supplementary Fig. 2f), suggesting
the enhanced wound closure is not due to the reduced ETC
activity. All these mitochondrial mutants showed normal survival
post-wounding (Supplementary Fig. 2d, e). Expression of fzo-1
genomic DNA under the control of its own promoter or heat-
shock promoter rescued fzo-1 mutant mitochondrial morphology
and restored wound closure rates to normal (Fig. 2c, d).
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Fig. 1 Wounding triggers rapid and reversible mitochondrial fragmentation. a Experimental design to investigate the mitochondrial response to

epidermal wounding (laser or physical damage) in C. elegans. Mitochondria were labeled with matrix targeting sequence from cox 8 (mito) fused with XFP
(including Pcol-19-mito::GFP(juEx4796), Phpy-7(y37alb.5)-mito:GFP(yqls157)70, Pcol-19-mito:mKate2(zjuSi47), or Pcol-19-mito::dendra2(juSi271)). b, ¢ Laser
wounding induces mitochondrial fragmentation in the epidermis. Representative confocal images of the epidermal mitochondrial network before and
seconds after wounding by femtosecond laser (b) (see also Supplementary Movie 1, N =15 independent experiments) and Micropoint UV laser (c) (see
also Supplementary Movie 2, N =7 independent experiments). Pcol-19-mito::GFP(juEx4796) was used to label mitochondria. We define mitochondrial
fragmentation as a change from the interconnected tubular structure network to a rounded shape. d Mechanical needle wounding causes fragmentation of
epidermal mitochondria, which return to normal morphology 24 hours after wounding except for a scar region at the center of the wound site.
Representative confocal images of epidermal mitochondria before and after needle wounding. N = 3 independent experiments. Pcol-19-mito::GFP(juEx4796)
was used to label mitochondria. Red asterisks in b-d indicate the wound site. White dashed squares indicate the zoom-in images for panel e. Scale bars
b-d, 10 pm. e Quantitation of mitochondrial fragmentation frequency after needle wounding, measured in 100 pm? regions of interest (white dash square in
panel d) 10 pm adjacent to the wound site. Top panel shows enlarged images of mitochondria in unwounded (UW, n=25) and wounded (W, n=35)
epidermis. Scale bars, 5 um. Bars indicate mean £ SEM. ****P < 0.0001, Two-tailed unpaired t-test for wounded animals. Source data are provided as a
Source Data file. f Wounding induce mitochondrial fragmentation in zebrafish tail fin. Left, experimental design for zebrafish tail fin wounding, 3 dpf larvae
were first stained with mitoTracker Green for 2 h and then were wounded using needle. N =3 independent experiments. Right, representative confocal

image of mitochondria at the edge of zebrafish tail fin, Scale bar, 10 pm.

To further test the role of mitochondrial fragmentation in
wound closure, we treated WT animals with drugs that induce
mitochondrial fragmentation through the inhibition of electron
transport chain (ETC)34. In total, 2 hours treatment of young
adult animals with either rotenone or antimycin A induced
mitochondrial fragmentation (Fig. 2e) and accelerated actin-
based wound closure (Fig. 2g). Moreover, acute treatment with
Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP)
before wounding, which also induces mitochondrial fragmenta-
tion (Fig. 2e), significantly accelerated wound closure 1h.p.w.
(Fig. 2f, g). Thus, chronic or acute mitochondrial fragmentation
can accelerate epidermal wound closure.

Mitochondrial fragmentation accelerates epidermal wound
closure cell-autonomously. We next examined whether mito-
chondrial fragmentation promotes wound closure in a cell-
autonomous or cell-nonautonomous way by tissue-specific
knockdown of fzo-1 using the GFP nanobody mediated protein
degradation (G-DEG) system (Fig. 2h)3>. fzo-1:GFP knock-in
animals showed interconnected tubular mitochondrial morphol-
ogy and normal wound closure (Fig. 2i). Expression of G-DEG
either ubiquitously or specifically in the adult epidermis reduced
the FZO-1:GFP signal and caused mitochondrial fragmentation
(Fig. 2i). Moreover, these animals displayed accelerated wound

closure 1 hour after injury (Fig. 2j). In contrast, the expression of
G-DEG in muscles did not affect epidermal wound closure
(Fig. 2j). Epidermal specific expression of fzo-1 rescued frag-
mented mitochondria and suppressed faster wound closure in fzo-
1(tm1133) animal (Fig. 2¢,d). However, muscle expression of fzo-1
could not suppress the enhanced wound closure in fzo-1(tm1133)
animal (Fig. 2d). Collectively, these results show that mitochon-
drial fragmentation acts cell-autonomously in wound closure.

WIMEF is independent of canonical mitochondrial fission reg-
ulators. To define how mitochondrial fragmentation enhances
wound closure, we first examined how wounding triggers mito-
chondrial fragmentation. DRP-1 is essential for most mitochon-
drial fission®. Animals lacking drp-1 displayed constitutively fused
epidermal mitochondria that nevertheless fragmented after
wounding (Supplementary Fig. 3a, Supplementary Movie 5). To
compare the effects of WIMF, we quantified the farthest extent of
mitochondrial fragmentation from the wound site (Supplemen-
tary Fig. 3b). Loss of function of drp-1 increased the extent of
WIMF compared to the WT (Supplementary Fig. 3b, ¢, Supple-
mentary Movie 5), suggesting WIMF may be negatively regulated
by DRP-1. Conversely, in fzo-1 and eat-3 mutants mitochondria
are constitutively fragmented and swollen3®37 (Supplementary
Fig. 3d), and did not appreciably change in morphology after
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Fig. 2 Enhanced mitochondrial fragmentation accelerates wound closure. a Left, representative confocal images of mitochondria in WT and mutants;
right, representative images of F-actin ring assembly (Pcol-19-GFP::moesin(juls352)) at 1h.p.w. (hour post-wounding). N = 4 independent experiments.

b Quantitation of actin ring diameter in wounded animals (WT, n=49; drp-1, n = 61; fzo-1, n=62; eat-3, n=79 animals). Bars indicate mean + SEM,

normalized to WT. ****P < 0.0001 (versus WT), One-way ANOVA, Dunnett'’s post test. ¢ Representative images of mitochondria in fzo-1(tm7133) or tissue-
specific rescued strains. d Quantitation of actin ring diameter (WT, n = 51; fzo-1, n = 35; fzo-1;Pfzo-1-fz0-1, n = 18; fzo-1;Pdpy-7-fzo-1, n = 28; fzo-1;Phsp-16.2-
fzo-1, n = 23; fzo-1;Pmyo-3-fzo-1, n = 23 animals) at 1 h.p.w. Bars indicate mean = SEM. ****P < 0.0001 (versus fzo-1), One-way ANOVA Dunnett's test. Two-
tailed unpaired t-test for fzo-1and WT animals. e Left top, representative images of mitochondria morphology. Rotenone (100 pM), antimycin A (100 pM).
and FCCP (10 pM). f Actin ring formation after wounding. N =3 independent experiments (e, f). g Quantitation of actin ring diameter in WT and drug
treated animals (Ctl, n = 3T1; Rotenone, n = 28; antimycin A, n=33; FCCP 5 uM, n=20; FCCP 10 uM, n =16 animals) at 1h.p.w. Bars indicate mean + SEM.
**P=0.016, ****P < 0.0001 (versus ctl), One-way ANOVA Dunnett's test. h A scheme of fzo-1::GFP(zju136) and GFP nanobody mediated degradation

system (G-DEG). i Representative images of fzo-1::GFP expression in animals with or without G-DEG. N = 3 independent experiments. j Quantitation of
actin ring diameter after tissue-specific knockdown of fzo-1 (WT, n = 25; Psur-5,G-DEG, n = 39; Psur-5,G-DEG,fzo-1, n = 24; Pcol-19,G-DEG, n = 21; Pcol-19;
G-DEG;fzo-1, n =18; Pmyo-3,G-DEG, n = 26; Pmyo-3,G-DEG;fzo-1, n = 35 animals). Bars indicate mean + SEM. ns, P = 0.8508, ***P = 0.0004, ****P < 0.0001,

Two-tailed unpaired t-test. Scale, 10 um (a, ¢, e, f, and i) and 5 um (zoom-in ¢, e, and i). Source data are provided as a Source Data file.

needle or laser wounding (Supplementary Fig. 3d). Furthermore,
the expression and overall localization of DRP-1 were not
changed in a few mins after wounding (Supplementary Fig. 3e).

We tested whether other regulators of mitochondrial morphol-
ogy were required for WIMF. Mitochondrial dynamics are
regulated by DRP-1 adapters, actin nucleating factors and also
apoptotic components®10-31,38, However, WIMF still occurred in
these loss-of-function mutants (Supplementary Fig. 3f-h, details
in the supplementary information). Actin polymerization and
myosin affect mitochondrial fission in other systems®10; however,
drug treatments inhibiting either actin polymerization or non-
muscle myosin, and loss of function of actin regulators did not
block WIMF (Supplementary Fig. 4a—e). Together, these results
suggest that WIMF does not require DRP-1 or other known
regulators of mitochondrial morphology.

WIMEF spreading is dependent on mitochondrial Rho GTPase
MIRO-1. We then sought regulators of WIMF by a targeted
candidate screen. We hypothesized that fragmentation signals
might be sensed by the outer mitochondrial membrane (OMM)

proteins (Fig. 3a). We screened ~170 predicted OMM proteins by
RNAI, most of which displayed normal epidermal mitochondrial
morphology and became fragmented after wounding (Supple-
mentary Table 4). However, RNAi knockdown of the mito-
chondrial Rho GTPase miro-1 caused epidermal mitochondria to
become straight and aligned, losing their typical interconnected
network structure (Fig. 3b, Supplementary Fig. 5a). Moreover, in
miro-1 null mutants, WIMF is tightly restricted to the injury site
(Fig. 3b, d), indicating miro-1 is involved in the spread of WIMF.
To confirm this, we performed laser wounding on mitochondria
labeled with mito::dendra2, which can be locally converted to red
fluorescence by photoconversion, making it possible to examine
the morphology of single mitochondria (Fig. 3¢, Supplementary
Fig. 5a, Supplementary Movie 6). The distance of WIMF was
reduced in miro-1(tm1966) mutants after wounding (Fig. 3c, d).

MIRO-1 is an outer mitochondrial membrane protein that
functions as an adapter for microtubule-mediated transport3.
GFP:MIRO-1 fusion protein was localized external to the
mitochondrial matrix (Fig. 3e, Supplementary Fig. 5b) and
partially co-localized with the outer mitochondrial membrane
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Fig. 3 WIMF is dependent on mitochondrial Rho GTPase MIRO-1. a Diagram of a genetic screen for outer mitochondrial membrane (OMM) proteins
involved in WIMF. The candidate genes and mitochondrial morphological phenotype before and after wounding are listed in Supplementary Table 4.

b Representative confocal images of epidermal mitochondria before and after needle wounding. N =5 independent experiments. Arrows indicate the
farthest extent of fragmented mitochondria from the wound site, which we used for the quantitation of distance of mitochondrial fragmentation.

¢ Representative confocal images of epidermal mitochondria before and after Micropoint UV laser wounding (see also Supplementary Movie 6).
Mitochondria were labeled by Pcol-19-mito::dendra2(juSi271) (b, ¢). Red mitochondria were photo-converted with a 405-nm laser. N =3 independent
experiments. Note WIMF is restricted to the injury site and does not spread to adjacent mitochondria in miro-1(tm1966) mutants. Scale bars (b, €), 10 pm.
d Quantitation of the distance of fragmented mitochondria to the wound site after needle or Micropoint UV wounding in miro-1(tm1966) and rescued
animals (WT-needle, n =17; miro-T-needle, n = 24; WT-laser, n = 144; miro-1-laser, n = 99; GFP::miro-1( + )-laser, n = 68; miro-1; GFP::miro-1( + )-laser,
n =56 animals). Typically, we generated 20 arrows, as shown in panel b and averaged for each animal, see detail in methods. Bars indicate mean + SEM.
****P < 0.0001, Two-tailed unpaired t-test. Source data are provided as a Source Data file. e Localization of GFP::MIRO-1 before and after needle wounding.
Top, diagram of GFP::miro-1 knock-in strategy. Bottom, representative confocal image of Pcol-19-GFP::miro-1(zju21); Pcol-19-mito::mKate2(zjuSi47) (see also
Supplementary Movie 7). GFP::MIRO-1 is localized around mito::mKate2 and was remained at the wounding site immediately after wounding. Scale bar,
5pm and 2 pm (zoom-in). N = 2 independent experiments. f Fluorescence profiles from line scan 1 and 2 illustrate the presence of GFP:MIRO-1 on a
section of the mitochondrial membrane before and after needle wounding. A.U. arbitrary units. Images representative of five animals. Note, the GFP signal

surrounds the mitochondrial matrix mito:mKate2 signal.

protein Tomm-20 (Supplementary Fig. 5c). After wounding,
GFP:MIRO-1 localized to the wounding site and encircled the
mitochondria matrix (Fig. 3e, f, Supplementary Fig. 5b, c,
Supplementary Movie 7). Expression of WT miro-1 genomic
DNA specifically in the epidermis rescued the mitochondrial
morphology in miro-1(tm1966) mutant, as did a constitutively
active (CA) version of MIRO-1, but not MIRO-1 dominant-
negative (DN) or EF-hand mutation (Supplementary Fig. 5d)4.
Moreover, WIMF was also restored in miro-1 mutant with the
expression of miro-1 genomic DNA in the epidermis (Fig. 3d).
Thus, the outer mitochondrial membrane protein MIRO-1 is
required for WIMF.

Wounding-induced microtubule depolymerization is not
required for WIMF. MIRO-1 is a crucial regulator of mito-
chondrial motility and distribution along the microtubule in
many cell types3>4l. Microtubule stabilization also plays critical
roles in wound closure*2. We thus examined whether WIMF
might involve altered microtubule dynamics after wounding. In
the unwounded epidermis, mitochondria and microtubules were
closely associated and relatively stable over periods of several

minutes (Supplementary Fig. 4f, Supplementary Movie 8). In
miro-1(tm1966) mutant mitochondria were more localized to the
perinuclear region (Supplementary Fig. 4f); however, microtubule
distribution and dynamic were normal (Supplementary Fig. 4f,
Supplementary Movie 8), suggesting loss of function in miro-1
does not affect epidermal microtubule dynamics.

We found wounding triggers not only immediate mitochon-
drial fragmentation but also rapid local microtubule depolymer-
ization (Supplementary Fig. 4g, Supplementary Movie 9).
Moreover, mitochondrial fragmentation happens before micro-
tubule depolymerization (Supplementary Fig. 4g). miro-1 mutants
displayed normal microtubule depolymerization in response to
wounding but more restricted mitochondrial fragmentation
(Supplementary Fig. 4g Supplementary Movie 10). Treatment of
young adult animals with Taxol or Colchicine, which stabilize and
destabilize microtubule respectively, did not affect either
mitochondrial morphology or WIMF (Supplementary Fig. 4h).
Furthermore, knock out of microtubule dynamics regulators
Kinesin/KLP-7 and PTRN-1 had no apparent effects on WIMF
(supplementary Fig. 4i). Thus, microtubule stability or dynamics
is not necessary for MIRO-1 regulated WIMF.
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Fig. 4 WIMF is dependent on wound-induced Ca2*-MIRO-1 signaling. a Top, experimental design to disrupt the function of MIRO-1 protein domains
using CRISPR-Cas9 mediated mutagenesis. Bottom, miro-T in-frame mutation alleles. Sequences in bold are key residues in each domain40. Details of indel
mutations are in Supplementary Table 5. b Quantitation of the distance of the fragmented mitochondria to the injury site shown on the left in different
animals (WT, n=11; tm1966, n = 30; ARho, n =19; AEF-I, n =14; AEF-Il, n = 22; AEF-I&II, n =15; ATM, n =16 animals). Note, mutations of the Rho, EF-hand
Il'and TM domains show reduced spreading of WIMF compared to the WT and similar to miro-1(tm1966) animal, indicating that these mutations affect
MIRO-1's function. Bars indicate mean + SEM. ns, P = 0.8321, ****P < 0.0001 (versus WT), One-way ANOVA Dunnett’s test. ¢ Quantitation of the distance
of the fragmented mitochondria to the injury site in TRPM/gtl-2(n2618), mcu-1(jul154), and gtl-2(n2618),miro-1(zju19) mutant (WT, n=13; gtl-2, n=17;
miro-1, n = 36; gtl-2:miro-1, n =143 animals). miro-1(zju19) and miro-1(zju40) frameshift mutations were generated by CRISPR-Cas9 mediated mutagenesis
in gtl-2 background. Bars indicate mean + SEM. ns, P =0.9558 (versus miro-1), two-tailed unpaired t-test; ns, P=0.9558, ****P < 0.0001 (versus WT),
One-way ANOVA Dunnett's test. d Representative confocal image of mitochondrial morphology after treatment with Ca2* ionophore ionomycin in both
WT and miro-1 mutants. Scale bars, 10 pm, and 5 pm (zoom-in). N =3 independent experiments. e Quantitation of the distance of the fragmented
mitochondria to the injury site in gtl-2(n2618), miro-1(tm1966) mutant treated with low concentration of ionomycin (2.5 uM treated for 1h) (WT-DMSO,
n =37, WT-ionomycin, n = 36; gtl-2-DMSO, n = 31; gtl-2-ionomycin, n = 34; miro-1-DMSO, n = 32; miro-1-ionomycin, n = 35). Bars indicate mean + SEM.

ns, P=0.7435 (WT) or 0.6382 (miro-1), ***P < 0.0001, Two-tailed unpaired t-test. Source data are provided as a Source Data file.

Ca?t-MIRO-1 signaling is required for the spreading of
WIMF. MIRO-1 has a C-terminal transmembrane (TM) domain
for OMM targeting and two Rho GTPase domains flanking two
Ca®*t sensing EF-hand domains (Fig. 4a). To understand how
MIRO-1 might regulate WIMF, we generated domain-specific
alleles of the endogenous miro-1 locus (Fig. 4a, Supplemental
Table 5). Rho, EF-hand, and TM domain mutants displayed
similar mitochondrial morphology as in miro-1(tm1966) before
wounding (Supplementary Fig. 5e), suggesting these domains are
required for MIRO-1 to maintain mitochondrial morphology.
Moreover, WIMF is more restricted in the animals with mutated
Rho, EF-hand, or TM domains (Fig. 4b, Supplementary Fig. 5f,
Supplementary Movie 11), indicating that outer mitochondrial
membrane localization of MIRO-1 and cytosolic Ca?* binding to
EF-hand is important for the WIMF.

Epidermal wounding also triggers rapid elevation of cytosolic
Ca?t232443; in the C. elegans skin, this is dependent on the
TRPM/gtl-2 channel?3. Ca>* uptake into mitochondria mediated
by the MCU-1 channel is also necessary for actin-based wound
closure?6. Moreover, MIRO-1 has been shown to be required for a
cytosolic Ca?* induced mitochondrial shape transition in
cultured cells'!. We tested whether wound-induced early Ca®*

signals were involved in WIMF. In gtl-2(n2618) or mcu-1(jul154)
loss of function mutants, which display reduced cytosolic or
mitochondrial Ca2* uptake after wounding respectively, epider-
mal mitochondria displayed normal steady-state morphology
(Supplementary Fig. 5f, Supplementary Movie 12). gtl-2(n2618)
mutant showed much reduced mitochondrial fragmentation,
whereas mcu-1(jul154) mutant underwent typical mitochondrial
fragmentation (Fig. 4c, Supplementary Fig. 5f, Supplementary
Movie 12). gtl-2 miro-1 double mutants resembled miro-1 single
mutants in the distance of WIMF (Fig. 4c). Together, these data
suggest that the GTL-2 mediated cytosolic Ca>* signal acts in the
same pathway as MIRO-1 to drive WIMF.

To further test this hypothesis, we treated animals with
ionomycin to elevate cytosolic Ca?* (Supplementary Fig. 5g) and
observed widespread mitochondrial fragmentation in WT
animals but not in miro-1 mutants (Fig. 4d), suggesting MIRO-
1 is required for elevated Ca?t to induce mitochondrial
fragmentation, consistent with findings in cultured cells!!.
Furthermore, the elevation of Ca2* by low doses of ionomycin
rescued WIMF in gt/-2 mutants but not in miro-1 animals
(Fig. 4e, Supplementary Movie 13), suggesting wounding-induced
Ca’t is necessary for WIMF and acts via MIRO-1.
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Fig. 5 Mitochondrial fragmentation acts downstream of Ca2*-MIRO-1 to
accelerate wound closure. a Loss of function in the fusion gene fzo-1
suppresses wound closure defects of gtl-2(n2618) and mcu-1(jul154)
mutants. Quantitation of actin ring diameter in WT and mutants 1h after
needle wounding (WT, n=50; gtl-2, n=27; mcu-1, n=33; fzo-1, n = 64;
gtl-2;fzo-1, n = 20; fzo-;mcu-1, n = 33 animals). gt/-2 and mcu-1 mutants
display delayed actin ring closure, which is suppressed in double mutants
with fzo-1(tm1133). The WT actin ring diameter was normalized to 1

and mutants normalized to WT. Bars indicate mean = SEM. *P = 0.0328,
***P =0.0001, ****P<0.0001, One-way ANOVA Dunnett's test (single
mutant versus WT). two-tailed unpaired t-test (versus mcu-T or gtl-2).

b Quantitation of actin ring diameter in the mitochondrial mutants (WT,
n=34; drp-1, n = 54; miro-1, n = 47; fzo-1, n = 44; miro-1;fzo-1, n = 82; fzo-1;
drp-1 RNAI, n =39 animals). drp-1 partially suppresses fzo-1 while miro-1
significantly suppresses the fzo-7in enhanced wound closure. Bars indicate
mean £ SEM. ns, P=0.7753 (drp-1) or 0.9893 (miro-1), ***P =0.0002,
****P < 0.0001, two-tailed unpaired t-test (versus fzo-1). One-way ANOVA
Dunnett's test (single mutant versus WT). Source data are provided as a
Source Data file. ¢ Representative confocal images of mitochondrial
morphology in fzo-1 and miro-T;fzo-1 mutants. Pcol-19-Tomm-20::GFP
(zjuSi48) transgenic animals label the mitochondria. fzo-1 mutants display
fragmented and round shaped mitochondria. miro-7;fzo-1 double mutants
have tubular mitochondria, similar to miro-1 single mutants. N =3
independent experiments. d Representative confocal images of
mitochondrial morphology in fzo-1 and drp;fzo-1 mutants. Mitochondria
were labeled with mito::dendra2(juSi271), the mitochondrial morphology of
drp-T1;fzo-1 mimics drp-1, without fragmented mitochondria. Note, drp-1
suppress fzo-1 in mitochondrial morphology. Scale (¢, d), 10 pm and 5 pm
(zoom-in image).

Mitochondrial fragmentation acts downstream of Ca?* sig-
naling in wound closure. We next asked how mitochondrial
fragmentation accelerates wound closure. Loss of function
in either the Ca?* channel TRPM/GTL-2 or the mitochondrial
Ca2* uniporter MCU-1 inhibits wound closure?326, We thus
performed epistasis analysis of fzo-1 with Ca?T and the mito-
chondrial Ca?* pathway. We found that loss of function in fzo-1
suppressed the low post-wounding survival of gtl-2 (Supple-
mentary Fig. 2d) and restored its wound closure to normal
(Fig. 5a). fzo-1 also rescued the defective wound closure in the
mcu-1 mutant (Fig. 5a). Thus, constitutive fragmentation of
mitochondria in fzo-1 mutants bypasses the need for cytosolic or

mitochondrial Ca?* signals in wound closure, consistent with
Ca2" acting upstream of WIMF (Fig. 4).

MIRO-1 is required for the accelerated wound closure of
mutants with fragmented mitochondria. We then asked whe-
ther the enhanced wound closure in fzo-1 is due to fragmented
mitochondria. Although miro-1 mutation did not significantly
affect wound closure or post-wounding survival (Fig. 5b; Sup-
plementary Fig. 5h), the faster wound closure of the fzo-1 mutant
was suppressed by loss of function in miro-1 (Fig. 5b). Surpris-
ingly, mitochondrial morphology of miro-1; fzo-1 mutants
resembled that of miro-1 single mutants (Fig. 5¢), indicating that
miro-1 is required for the fragmented mitochondrial morphology
of fzo-1 mutant and that mitochondrial fragmentation is required
for fzo-I’s faster wound closure. To test this further, we made drp-
I fzo-1 double mutants, which displayed a hyper-fused mito-
chondrial morphology resembling that of drp-1 (Fig. 5d). drp-1
also significantly suppressed the faster wound closure phenotype
of fzo-1 animals (Fig. 5b).

Oxidative signaling genes are upregulated by wounding and by
mitochondrial fragmentation. To understand the genetic basis
of the enhanced wound closure in animals with fragmented
mitochondria, we analyzed the transcriptomes of wounded WT
animals and fzo-1 mutants, using unwounded WT animals as the
control (Fig. 6a). A large number of differentially expressed genes
(DEGs) were induced in wounded animals compared to
unwounded ones (Supplementary Fig. 6a, Supplementary Data 1).
DAVID gene ontology (GO) analysis found that most such DEGs
were enriched in the mitochondria and mitochondrial biogenesis
(Supplementary Fig. 6b, c). We hypothesized that faster wound
closure of fzo-1 mutants might reflect the elevated expression of
genes induced by wounding. We compared RNA seq data in
wounded WT animals and fzo-I mutants and identified ~2200
and ~800 DEGs, respectively (adjusted p-value <0.05) (Fig. 6a).
Strikingly, 216 genes differentially expressed after skin wounding
showed similar differential expression in fzo-1 (Fig. 6b, Supple-
mentary Data 2). GO analysis of the 216 overlapping genes
revealed enrichment for oxidation-reduction and metabolism-
related terms (Fig. 6c), suggesting loss of function of fzo-1 or
wounding affects the expression of genes involved in oxidative
signaling. These included cytochrome P450 (cyp) family genes,
dehydrogenases (dhs), and glutathione S-transferases (gst)
(Fig. 6d, Supplementary Fig. 6d). Quantitative PCR of selected
genes revealed similar changes as found in RNA seq (Fig. 6e-1).

Enhanced wound closure in fzo-1 is dependent on Cytochrome
P450 and mtROS. How might oxidative signals affect wound
closure in animals with fragmented mitochondria? To address
this question, we examined CYP genes upregulated after
wounding and in fzo-1 mutants. RNAi knockdown of either cyp-
13A8 or cyp-13A12 strongly inhibited actin ring formation at
wound sites in both WT and fzo-1 mutant (Fig. 6m, n). Impor-
tantly, in animals forming a visible actin ring, RNAi knockdown
of cyp-13A8, which is highly induced after wounding and in fzo-1
(Fig. 6d), significantly inhibits actin ring closure (Fig. 60). We
observed cyp-13A8 mRNA expression was significantly increased
a few minutes after wounding (Supplementary Fig. 6e), the time
correlates with the rapid actin polymerization at the wound site
(Supplementary Fig. 6e). cyp-13A8 is expressed in many tissues,
including epidermis (Supplementary Fig. 6f). Overexpression of
cyp-13A8 in epidermis either using its own promoter or col-19
promoter accelerated wound closure (Fig. 6p), suggesting CYP-
13A8 acts cell-autonomously to promote wound closure.
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Fig. 6 The upregulation of oxidative signals in fzo-1 mutants is required for faster wound closure. a VVenn diagram of differentially expressed genes
(DEGs) in WT needle wounded and fzo-1(tm1133) unwounded animals, compared to WT unwounded controls, as measured by RNA-seq (Benjamini-
Hochberg adjusted P value <0.001). See also Supplementary Data 1. b Gene expression heatmap of 216 DEGs shared by WT wounded and fzo-1
unwounded animals as described in a. ¢ DAVID biological process GO terms of upregulated and downregulated genes in the 125/216 overlapping DEGs
(Benjamini-Hochberg adjusted P value <0.001). See also Supplementary Data 2. d Heatmap of 19 overlapping oxidation-reduction processes genes.

e-l Quantification of oxidation-reduction process-related genes in the WT, wounded, and fzo-1 animals as determined by gPCR. In both WT wounded and
fzo-1 mutant, cyp-13A8, cyp-13A12, cyp-14A4, cyp-33D3, gst-20, dhs-23, and dhs-28 were upregulated while acdh-2, dhs-25 are down-regulated. N =3
independent experiments; Bars indicate mean + SEM. m Representative confocal images of actin ring formation 1h.p.w. RNAi knockdown of cyp-13A8 and
cyp-13A12 suppresses the accelerated actin ring formation in fzo-1(tm1133). Scale bar, 10 pum. N =3 independent experiments. n Quantitation of actin ring
formation percentage in the WT and fzo-1(tm7133) double mutants with RNAi knockdown cyp-13A8, and cyp-13A12 genes. N =50, ****P < 0.0001, versus
WT or fzo-1(tm1133), Two-sided Fisher's exact test. 0 Quantitation of actin ring diameter in the WT and fzo-1(tm7133) double mutants with RNAi knock
down cyp-13A8 (WT-L4440, n=17; WT-cyp-13A8, n =17, fz0-1-L4440, n=19; fzo-1;,cyp-13A8, n =13 animals). Bars indicate mean = SEM, ns, P=0.803,
****P <0.0001, versus WT or fzo-1(tm1133). two-tailed unpaired t-test. p Overexpression of CYP-13A8 in epidermis accelerates wound closure. Left,
representative actin ring images, Scale bar, 10 pm. Right, quantitation of actin ring diameter 1h.p.w (WT, n = 28; Pcyp-13A8-cyp-13A8, n = 21; Pcol-19-cyp-
13A8, n=19 animals). Bars indicate mean £ SEM, ****P < 0.0001, versus non transgenic animals. One-way ANOVA Dunnett's test. Source data are
provided as a Source Data file.

CYPs can generate reactive oxygen species (ROS)***>, and displayed significantly increased mitoSox fluorescence (Fig. 7a)

CYP expression is subject to feedback regulation by mtROS?.
Therefore, we examined mitochondrial ROS (mtROS) production
in the fragmented mitochondrial mutants by staining with
either the ROS sensor mitoSox or the genetically encoded sensor
mito:cpYFP47. Both fzo-1(tm1133) and eat-3(tm1107) mutants

| (2020)11:1050 | https://doi.org/10.

and mito:cpYFP intensity (Supplementary Fig. 7a), whereas drp-1
(tm1108) mutants showed reduced mitoSox staining (Fig. 7a).
Treatment of animals with mitochondrial fragmentation inducers
Rotenone or FCCP significantly enhanced the mitoSox signal
(Supplementary Fig. 7b) and also induced CYP expression
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control. Bars indicate mean + SEM, **P = 0.0015, ****P < 0.0001, two-tailed unpaired t-test. f, g Mitochondrial fusion mutants reduced local activation of
RHO-1 small GTPase at wound sites (see also Supplementary Movie 14). f Representative confocal images of RHO-1 GTPase sensor eGFP::rGBD in the
adult in WT or drp-1, fzo-1, and eat-3 mutant. Pcol-19-eGFP::rGBD(juEx3025) strain were used for wounding and imaging. Scale bars (a, f), 10 pm.

g Quantitation of eGFP::rGBD fluorescent intensity change in WT and mutants after wounding (WT, n=52; drp-1, n=51; fzo-1, n=44; eat-3, n =46

animals). Bars indicate mean = SEM, ns, P =0.1448, ****P < 0.001, One-way ANOVA Dunnett's test. Source data are provided as a Source Data file.
h A model for how mitochondrial fragmentation promotes epidermal wound closure.

(Fig. 7¢). Conversely, overexpression of cyp-13A8 in the epidermis
enhanced mitoSox fluorescence while cyp-13A8(zju212) knock
out mutants (Supplementary Fig. 7b) displayed lower mitoSox
signal (Supplementary Fig. 7¢), suggesting CYPs are required and
sufficient to increase mtROS. Together, these results suggest that
mtROS and CYP-13A8 display positive feedback regulation that
maintains elevated mtROS levels after wounding.

We next determined whether the elevated mtROS in fzo-1
mutants contributes to the enhanced wound closure. Loss of
function in miro-1 suppressed the elevated mitoSox signal in the
fzo-1 mutant (Fig. 7d), consistent with suppression of mitochon-
drial fragmentation and enhanced wound closure in fzo-1
(Fig. 5b). cyp-13A8 fzo-1 double mutants also showed signifi-
cantly reduced mitoSox signal compared to fzo-1 single mutants
(Fig. 7d), suggesting cyp-13A8 is required for the elevated mtROS
levels in fzo-1 mutants. Treatment of fzo-1 or eat-3 mutants with
antioxidants NAC or mitoTempo not only reduced mtROS levels
(Supplementary Fig. 7d) but also suppressed the faster wound
closure (Supplementary Fig. 7e, f, Fig. 7e), whereas mitochondrial
specific prooxidant paraquat enhanced wound closure (Fig. 7e).
mitoTempo treatment reduced the post-wound survival (Supple-
mentary Fig. 7g) and delayed wound closure (Supplementary
Fig. 7h), and these effects could be reverted by the addition of

Rotenone (Supplementary Fig. 7h), suggesting elevated mtROS is
required and sufficient to accelerate wound closure. We then
tested whether mitochondrial fragmentation affects local activa-
tion of RHO-1, which is an inhibitory GTPase that regulating
actin filaments formation in wound closure. Both fragmented
mitochondrial mutants fzo-1 and eat-3 displayed reduced RHO-1
genetic sensor eGFP:rGBD intensity after wounding (Supplemen-
tary Fig. 7i, j, Supplementary Movie 14), suggesting mitochondrial
fragmentation mutants inhibit the local action of RHO-1 in vivo.
Together, these results suggest that enhanced wound closure in
fragmented mitochondrial mutants is due to elevated mtROS
signal and inhibition of RHO-1 activity.

Discussion

We have shown that epidermal injury triggers rapid and rever-
sible fragmentation of mitochondrial morphology, wounding-
induced mitochondrial fragmentation (WIMF), that promotes
tissue repair through oxidative-reduction and mtROS signaling.
Notably, WIMEF is independent of the canonical fission regulator
DRP-1, but requires the Ca?%t-sensitive mitochondrial Rho
GTPase MIRO-1. We find that mitochondrial fragmentation
triggers mtROS production and induces expression of oxidative
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signaling genes such as CYP-13A8, which acts together to
maintain an elevated protective level of mtROS. Thus, our find-
ings demonstrate that mitochondrial fragmentation is beneficial
in promoting tissue repair in vivo.

Mitochondria form a highly dynamic tubular network within
cells such as the C. elegans epidermis, reflecting a balance of
fusion and fission events that are linked to the energetic and
oxidative metabolic requirements of the cell. The master regulator
of fission is DRPI, which constricts tubular mitochondria to
facilitate division in response to cellular signals or mechanical
force*8, In contrast, WIMF does not depend on DRP-1 but
instead requires the mitochondrial Rho GTPase MIRO-1. Inter-
estingly, Nemani et al. recently reported that elevated cytosolic
Ca2* induces a mitochondrial shape transition (MiST) in HeLa
and MEF cells, dependent on MIRO!1 but not DRP1!'!. While
WIMF and MiST may share some mechanistic overlap, we note
that the Ca?t induced MiST happens over several minutes!],
whereas WIMF happens in seconds (see detail comparison in
Supplementary Table 6). Possibly the amplitude or local nature of
the wounding-induced Ca?™ transient is sufficient to trigger a
more rapid fragmentation response. In both situations, Ca’*
binding of MIRO-1 is critical, although the mechanism by which
Ca?T-activated MIROI can cause mitochondrial fragmentation
remains to be determined.

Tissue damage is signaled at a cellular level via damage-
associated molecular patterns (DAMPs)*® or wound response
signals such as Ca?T or ATP>(. In Drosophila epidermis and
zebrafish tail fin, Ca?* stimulates DUOX2 dependent membrane
production of ROS that recruit immune cells to the injury
site?42543, However, Ca?T mediates diverse biological processes
unrelated to tissue injury, raising the question of how organisms
distinguish between wound-induced and physiological Ca2*
transients. Previous studies have shown that wounding triggers
mtROS production, mediated by MCU-dependent mitochondrial
Ca%t uptake, and that mtROS can promote wound healing?®.
Here we find that MIRO-1 is another key downstream target of
Ca?t, independent of MCU-1 dependent Ca2t uptake into
mitochondria. Thus, wounding-induced Ca2™ signals may act via
multiple effectors to generate a protective mtROS cascade in
regulating tissue repair.

We have shown that WIMF occurs in a variety of cellular
contexts, from in vitro scratch assays to zebrafish tail fin
wounding. It will be valuable in the future to dissect whether
similar pathways involving MIRO1, CYPs, and oxidative signals
function in these other wound repair paradigms. Intriguingly,
MIROL1 is required for MEF cell migration in vitro, at both col-
lective and single-cell level®!, potentially relevant to our finding
that miro-1 is required for accelerated wound closure in the fzo-1
mutant, suggesting Ca?T-MIRO-1 signals may play a conserved
role in responding to and regulating mitochondrial activity in
tissue repair.

We find that wounding and mitochondrial fragmentation
induce expression of cytochrome P450 monooxygenases, a large
family of enzymes that generate mtROS*+46. Moreover, over-
expression of cyp-13A8 in epidermis enhances mtROS and pro-
mote wound closure. CYPs respond to wounding and accelerate
wound epithelization in diabetic mice®2, hairless mouse ear>3, and
even in plants®*. In this study, we demonstrated that CYPs are
upregulated in the fragmented mitochondrial animals and are
required for actin-based wound closure, suggesting CYPs may be
vital in mediating oxidative signals that promote damage repair.
By uncovering a link between mitochondrial fragmentation,
oxidative signaling and tissue repair, our work may open a door
to novel therapeutic interventions based on mitochondrial sig-
nals. For example, hyperbaric oxygen therapy has long been used
to accelerate wound repair in chronic diabetic wounds and is

thought to act in part by increasing oxidative metabolic
stress®>%. Our results raise the possibility that hyperbaric oxygen
treatment activates mitochondrial oxidative metabolic cascades,
culminating in high levels of mtROS that protect tissues from
damage.

Methods

C. elegans strains and genetics. All C. elegans strains were maintained by stan-
dard methods at 20-22.5 °C on nematode growth medium (NGM) agar plates
seeded with E. coli OP50. New strains were constructed using standard procedures,
and genotypes confirmed by PCR and sequencing. All the strains used are listed in
Supplementary Table 1.

Constructs and transgenic worms. Epidermal mitochondria were labeled with
the mitochondrial target sequence of Cytochrome C oxidase VIII fused to GFP or
dendra2 or mKate2 under the control of the col-19 promoter. Extrachromosomal
array transgenic worms were made by injection of constructs at 10 ng/ul with

50 ng/pl co-injection marker (Pttx-3-RFP). Single-copy insertion of Pcol-19-mito::
dendra2(juSi271) was made by Mos-SCI°. The single-copy insertions Pcol-19-
lifeact::PHtomato(zjuSi22) I, Pcol-19-mito::mKate2(zjuSi47) II, Pcol-19-Tomm-20::
GFP(zjuSi48) I were made by CRISPR-Cas9 based insertion method®s. New
transgenic strains are listed in Supplementary Table 1. All constructs used in this
study are listed in Supplementary Table 2.

Outer mitochondrial membrane proteins screen. RNAi was carried out as fol-
lows. Briefly, WT animals carrying the mitochondrial marker Pcol-19-mito::dendra2
(juSi271) were grown to the L4 stage and then fed RNAIi bacteria for 12 h. Young
adult animals were imaged on the spinning disk confocal microscope before and after
needle wounding (Andor 100x, NA 1.46 objective). We screened C. elegans orthologs
of about 170 putative OMM proteins in the mitoCarta database (https://www.
broadinstitute.org/files/shared/metabolism/mitocarta/human.mitocarta2.0.html)>°.
Candidate genes are listed in Supplementary Table 4.

GFP fusion protein knock-in. GFP::miro-1(zju21), mKate2::miro-1(zju211), fzo-1::
GFEP(zju136) knock-in mutations were generated using CRISPR-Cas9 method®’.
Briefly, repair templates were generated into pDD282 plasmid by Gibson assembly.
We injected sgRNAs, repair template, and dpy-10 sgRNA (as selection marker) into
N2 animals. Roller animals were heat-shocked to remove markers. All primers and
sgRNAs are listed in Supplementary Table 3.

Drug treatment. All drugs were added to the bacterial lawn from a high con-
centration stock and allowed to dry for 1-2 hr at room temperature before
transferring the young adult animals. Rotenone (Sigma R8875) was dissolved in
DMSO to make 40 mM stock solutions; mitoTempo (Sigma, SML0737), triphe-
nylphosphonium chloride (TPP; Sigma 675121), PQ dichloride (Sigma 36541), and
NAC (Sigma A7250) were dissolved in ddH20 to make 500 mM stocks; FCCP
(Sigma C2920), Antimycin A (Sigma A8674), Ionomycin (Sigma 407953) were
dissolved in ethanol as 10 mM, 45 mM, and 10 mM stock solutions, respectively.
For acute drug treatments, young adults were transferred to freshly made NGM
drug plates 1-2 hours at room temperature before needle wounding. The syn-
chronized young adults were transferred to freshly made NGM drug plate and then
imaged using Zeiss Discovery LSM880 or the spinning disk confocal.

Wounding, wound closure, and survival assay. We wounded animals using
femtosecond or Micropoint UV laser or with single stabs of a microinjection needle
to the anterior or posterior body 24 h after the L4 stage. Actin ring and mito-
chondrial images were taken using LSM710 confocal microscope (63x, NA 1.4
objective) or spinning disk microscope (100x, NA 1.46 objective), Laser wounding
images were taken using spinning disk confocal microscope (Andor 100x, NA 1.46
objective with IQ CORE image software). Actin ring quantitation and survival rate
were performed as previously described?3. Fragmented mitochondria were counted
in a region of interest (ROI) 100 pm? within 20 um to the wound site (4 ROI per
animal) (Fig. 1d). The spread of mitochondrial fragmentation from the wound site
was measured as the farthest distance of the fragmented mitochondria to the laser
wounding site using Image] or MetaMorph software. Some metrics were nor-
malized to WT = 1.

GFP nanobody mediated protein degradation. GFP nanobody tissue-specific
knockdown was performed as follows. First we generated the strain fzo-1::GFP
(zju136); Pcol-19-lifeactin::;pHtomato (zjuSi22) to analyze actin ring diameter.
Tissue-specific GFP nanobody degradation plasmids were generated using LR
recombination. Plasmids for Pcol-19-vhh-ZIF1(zjuEx99), Psur-5-vhh-ZIF1
(zjuEx220), Pmyo-3-vhh-ZIF1(zjuEx154) were injected into N2 animals and the
transgenic animals were then crossed with either Pcol-19-Lifeact-pHtomato or fzo-
1::GFP; Pcol-19-lifeactin::;pHtomato. Needle wounding and actin ring diameter
measurements were performed as above.
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CRISPR-Cas9 mediated mutagenesis. MIRO-1 mutagenesis was performed using
the CRISPR-Cas9 system®®. A mixture of plasmids containing pSX709 (pU6-BseRI-
BseRI-sgRNA-miro-1) 50 ng/ul, and pSX524(Peft-3-cas9-NLS-pU6-dpy-10 sgRNA)
50 ng/ul was injected into the animals with a different transgenic or mutant
background (see Supplementary Table 5). We screened for in-frame deletion
mutations by DNA sequencing. All alleles were outcrossed before analysis. sgRNAs
and deletion information are listed in Supplementary Tables 3 and 5.

Heat shock. Phsp-16.2::fzo-1 transgenic animal heat shock experiment was per-
formed as follows essentially described elsewhere®!. Briefly, L1 worms were heat-
shocked at 32 °C for 4 h, then incubated at 20 °C overnight before proceeding to
needle wounding at the young adult stage.

The single worm RNA sequencing. Single worm RNA sequencing used a protocol
modified from single-cell RNA sequencing for mouse cells®2. A single young adult
animal was transferred into 2 pl lysis buffer and lysed by grinding. In all, 1 ul of
each oligo-dT primer (10 pM) and ANTP (10 mM) was added into the PCR tube
and heated at 72°C for 3 mins then cooled for 2 min. 6 pl reverse transcription
mixture (100 U SuperScript II reverse transcriptase (Takara), superscript II first-
strand buffer, 1 U RNAase inhibitor (Vazyme),10 M betaine (Sigma), 6 mM MgCl,
(Ambion), and 100 uM TSO primer) was then added directly and incubated using
thermal cycle: 90 min at 42 °C, 15 min at 72 °C and hold at 4 °C. cDNA samples
were amplified with 10 ul KAPA HiFi HotStart ReadyMix (Kapa Biosystems) and
12.5ul 10 uM IS PCR primers. The purified cDNA was fragmented by TruePrep
DNA Library Prep Kit V2 for Illumina (Vazyme Inc) Hiseq X 10 system
sequencing. Primers are listed in Supplementary Table 3.

RNA-sequencing analysis. Each sample was analyzed in three biological repli-
cates. Paired-end RNA-seq reads were generated on the Illumina HiSeq X10
platform. Clean reads were mapped to rRNAs and tRNAs firstly, and those
unmapped reads were mapped to the C. elegans genome (cell) with gene anno-
tation WS258 using STAR®3 version 2.5.3a under default parameters except ‘out
Filter Match N min 40’. The Feature Counts program from R subreads package®*
was used to count reads mapped to each gene for all samples. The gene count by
sample tables was used for differential expression analysis with DESeq2%°. The
cutoff for differential expressed genes (DEGs) were: Benjamini-Hochberg adjusted
p-value less than 0.05 and foldchange larger than 1.5. GO-term analysis of DEGs
was done with DAVID®®, Figures were made with the ggplot2 package and
Complex Heatmap package in R%7.

Mitosox staining and imaging. MitoSOX Red (Molecular Probes, M36008)
staining was performed as follows. Briefly, young adult animals were wounded by
needle and then transferred mitoSOX Red staining solution (5 uM) The animals
were stained in the dark with gentle shaking for 20 min at room temperature.
Stained worms were washed three times with M9 before imaging using a 561-nm
excitation laser.

RNA isolation and quantitative PCR (qPCR) analysis. Total RNA was extracted
from 30 young adult animals using TRIzol (Invitrogen, Carlsbad, CA, USA) and
quantitated using a NanoDrop spectrophotometer (Thermo, USA). First-strand
cDNA was synthesized by using the ReverTra Ace qPCR RT Kit (Toyobo, Japan).
Primers for genes (Supplementary Table 3) were designed using Primer Premier 5
(Premier Biosoft). act-1 was used as an internal control. The reaction mixtures were
prepared according to the SYBR green kit instructions (Vazyme, China) and real-
time quantitative reverse transcription PCR (RT-PCR) was performed using a
LightCycler 480 II (Roche, Switzerland). The cycling protocol was: 95 °C for 2 min,
followed by 40 cycles at 95 °C for 10s, and 60 °C for 40 s. Relative expression levels
were calculated using the 2-4ACt method.

Cell culture and scratch assay. U20S cells (ATCC) were cultured in DMEM
(GIBCO) supplemented with 10% FBS (Hyclone), 2 mM glutamine, 100U/100 pg/
ml penicillin/streptomycin (GIBCO). The cells were seeded in a 4-well microplate
and grown overnight to reach 90% confluence. To visualize mitochondrial mor-
phology, cells were incubated in mitoTracker Green (Molecular Probes) and sub-
jected to scratch wounding as described. The mitochondrial morphology was
taken using spinning disk confocal and images analyzed using MetaMorph. Each
cell was classified as displaying tubular or fragmented mitochondria. The statistical
details are in Source Data file.

Visualization of MIRO-1. GFP::miro-1(zju21) and mKate2::miro-1(zju211) knock-
in strain were subjected to laser or needle wounding. Animals were mounted on
10% agarose pads in M9, in 12 mM levamisole and imaged before and after
wounding using a Zeiss 880 confocal microscope. Green fluorescence was visua-
lized with a 488-nm laser, and red fluorescence was visualized with a 561-nm laser.
To score GFP:MIRO-1 on the membrane of mitochondria, fluorescence profiles at
different sections of the mitochondria were obtained using the ‘Line Scan’ tool in
MetaMorph. GFP::MIRO-1 was scored as localizing to the membrane if the peak of

green intensity (GFP::MIRO-1) and the peak of red intensity (mitochondrial matrix
mKate2) were not overlapping.

Imaging and mitochondrial morphology analysis. Images were taken using IQ
image software (IQ CORE, Nikon) and analyzed using MetaMorph (Molecular
Devices, San Jose, CA) and Image] (https://imagej.nih.gov/ij/). We scored mito-
chondria as fragmented if they were separate from other mitochondria and had a
spherical or oval shape. The distance of fragmented mitochondrial to the wound
site was defined as the farthest fragmented mitochondria to the wound site. We
searched for fragmented mitochondria around the wound site and drew 20 lines for
each wounded animal. The farthest distances were then averaged. All quantitation
was performed by an observer blind to genotypes.

Zebrafish tail-fin wounding and mitochondrial imaging. WT zebrafish (AB line)
larvae from the zebrafish center at ZJU. 3 days post-fertilization (3 dpf) larvae were
cultured in E3 medium (5 mM NaCl, 0.17 mM KCI, 0.33 mM CaCl2, 0.33 mM
MgSO4) containing 5 uM mitoTracker Green (Molecular Probes) for 2 h. Larvae
were then washed three times before imaging. To examine the mitochondrial
morphology, the larvae with mitoTracker Green staining were subjected to tail-fin
tip wounding and then transferred to the imaging plate for confocal imaging?2. No
ethics approval was necessary for work with zebrafish larvae.

Oxygen Consumption Rate (OCR) measurement. OCR was measured using
Seahorse Bioscience XF96%°. Briefly, approximately 10-25 young adult worms were
placed in each well and then measured by the XF96 respirometer. The experiment
was repeated two times, with 8 wells for each genotype in each experiment. OCR
per single worm was then normalized to the total number of animals.

Statistical analysis. All statistical analyses used Prism (GraphPad, CA). Two-way
comparisons used a two-tailed unpaired t-test. One-way ANOVA for multiple
comparisons, or the Fisher exact test for proportions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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this article, its supplementary information files, the peer-review file, the source data file,
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